mirror of
https://github.com/prometheus/prometheus.git
synced 2024-11-09 23:24:05 -08:00
promql: Separate Point
into FPoint
and HPoint
In other words: Instead of having a “polymorphous” `Point` that can either contain a float value or a histogram value, use an `FPoint` for floats and an `HPoint` for histograms. This seemingly small change has a _lot_ of repercussions throughout the codebase. The idea here is to avoid the increase in size of `Point` arrays that happened after native histograms had been added. The higher-level data structures (`Sample`, `Series`, etc.) are still “polymorphous”. The same idea could be applied to them, but at each step the trade-offs needed to be evaluated. The idea with this change is to do the minimum necessary to get back to pre-histogram performance for functions that do not touch histograms. Here are comparisons for the `changes` function. The test data doesn't include histograms yet. Ideally, there would be no change in the benchmark result at all. First runtime v2.39 compared to directly prior to this commit: ``` name old time/op new time/op delta RangeQuery/expr=changes(a_one[1d]),steps=1-16 391µs ± 2% 542µs ± 1% +38.58% (p=0.000 n=9+8) RangeQuery/expr=changes(a_one[1d]),steps=10-16 452µs ± 2% 617µs ± 2% +36.48% (p=0.000 n=10+10) RangeQuery/expr=changes(a_one[1d]),steps=100-16 1.12ms ± 1% 1.36ms ± 2% +21.58% (p=0.000 n=8+10) RangeQuery/expr=changes(a_one[1d]),steps=1000-16 7.83ms ± 1% 8.94ms ± 1% +14.21% (p=0.000 n=10+10) RangeQuery/expr=changes(a_ten[1d]),steps=1-16 2.98ms ± 0% 3.30ms ± 1% +10.67% (p=0.000 n=9+10) RangeQuery/expr=changes(a_ten[1d]),steps=10-16 3.66ms ± 1% 4.10ms ± 1% +11.82% (p=0.000 n=10+10) RangeQuery/expr=changes(a_ten[1d]),steps=100-16 10.5ms ± 0% 11.8ms ± 1% +12.50% (p=0.000 n=8+10) RangeQuery/expr=changes(a_ten[1d]),steps=1000-16 77.6ms ± 1% 87.4ms ± 1% +12.63% (p=0.000 n=9+9) RangeQuery/expr=changes(a_hundred[1d]),steps=1-16 30.4ms ± 2% 32.8ms ± 1% +8.01% (p=0.000 n=10+10) RangeQuery/expr=changes(a_hundred[1d]),steps=10-16 37.1ms ± 2% 40.6ms ± 2% +9.64% (p=0.000 n=10+10) RangeQuery/expr=changes(a_hundred[1d]),steps=100-16 105ms ± 1% 117ms ± 1% +11.69% (p=0.000 n=10+10) RangeQuery/expr=changes(a_hundred[1d]),steps=1000-16 783ms ± 3% 876ms ± 1% +11.83% (p=0.000 n=9+10) ``` And then runtime v2.39 compared to after this commit: ``` name old time/op new time/op delta RangeQuery/expr=changes(a_one[1d]),steps=1-16 391µs ± 2% 547µs ± 1% +39.84% (p=0.000 n=9+8) RangeQuery/expr=changes(a_one[1d]),steps=10-16 452µs ± 2% 616µs ± 2% +36.15% (p=0.000 n=10+10) RangeQuery/expr=changes(a_one[1d]),steps=100-16 1.12ms ± 1% 1.26ms ± 1% +12.20% (p=0.000 n=8+10) RangeQuery/expr=changes(a_one[1d]),steps=1000-16 7.83ms ± 1% 7.95ms ± 1% +1.59% (p=0.000 n=10+8) RangeQuery/expr=changes(a_ten[1d]),steps=1-16 2.98ms ± 0% 3.38ms ± 2% +13.49% (p=0.000 n=9+10) RangeQuery/expr=changes(a_ten[1d]),steps=10-16 3.66ms ± 1% 4.02ms ± 1% +9.80% (p=0.000 n=10+9) RangeQuery/expr=changes(a_ten[1d]),steps=100-16 10.5ms ± 0% 10.8ms ± 1% +3.08% (p=0.000 n=8+10) RangeQuery/expr=changes(a_ten[1d]),steps=1000-16 77.6ms ± 1% 78.1ms ± 1% +0.58% (p=0.035 n=9+10) RangeQuery/expr=changes(a_hundred[1d]),steps=1-16 30.4ms ± 2% 33.5ms ± 4% +10.18% (p=0.000 n=10+10) RangeQuery/expr=changes(a_hundred[1d]),steps=10-16 37.1ms ± 2% 40.0ms ± 1% +7.98% (p=0.000 n=10+10) RangeQuery/expr=changes(a_hundred[1d]),steps=100-16 105ms ± 1% 107ms ± 1% +1.92% (p=0.000 n=10+10) RangeQuery/expr=changes(a_hundred[1d]),steps=1000-16 783ms ± 3% 775ms ± 1% -1.02% (p=0.019 n=9+9) ``` In summary, the runtime doesn't really improve with this change for queries with just a few steps. For queries with many steps, this commit essentially reinstates the old performance. This is good because the many-step queries are the one that matter most (longest absolute runtime). In terms of allocations, though, this commit doesn't make a dent at all (numbers not shown). The reason is that most of the allocations happen in the sampleRingIterator (in the storage package), which has to be addressed in a separate commit. Signed-off-by: beorn7 <beorn@grafana.com>
This commit is contained in:
parent
136b48855a
commit
c0879d64cf
|
@ -347,7 +347,7 @@ Outer:
|
|||
for _, s := range got {
|
||||
gotSamples = append(gotSamples, parsedSample{
|
||||
Labels: s.Metric.Copy(),
|
||||
Value: s.V,
|
||||
Value: s.F,
|
||||
})
|
||||
}
|
||||
|
||||
|
@ -447,7 +447,8 @@ func query(ctx context.Context, qs string, t time.Time, engine *promql.Engine, q
|
|||
return v, nil
|
||||
case promql.Scalar:
|
||||
return promql.Vector{promql.Sample{
|
||||
Point: promql.Point{T: v.T, V: v.V},
|
||||
T: v.T,
|
||||
F: v.V,
|
||||
Metric: labels.Labels{},
|
||||
}}, nil
|
||||
default:
|
||||
|
|
|
@ -17,9 +17,7 @@ _Notes about the experimental native histograms:_
|
|||
flag](../feature_flags/#native-histograms). As long as no native histograms
|
||||
have been ingested into the TSDB, all functions will behave as usual.
|
||||
* Functions that do not explicitly mention native histograms in their
|
||||
documentation (see below) effectively treat a native histogram as a float
|
||||
sample of value 0. (This is confusing and will change before native
|
||||
histograms become a stable feature.)
|
||||
documentation (see below) will ignore histogram samples.
|
||||
* Functions that do already act on native histograms might still change their
|
||||
behavior in the future.
|
||||
* If a function requires the same bucket layout between multiple native
|
||||
|
@ -404,6 +402,8 @@ For each timeseries in `v`, `label_join(v instant-vector, dst_label string, sepa
|
|||
using `separator` and returns the timeseries with the label `dst_label` containing the joined value.
|
||||
There can be any number of `src_labels` in this function.
|
||||
|
||||
`label_join` acts on float and histogram samples in the same way.
|
||||
|
||||
This example will return a vector with each time series having a `foo` label with the value `a,b,c` added to it:
|
||||
|
||||
```
|
||||
|
@ -419,6 +419,8 @@ of `replacement`, together with the original labels in the input. Capturing grou
|
|||
regular expression can be referenced with `$1`, `$2`, etc. If the regular expression doesn't
|
||||
match then the timeseries is returned unchanged.
|
||||
|
||||
`label_replace` acts on float and histogram samples in the same way.
|
||||
|
||||
This example will return timeseries with the values `a:c` at label `service` and `a` at label `foo`:
|
||||
|
||||
```
|
||||
|
@ -501,10 +503,21 @@ counter resets when your target restarts.
|
|||
|
||||
For each input time series, `resets(v range-vector)` returns the number of
|
||||
counter resets within the provided time range as an instant vector. Any
|
||||
decrease in the value between two consecutive samples is interpreted as a
|
||||
counter reset.
|
||||
decrease in the value between two consecutive float samples is interpreted as a
|
||||
counter reset. A reset in a native histogram is detected in a more complex way:
|
||||
Any decrease in any bucket, including the zero bucket, or in the count of
|
||||
observation constitutes a counter reset, but also the disappearance of any
|
||||
previously populated bucket, an increase in bucket resolution, or a decrease of
|
||||
the zero-bucket width.
|
||||
|
||||
`resets` should only be used with counters.
|
||||
`resets` should only be used with counters and counter-like native
|
||||
histograms.
|
||||
|
||||
If the range vector contains a mix of float and histogram samples for the same
|
||||
series, counter resets are detected separately and their numbers added up. The
|
||||
change from a float to a histogram sample is _not_ considered a counter
|
||||
reset. Each float sample is compared to the next float sample, and each
|
||||
histogram is comprared to the next histogram.
|
||||
|
||||
## `round()`
|
||||
|
||||
|
@ -526,7 +539,7 @@ have exactly one element, `scalar` will return `NaN`.
|
|||
## `sort()`
|
||||
|
||||
`sort(v instant-vector)` returns vector elements sorted by their sample values,
|
||||
in ascending order.
|
||||
in ascending order. Native histograms are sorted by their sum of observations.
|
||||
|
||||
## `sort_desc()`
|
||||
|
||||
|
@ -545,7 +558,8 @@ expression is to be evaluated.
|
|||
## `timestamp()`
|
||||
|
||||
`timestamp(v instant-vector)` returns the timestamp of each of the samples of
|
||||
the given vector as the number of seconds since January 1, 1970 UTC.
|
||||
the given vector as the number of seconds since January 1, 1970 UTC. It also
|
||||
works with histogram samples.
|
||||
|
||||
## `vector()`
|
||||
|
||||
|
@ -569,12 +583,15 @@ over time and return an instant vector with per-series aggregation results:
|
|||
* `quantile_over_time(scalar, range-vector)`: the φ-quantile (0 ≤ φ ≤ 1) of the values in the specified interval.
|
||||
* `stddev_over_time(range-vector)`: the population standard deviation of the values in the specified interval.
|
||||
* `stdvar_over_time(range-vector)`: the population standard variance of the values in the specified interval.
|
||||
* `last_over_time(range-vector)`: the most recent point value in specified interval.
|
||||
* `last_over_time(range-vector)`: the most recent point value in the specified interval.
|
||||
* `present_over_time(range-vector)`: the value 1 for any series in the specified interval.
|
||||
|
||||
Note that all values in the specified interval have the same weight in the
|
||||
aggregation even if the values are not equally spaced throughout the interval.
|
||||
|
||||
`count_over_time`, `last_over_time`, and `present_over_time` handle native
|
||||
histograms as expected. All other functions ignore histogram samples.
|
||||
|
||||
## Trigonometric Functions
|
||||
|
||||
The trigonometric functions work in radians:
|
||||
|
|
392
promql/engine.go
392
promql/engine.go
|
@ -189,7 +189,8 @@ func (q *query) Cancel() {
|
|||
// Close implements the Query interface.
|
||||
func (q *query) Close() {
|
||||
for _, s := range q.matrix {
|
||||
putPointSlice(s.Points)
|
||||
putFPointSlice(s.Floats)
|
||||
putHPointSlice(s.Histograms)
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -680,11 +681,15 @@ func (ng *Engine) execEvalStmt(ctx context.Context, query *query, s *parser.Eval
|
|||
for i, s := range mat {
|
||||
// Point might have a different timestamp, force it to the evaluation
|
||||
// timestamp as that is when we ran the evaluation.
|
||||
vector[i] = Sample{Metric: s.Metric, Point: Point{V: s.Points[0].V, H: s.Points[0].H, T: start}}
|
||||
if len(s.Histograms) > 0 {
|
||||
vector[i] = Sample{Metric: s.Metric, H: s.Histograms[0].H, T: start}
|
||||
} else {
|
||||
vector[i] = Sample{Metric: s.Metric, F: s.Floats[0].F, T: start}
|
||||
}
|
||||
}
|
||||
return vector, warnings, nil
|
||||
case parser.ValueTypeScalar:
|
||||
return Scalar{V: mat[0].Points[0].V, T: start}, warnings, nil
|
||||
return Scalar{V: mat[0].Floats[0].F, T: start}, warnings, nil
|
||||
case parser.ValueTypeMatrix:
|
||||
return mat, warnings, nil
|
||||
default:
|
||||
|
@ -940,9 +945,10 @@ type errWithWarnings struct {
|
|||
|
||||
func (e errWithWarnings) Error() string { return e.err.Error() }
|
||||
|
||||
// An evaluator evaluates given expressions over given fixed timestamps. It
|
||||
// is attached to an engine through which it connects to a querier and reports
|
||||
// errors. On timeout or cancellation of its context it terminates.
|
||||
// An evaluator evaluates the given expressions over the given fixed
|
||||
// timestamps. It is attached to an engine through which it connects to a
|
||||
// querier and reports errors. On timeout or cancellation of its context it
|
||||
// terminates.
|
||||
type evaluator struct {
|
||||
ctx context.Context
|
||||
|
||||
|
@ -1137,17 +1143,35 @@ func (ev *evaluator) rangeEval(prepSeries func(labels.Labels, *EvalSeriesHelper)
|
|||
}
|
||||
|
||||
for si, series := range matrixes[i] {
|
||||
for _, point := range series.Points {
|
||||
for _, point := range series.Floats {
|
||||
if point.T == ts {
|
||||
if ev.currentSamples < ev.maxSamples {
|
||||
vectors[i] = append(vectors[i], Sample{Metric: series.Metric, Point: point})
|
||||
vectors[i] = append(vectors[i], Sample{Metric: series.Metric, F: point.F, T: ts})
|
||||
if prepSeries != nil {
|
||||
bufHelpers[i] = append(bufHelpers[i], seriesHelpers[i][si])
|
||||
}
|
||||
|
||||
// Move input vectors forward so we don't have to re-scan the same
|
||||
// past points at the next step.
|
||||
matrixes[i][si].Points = series.Points[1:]
|
||||
matrixes[i][si].Floats = series.Floats[1:]
|
||||
ev.currentSamples++
|
||||
} else {
|
||||
ev.error(ErrTooManySamples(env))
|
||||
}
|
||||
}
|
||||
break
|
||||
}
|
||||
for _, point := range series.Histograms {
|
||||
if point.T == ts {
|
||||
if ev.currentSamples < ev.maxSamples {
|
||||
vectors[i] = append(vectors[i], Sample{Metric: series.Metric, H: point.H, T: ts})
|
||||
if prepSeries != nil {
|
||||
bufHelpers[i] = append(bufHelpers[i], seriesHelpers[i][si])
|
||||
}
|
||||
|
||||
// Move input vectors forward so we don't have to re-scan the same
|
||||
// past points at the next step.
|
||||
matrixes[i][si].Histograms = series.Histograms[1:]
|
||||
ev.currentSamples++
|
||||
} else {
|
||||
ev.error(ErrTooManySamples(env))
|
||||
|
@ -1184,8 +1208,11 @@ func (ev *evaluator) rangeEval(prepSeries func(labels.Labels, *EvalSeriesHelper)
|
|||
if ev.endTimestamp == ev.startTimestamp {
|
||||
mat := make(Matrix, len(result))
|
||||
for i, s := range result {
|
||||
s.Point.T = ts
|
||||
mat[i] = Series{Metric: s.Metric, Points: []Point{s.Point}}
|
||||
if s.H == nil {
|
||||
mat[i] = Series{Metric: s.Metric, Floats: []FPoint{{T: ts, F: s.F}}}
|
||||
} else {
|
||||
mat[i] = Series{Metric: s.Metric, Histograms: []HPoint{{T: ts, H: s.H}}}
|
||||
}
|
||||
}
|
||||
ev.currentSamples = originalNumSamples + mat.TotalSamples()
|
||||
ev.samplesStats.UpdatePeak(ev.currentSamples)
|
||||
|
@ -1197,22 +1224,28 @@ func (ev *evaluator) rangeEval(prepSeries func(labels.Labels, *EvalSeriesHelper)
|
|||
h := sample.Metric.Hash()
|
||||
ss, ok := seriess[h]
|
||||
if !ok {
|
||||
ss = Series{
|
||||
Metric: sample.Metric,
|
||||
Points: getPointSlice(numSteps),
|
||||
}
|
||||
ss = Series{Metric: sample.Metric}
|
||||
}
|
||||
if sample.H == nil {
|
||||
if ss.Floats == nil {
|
||||
ss.Floats = getFPointSlice(numSteps)
|
||||
}
|
||||
ss.Floats = append(ss.Floats, FPoint{T: ts, F: sample.F})
|
||||
} else {
|
||||
if ss.Histograms == nil {
|
||||
ss.Histograms = getHPointSlice(numSteps)
|
||||
}
|
||||
ss.Histograms = append(ss.Histograms, HPoint{T: ts, H: sample.H})
|
||||
}
|
||||
sample.Point.T = ts
|
||||
ss.Points = append(ss.Points, sample.Point)
|
||||
seriess[h] = ss
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
// Reuse the original point slices.
|
||||
for _, m := range origMatrixes {
|
||||
for _, s := range m {
|
||||
putPointSlice(s.Points)
|
||||
putFPointSlice(s.Floats)
|
||||
putHPointSlice(s.Histograms)
|
||||
}
|
||||
}
|
||||
// Assemble the output matrix. By the time we get here we know we don't have too many samples.
|
||||
|
@ -1253,7 +1286,7 @@ func (ev *evaluator) evalSubquery(subq *parser.SubqueryExpr) (*parser.MatrixSele
|
|||
}
|
||||
totalSamples := 0
|
||||
for _, s := range mat {
|
||||
totalSamples += len(s.Points)
|
||||
totalSamples += len(s.Floats) + len(s.Histograms)
|
||||
vs.Series = append(vs.Series, NewStorageSeries(s))
|
||||
}
|
||||
return ms, totalSamples, ws
|
||||
|
@ -1297,7 +1330,7 @@ func (ev *evaluator) eval(expr parser.Expr) (parser.Value, storage.Warnings) {
|
|||
return ev.rangeEval(initSeries, func(v []parser.Value, sh [][]EvalSeriesHelper, enh *EvalNodeHelper) (Vector, storage.Warnings) {
|
||||
var param float64
|
||||
if e.Param != nil {
|
||||
param = v[0].(Vector)[0].V
|
||||
param = v[0].(Vector)[0].F
|
||||
}
|
||||
return ev.aggregation(e.Op, sortedGrouping, e.Without, param, v[1].(Vector), sh[1], enh), nil
|
||||
}, e.Param, e.Expr)
|
||||
|
@ -1396,7 +1429,8 @@ func (ev *evaluator) eval(expr parser.Expr) (parser.Value, storage.Warnings) {
|
|||
stepRange = ev.interval
|
||||
}
|
||||
// Reuse objects across steps to save memory allocations.
|
||||
points := getPointSlice(16)
|
||||
var floats []FPoint
|
||||
var histograms []HPoint
|
||||
inMatrix := make(Matrix, 1)
|
||||
inArgs[matrixArgIndex] = inMatrix
|
||||
enh := &EvalNodeHelper{Out: make(Vector, 0, 1)}
|
||||
|
@ -1404,8 +1438,13 @@ func (ev *evaluator) eval(expr parser.Expr) (parser.Value, storage.Warnings) {
|
|||
it := storage.NewBuffer(selRange)
|
||||
var chkIter chunkenc.Iterator
|
||||
for i, s := range selVS.Series {
|
||||
ev.currentSamples -= len(points)
|
||||
points = points[:0]
|
||||
ev.currentSamples -= len(floats) + len(histograms)
|
||||
if floats != nil {
|
||||
floats = floats[:0]
|
||||
}
|
||||
if histograms != nil {
|
||||
histograms = histograms[:0]
|
||||
}
|
||||
chkIter = s.Iterator(chkIter)
|
||||
it.Reset(chkIter)
|
||||
metric := selVS.Series[i].Labels()
|
||||
|
@ -1418,7 +1457,6 @@ func (ev *evaluator) eval(expr parser.Expr) (parser.Value, storage.Warnings) {
|
|||
}
|
||||
ss := Series{
|
||||
Metric: metric,
|
||||
Points: getPointSlice(numSteps),
|
||||
}
|
||||
inMatrix[0].Metric = selVS.Series[i].Labels()
|
||||
for ts, step := ev.startTimestamp, -1; ts <= ev.endTimestamp; ts += ev.interval {
|
||||
|
@ -1428,44 +1466,54 @@ func (ev *evaluator) eval(expr parser.Expr) (parser.Value, storage.Warnings) {
|
|||
// when looking up the argument, as there will be no gaps.
|
||||
for j := range e.Args {
|
||||
if j != matrixArgIndex {
|
||||
otherInArgs[j][0].V = otherArgs[j][0].Points[step].V
|
||||
otherInArgs[j][0].F = otherArgs[j][0].Floats[step].F
|
||||
}
|
||||
}
|
||||
maxt := ts - offset
|
||||
mint := maxt - selRange
|
||||
// Evaluate the matrix selector for this series for this step.
|
||||
points = ev.matrixIterSlice(it, mint, maxt, points)
|
||||
if len(points) == 0 {
|
||||
floats, histograms = ev.matrixIterSlice(it, mint, maxt, floats, histograms)
|
||||
if len(floats)+len(histograms) == 0 {
|
||||
continue
|
||||
}
|
||||
inMatrix[0].Points = points
|
||||
inMatrix[0].Floats = floats
|
||||
inMatrix[0].Histograms = histograms
|
||||
enh.Ts = ts
|
||||
// Make the function call.
|
||||
outVec := call(inArgs, e.Args, enh)
|
||||
ev.samplesStats.IncrementSamplesAtStep(step, int64(len(points)))
|
||||
ev.samplesStats.IncrementSamplesAtStep(step, int64(len(floats)+len(histograms)))
|
||||
enh.Out = outVec[:0]
|
||||
if len(outVec) > 0 {
|
||||
ss.Points = append(ss.Points, Point{V: outVec[0].Point.V, H: outVec[0].Point.H, T: ts})
|
||||
if outVec[0].H == nil {
|
||||
if ss.Floats == nil {
|
||||
ss.Floats = getFPointSlice(numSteps)
|
||||
}
|
||||
ss.Floats = append(ss.Floats, FPoint{F: outVec[0].F, T: ts})
|
||||
} else {
|
||||
if ss.Histograms == nil {
|
||||
ss.Histograms = getHPointSlice(numSteps)
|
||||
}
|
||||
ss.Histograms = append(ss.Histograms, HPoint{H: outVec[0].H, T: ts})
|
||||
}
|
||||
}
|
||||
// Only buffer stepRange milliseconds from the second step on.
|
||||
it.ReduceDelta(stepRange)
|
||||
}
|
||||
if len(ss.Points) > 0 {
|
||||
if ev.currentSamples+len(ss.Points) <= ev.maxSamples {
|
||||
if len(ss.Floats)+len(ss.Histograms) > 0 {
|
||||
if ev.currentSamples+len(ss.Floats)+len(ss.Histograms) <= ev.maxSamples {
|
||||
mat = append(mat, ss)
|
||||
ev.currentSamples += len(ss.Points)
|
||||
ev.currentSamples += len(ss.Floats) + len(ss.Histograms)
|
||||
} else {
|
||||
ev.error(ErrTooManySamples(env))
|
||||
}
|
||||
} else {
|
||||
putPointSlice(ss.Points)
|
||||
}
|
||||
ev.samplesStats.UpdatePeak(ev.currentSamples)
|
||||
}
|
||||
ev.samplesStats.UpdatePeak(ev.currentSamples)
|
||||
|
||||
ev.currentSamples -= len(points)
|
||||
putPointSlice(points)
|
||||
ev.currentSamples -= len(floats) + len(histograms)
|
||||
putFPointSlice(floats)
|
||||
putHPointSlice(histograms)
|
||||
|
||||
// The absent_over_time function returns 0 or 1 series. So far, the matrix
|
||||
// contains multiple series. The following code will create a new series
|
||||
|
@ -1474,7 +1522,7 @@ func (ev *evaluator) eval(expr parser.Expr) (parser.Value, storage.Warnings) {
|
|||
steps := int(1 + (ev.endTimestamp-ev.startTimestamp)/ev.interval)
|
||||
// Iterate once to look for a complete series.
|
||||
for _, s := range mat {
|
||||
if len(s.Points) == steps {
|
||||
if len(s.Floats)+len(s.Histograms) == steps {
|
||||
return Matrix{}, warnings
|
||||
}
|
||||
}
|
||||
|
@ -1482,7 +1530,10 @@ func (ev *evaluator) eval(expr parser.Expr) (parser.Value, storage.Warnings) {
|
|||
found := map[int64]struct{}{}
|
||||
|
||||
for i, s := range mat {
|
||||
for _, p := range s.Points {
|
||||
for _, p := range s.Floats {
|
||||
found[p.T] = struct{}{}
|
||||
}
|
||||
for _, p := range s.Histograms {
|
||||
found[p.T] = struct{}{}
|
||||
}
|
||||
if i > 0 && len(found) == steps {
|
||||
|
@ -1490,17 +1541,17 @@ func (ev *evaluator) eval(expr parser.Expr) (parser.Value, storage.Warnings) {
|
|||
}
|
||||
}
|
||||
|
||||
newp := make([]Point, 0, steps-len(found))
|
||||
newp := make([]FPoint, 0, steps-len(found))
|
||||
for ts := ev.startTimestamp; ts <= ev.endTimestamp; ts += ev.interval {
|
||||
if _, ok := found[ts]; !ok {
|
||||
newp = append(newp, Point{T: ts, V: 1})
|
||||
newp = append(newp, FPoint{T: ts, F: 1})
|
||||
}
|
||||
}
|
||||
|
||||
return Matrix{
|
||||
Series{
|
||||
Metric: createLabelsForAbsentFunction(e.Args[0]),
|
||||
Points: newp,
|
||||
Floats: newp,
|
||||
},
|
||||
}, warnings
|
||||
}
|
||||
|
@ -1520,8 +1571,8 @@ func (ev *evaluator) eval(expr parser.Expr) (parser.Value, storage.Warnings) {
|
|||
if e.Op == parser.SUB {
|
||||
for i := range mat {
|
||||
mat[i].Metric = dropMetricName(mat[i].Metric)
|
||||
for j := range mat[i].Points {
|
||||
mat[i].Points[j].V = -mat[i].Points[j].V
|
||||
for j := range mat[i].Floats {
|
||||
mat[i].Floats[j].F = -mat[i].Floats[j].F
|
||||
}
|
||||
}
|
||||
if mat.ContainsSameLabelset() {
|
||||
|
@ -1534,8 +1585,8 @@ func (ev *evaluator) eval(expr parser.Expr) (parser.Value, storage.Warnings) {
|
|||
switch lt, rt := e.LHS.Type(), e.RHS.Type(); {
|
||||
case lt == parser.ValueTypeScalar && rt == parser.ValueTypeScalar:
|
||||
return ev.rangeEval(nil, func(v []parser.Value, _ [][]EvalSeriesHelper, enh *EvalNodeHelper) (Vector, storage.Warnings) {
|
||||
val := scalarBinop(e.Op, v[0].(Vector)[0].Point.V, v[1].(Vector)[0].Point.V)
|
||||
return append(enh.Out, Sample{Point: Point{V: val}}), nil
|
||||
val := scalarBinop(e.Op, v[0].(Vector)[0].F, v[1].(Vector)[0].F)
|
||||
return append(enh.Out, Sample{F: val}), nil
|
||||
}, e.LHS, e.RHS)
|
||||
case lt == parser.ValueTypeVector && rt == parser.ValueTypeVector:
|
||||
// Function to compute the join signature for each series.
|
||||
|
@ -1565,18 +1616,18 @@ func (ev *evaluator) eval(expr parser.Expr) (parser.Value, storage.Warnings) {
|
|||
|
||||
case lt == parser.ValueTypeVector && rt == parser.ValueTypeScalar:
|
||||
return ev.rangeEval(nil, func(v []parser.Value, _ [][]EvalSeriesHelper, enh *EvalNodeHelper) (Vector, storage.Warnings) {
|
||||
return ev.VectorscalarBinop(e.Op, v[0].(Vector), Scalar{V: v[1].(Vector)[0].Point.V}, false, e.ReturnBool, enh), nil
|
||||
return ev.VectorscalarBinop(e.Op, v[0].(Vector), Scalar{V: v[1].(Vector)[0].F}, false, e.ReturnBool, enh), nil
|
||||
}, e.LHS, e.RHS)
|
||||
|
||||
case lt == parser.ValueTypeScalar && rt == parser.ValueTypeVector:
|
||||
return ev.rangeEval(nil, func(v []parser.Value, _ [][]EvalSeriesHelper, enh *EvalNodeHelper) (Vector, storage.Warnings) {
|
||||
return ev.VectorscalarBinop(e.Op, v[1].(Vector), Scalar{V: v[0].(Vector)[0].Point.V}, true, e.ReturnBool, enh), nil
|
||||
return ev.VectorscalarBinop(e.Op, v[1].(Vector), Scalar{V: v[0].(Vector)[0].F}, true, e.ReturnBool, enh), nil
|
||||
}, e.LHS, e.RHS)
|
||||
}
|
||||
|
||||
case *parser.NumberLiteral:
|
||||
return ev.rangeEval(nil, func(v []parser.Value, _ [][]EvalSeriesHelper, enh *EvalNodeHelper) (Vector, storage.Warnings) {
|
||||
return append(enh.Out, Sample{Point: Point{V: e.Val}, Metric: labels.EmptyLabels()}), nil
|
||||
return append(enh.Out, Sample{F: e.Val, Metric: labels.EmptyLabels()}), nil
|
||||
})
|
||||
|
||||
case *parser.StringLiteral:
|
||||
|
@ -1595,15 +1646,24 @@ func (ev *evaluator) eval(expr parser.Expr) (parser.Value, storage.Warnings) {
|
|||
it.Reset(chkIter)
|
||||
ss := Series{
|
||||
Metric: e.Series[i].Labels(),
|
||||
Points: getPointSlice(numSteps),
|
||||
}
|
||||
|
||||
for ts, step := ev.startTimestamp, -1; ts <= ev.endTimestamp; ts += ev.interval {
|
||||
step++
|
||||
_, v, h, ok := ev.vectorSelectorSingle(it, e, ts)
|
||||
_, f, h, ok := ev.vectorSelectorSingle(it, e, ts)
|
||||
if ok {
|
||||
if ev.currentSamples < ev.maxSamples {
|
||||
ss.Points = append(ss.Points, Point{V: v, H: h, T: ts})
|
||||
if h == nil {
|
||||
if ss.Floats == nil {
|
||||
ss.Floats = getFPointSlice(numSteps)
|
||||
}
|
||||
ss.Floats = append(ss.Floats, FPoint{F: f, T: ts})
|
||||
} else {
|
||||
if ss.Histograms == nil {
|
||||
ss.Histograms = getHPointSlice(numSteps)
|
||||
}
|
||||
ss.Histograms = append(ss.Histograms, HPoint{H: h, T: ts})
|
||||
}
|
||||
ev.samplesStats.IncrementSamplesAtStep(step, 1)
|
||||
ev.currentSamples++
|
||||
} else {
|
||||
|
@ -1612,10 +1672,8 @@ func (ev *evaluator) eval(expr parser.Expr) (parser.Value, storage.Warnings) {
|
|||
}
|
||||
}
|
||||
|
||||
if len(ss.Points) > 0 {
|
||||
if len(ss.Floats)+len(ss.Histograms) > 0 {
|
||||
mat = append(mat, ss)
|
||||
} else {
|
||||
putPointSlice(ss.Points)
|
||||
}
|
||||
}
|
||||
ev.samplesStats.UpdatePeak(ev.currentSamples)
|
||||
|
@ -1706,15 +1764,21 @@ func (ev *evaluator) eval(expr parser.Expr) (parser.Value, storage.Warnings) {
|
|||
panic(fmt.Errorf("unexpected result in StepInvariantExpr evaluation: %T", expr))
|
||||
}
|
||||
for i := range mat {
|
||||
if len(mat[i].Points) != 1 {
|
||||
if len(mat[i].Floats)+len(mat[i].Histograms) != 1 {
|
||||
panic(fmt.Errorf("unexpected number of samples"))
|
||||
}
|
||||
for ts := ev.startTimestamp + ev.interval; ts <= ev.endTimestamp; ts = ts + ev.interval {
|
||||
mat[i].Points = append(mat[i].Points, Point{
|
||||
T: ts,
|
||||
V: mat[i].Points[0].V,
|
||||
H: mat[i].Points[0].H,
|
||||
})
|
||||
if len(mat[i].Floats) > 0 {
|
||||
mat[i].Floats = append(mat[i].Floats, FPoint{
|
||||
T: ts,
|
||||
F: mat[i].Floats[0].F,
|
||||
})
|
||||
} else {
|
||||
mat[i].Histograms = append(mat[i].Histograms, HPoint{
|
||||
T: ts,
|
||||
H: mat[i].Histograms[0].H,
|
||||
})
|
||||
}
|
||||
ev.currentSamples++
|
||||
if ev.currentSamples > ev.maxSamples {
|
||||
ev.error(ErrTooManySamples(env))
|
||||
|
@ -1741,11 +1805,13 @@ func (ev *evaluator) vectorSelector(node *parser.VectorSelector, ts int64) (Vect
|
|||
chkIter = s.Iterator(chkIter)
|
||||
it.Reset(chkIter)
|
||||
|
||||
t, v, h, ok := ev.vectorSelectorSingle(it, node, ts)
|
||||
t, f, h, ok := ev.vectorSelectorSingle(it, node, ts)
|
||||
if ok {
|
||||
vec = append(vec, Sample{
|
||||
Metric: node.Series[i].Labels(),
|
||||
Point: Point{V: v, H: h, T: t},
|
||||
T: t,
|
||||
F: f,
|
||||
H: h,
|
||||
})
|
||||
|
||||
ev.currentSamples++
|
||||
|
@ -1795,17 +1861,31 @@ func (ev *evaluator) vectorSelectorSingle(it *storage.MemoizedSeriesIterator, no
|
|||
return t, v, h, true
|
||||
}
|
||||
|
||||
var pointPool zeropool.Pool[[]Point]
|
||||
var (
|
||||
fPointPool zeropool.Pool[[]FPoint]
|
||||
hPointPool zeropool.Pool[[]HPoint]
|
||||
)
|
||||
|
||||
func getPointSlice(sz int) []Point {
|
||||
if p := pointPool.Get(); p != nil {
|
||||
func getFPointSlice(sz int) []FPoint {
|
||||
if p := fPointPool.Get(); p != nil {
|
||||
return p
|
||||
}
|
||||
return make([]Point, 0, sz)
|
||||
return make([]FPoint, 0, sz)
|
||||
}
|
||||
|
||||
func putPointSlice(p []Point) {
|
||||
pointPool.Put(p[:0])
|
||||
func putFPointSlice(p []FPoint) {
|
||||
fPointPool.Put(p[:0])
|
||||
}
|
||||
|
||||
func getHPointSlice(sz int) []HPoint {
|
||||
if p := hPointPool.Get(); p != nil {
|
||||
return p
|
||||
}
|
||||
return make([]HPoint, 0, sz)
|
||||
}
|
||||
|
||||
func putHPointSlice(p []HPoint) {
|
||||
hPointPool.Put(p[:0])
|
||||
}
|
||||
|
||||
// matrixSelector evaluates a *parser.MatrixSelector expression.
|
||||
|
@ -1837,13 +1917,15 @@ func (ev *evaluator) matrixSelector(node *parser.MatrixSelector) (Matrix, storag
|
|||
Metric: series[i].Labels(),
|
||||
}
|
||||
|
||||
ss.Points = ev.matrixIterSlice(it, mint, maxt, getPointSlice(16))
|
||||
ev.samplesStats.IncrementSamplesAtTimestamp(ev.startTimestamp, int64(len(ss.Points)))
|
||||
ss.Floats, ss.Histograms = ev.matrixIterSlice(it, mint, maxt, nil, nil)
|
||||
totalLen := int64(len(ss.Floats)) + int64(len(ss.Histograms))
|
||||
ev.samplesStats.IncrementSamplesAtTimestamp(ev.startTimestamp, totalLen)
|
||||
|
||||
if len(ss.Points) > 0 {
|
||||
if totalLen > 0 {
|
||||
matrix = append(matrix, ss)
|
||||
} else {
|
||||
putPointSlice(ss.Points)
|
||||
putFPointSlice(ss.Floats)
|
||||
putHPointSlice(ss.Histograms)
|
||||
}
|
||||
}
|
||||
return matrix, ws
|
||||
|
@ -1857,24 +1939,54 @@ func (ev *evaluator) matrixSelector(node *parser.MatrixSelector) (Matrix, storag
|
|||
// values). Any such points falling before mint are discarded; points that fall
|
||||
// into the [mint, maxt] range are retained; only points with later timestamps
|
||||
// are populated from the iterator.
|
||||
func (ev *evaluator) matrixIterSlice(it *storage.BufferedSeriesIterator, mint, maxt int64, out []Point) []Point {
|
||||
if len(out) > 0 && out[len(out)-1].T >= mint {
|
||||
func (ev *evaluator) matrixIterSlice(
|
||||
it *storage.BufferedSeriesIterator, mint, maxt int64,
|
||||
floats []FPoint, histograms []HPoint,
|
||||
) ([]FPoint, []HPoint) {
|
||||
mintFloats, mintHistograms := mint, mint
|
||||
|
||||
// First floats...
|
||||
if len(floats) > 0 && floats[len(floats)-1].T >= mint {
|
||||
// There is an overlap between previous and current ranges, retain common
|
||||
// points. In most such cases:
|
||||
// (a) the overlap is significantly larger than the eval step; and/or
|
||||
// (b) the number of samples is relatively small.
|
||||
// so a linear search will be as fast as a binary search.
|
||||
var drop int
|
||||
for drop = 0; out[drop].T < mint; drop++ {
|
||||
for drop = 0; floats[drop].T < mint; drop++ {
|
||||
}
|
||||
ev.currentSamples -= drop
|
||||
copy(out, out[drop:])
|
||||
out = out[:len(out)-drop]
|
||||
copy(floats, floats[drop:])
|
||||
floats = floats[:len(floats)-drop]
|
||||
// Only append points with timestamps after the last timestamp we have.
|
||||
mint = out[len(out)-1].T + 1
|
||||
mintFloats = floats[len(floats)-1].T + 1
|
||||
} else {
|
||||
ev.currentSamples -= len(out)
|
||||
out = out[:0]
|
||||
ev.currentSamples -= len(floats)
|
||||
if floats != nil {
|
||||
floats = floats[:0]
|
||||
}
|
||||
}
|
||||
|
||||
// ...then the same for histograms. TODO(beorn7): Use generics?
|
||||
if len(histograms) > 0 && histograms[len(histograms)-1].T >= mint {
|
||||
// There is an overlap between previous and current ranges, retain common
|
||||
// points. In most such cases:
|
||||
// (a) the overlap is significantly larger than the eval step; and/or
|
||||
// (b) the number of samples is relatively small.
|
||||
// so a linear search will be as fast as a binary search.
|
||||
var drop int
|
||||
for drop = 0; histograms[drop].T < mint; drop++ {
|
||||
}
|
||||
ev.currentSamples -= drop
|
||||
copy(histograms, histograms[drop:])
|
||||
histograms = histograms[:len(histograms)-drop]
|
||||
// Only append points with timestamps after the last timestamp we have.
|
||||
mintHistograms = histograms[len(histograms)-1].T + 1
|
||||
} else {
|
||||
ev.currentSamples -= len(histograms)
|
||||
if histograms != nil {
|
||||
histograms = histograms[:0]
|
||||
}
|
||||
}
|
||||
|
||||
soughtValueType := it.Seek(maxt)
|
||||
|
@ -1896,25 +2008,31 @@ loop:
|
|||
continue loop
|
||||
}
|
||||
// Values in the buffer are guaranteed to be smaller than maxt.
|
||||
if t >= mint {
|
||||
if t >= mintHistograms {
|
||||
if ev.currentSamples >= ev.maxSamples {
|
||||
ev.error(ErrTooManySamples(env))
|
||||
}
|
||||
ev.currentSamples++
|
||||
out = append(out, Point{T: t, H: h})
|
||||
if histograms == nil {
|
||||
histograms = getHPointSlice(16)
|
||||
}
|
||||
histograms = append(histograms, HPoint{T: t, H: h})
|
||||
}
|
||||
case chunkenc.ValFloat:
|
||||
t, v := buf.At()
|
||||
if value.IsStaleNaN(v) {
|
||||
t, f := buf.At()
|
||||
if value.IsStaleNaN(f) {
|
||||
continue loop
|
||||
}
|
||||
// Values in the buffer are guaranteed to be smaller than maxt.
|
||||
if t >= mint {
|
||||
if t >= mintFloats {
|
||||
if ev.currentSamples >= ev.maxSamples {
|
||||
ev.error(ErrTooManySamples(env))
|
||||
}
|
||||
ev.currentSamples++
|
||||
out = append(out, Point{T: t, V: v})
|
||||
if floats == nil {
|
||||
floats = getFPointSlice(16)
|
||||
}
|
||||
floats = append(floats, FPoint{T: t, F: f})
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -1926,21 +2044,27 @@ loop:
|
|||
if ev.currentSamples >= ev.maxSamples {
|
||||
ev.error(ErrTooManySamples(env))
|
||||
}
|
||||
out = append(out, Point{T: t, H: h})
|
||||
if histograms == nil {
|
||||
histograms = getHPointSlice(16)
|
||||
}
|
||||
histograms = append(histograms, HPoint{T: t, H: h})
|
||||
ev.currentSamples++
|
||||
}
|
||||
case chunkenc.ValFloat:
|
||||
t, v := it.At()
|
||||
if t == maxt && !value.IsStaleNaN(v) {
|
||||
t, f := it.At()
|
||||
if t == maxt && !value.IsStaleNaN(f) {
|
||||
if ev.currentSamples >= ev.maxSamples {
|
||||
ev.error(ErrTooManySamples(env))
|
||||
}
|
||||
out = append(out, Point{T: t, V: v})
|
||||
if floats == nil {
|
||||
floats = getFPointSlice(16)
|
||||
}
|
||||
floats = append(floats, FPoint{T: t, F: f})
|
||||
ev.currentSamples++
|
||||
}
|
||||
}
|
||||
ev.samplesStats.UpdatePeak(ev.currentSamples)
|
||||
return out
|
||||
return floats, histograms
|
||||
}
|
||||
|
||||
func (ev *evaluator) VectorAnd(lhs, rhs Vector, matching *parser.VectorMatching, lhsh, rhsh []EvalSeriesHelper, enh *EvalNodeHelper) Vector {
|
||||
|
@ -2086,18 +2210,18 @@ func (ev *evaluator) VectorBinop(op parser.ItemType, lhs, rhs Vector, matching *
|
|||
}
|
||||
|
||||
// Account for potentially swapped sidedness.
|
||||
vl, vr := ls.V, rs.V
|
||||
fl, fr := ls.F, rs.F
|
||||
hl, hr := ls.H, rs.H
|
||||
if matching.Card == parser.CardOneToMany {
|
||||
vl, vr = vr, vl
|
||||
fl, fr = fr, fl
|
||||
hl, hr = hr, hl
|
||||
}
|
||||
value, histogramValue, keep := vectorElemBinop(op, vl, vr, hl, hr)
|
||||
floatValue, histogramValue, keep := vectorElemBinop(op, fl, fr, hl, hr)
|
||||
if returnBool {
|
||||
if keep {
|
||||
value = 1.0
|
||||
floatValue = 1.0
|
||||
} else {
|
||||
value = 0.0
|
||||
floatValue = 0.0
|
||||
}
|
||||
} else if !keep {
|
||||
continue
|
||||
|
@ -2131,7 +2255,8 @@ func (ev *evaluator) VectorBinop(op parser.ItemType, lhs, rhs Vector, matching *
|
|||
// Both lhs and rhs are of same type.
|
||||
enh.Out = append(enh.Out, Sample{
|
||||
Metric: metric,
|
||||
Point: Point{V: value, H: histogramValue},
|
||||
F: floatValue,
|
||||
H: histogramValue,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
@ -2200,7 +2325,7 @@ func resultMetric(lhs, rhs labels.Labels, op parser.ItemType, matching *parser.V
|
|||
// VectorscalarBinop evaluates a binary operation between a Vector and a Scalar.
|
||||
func (ev *evaluator) VectorscalarBinop(op parser.ItemType, lhs Vector, rhs Scalar, swap, returnBool bool, enh *EvalNodeHelper) Vector {
|
||||
for _, lhsSample := range lhs {
|
||||
lv, rv := lhsSample.V, rhs.V
|
||||
lv, rv := lhsSample.F, rhs.V
|
||||
// lhs always contains the Vector. If the original position was different
|
||||
// swap for calculating the value.
|
||||
if swap {
|
||||
|
@ -2221,7 +2346,7 @@ func (ev *evaluator) VectorscalarBinop(op parser.ItemType, lhs Vector, rhs Scala
|
|||
keep = true
|
||||
}
|
||||
if keep {
|
||||
lhsSample.V = value
|
||||
lhsSample.F = value
|
||||
if shouldDropMetricName(op) || returnBool {
|
||||
lhsSample.Metric = enh.DropMetricName(lhsSample.Metric)
|
||||
}
|
||||
|
@ -2313,7 +2438,7 @@ type groupedAggregation struct {
|
|||
hasFloat bool // Has at least 1 float64 sample aggregated.
|
||||
hasHistogram bool // Has at least 1 histogram sample aggregated.
|
||||
labels labels.Labels
|
||||
value float64
|
||||
floatValue float64
|
||||
histogramValue *histogram.FloatHistogram
|
||||
mean float64
|
||||
groupCount int
|
||||
|
@ -2365,7 +2490,7 @@ func (ev *evaluator) aggregation(op parser.ItemType, grouping []string, without
|
|||
|
||||
if op == parser.COUNT_VALUES {
|
||||
enh.resetBuilder(metric)
|
||||
enh.lb.Set(valueLabel, strconv.FormatFloat(s.V, 'f', -1, 64))
|
||||
enh.lb.Set(valueLabel, strconv.FormatFloat(s.F, 'f', -1, 64))
|
||||
metric = enh.lb.Labels()
|
||||
|
||||
// We've changed the metric so we have to recompute the grouping key.
|
||||
|
@ -2397,8 +2522,8 @@ func (ev *evaluator) aggregation(op parser.ItemType, grouping []string, without
|
|||
}
|
||||
newAgg := &groupedAggregation{
|
||||
labels: m,
|
||||
value: s.V,
|
||||
mean: s.V,
|
||||
floatValue: s.F,
|
||||
mean: s.F,
|
||||
groupCount: 1,
|
||||
}
|
||||
if s.H == nil {
|
||||
|
@ -2420,21 +2545,21 @@ func (ev *evaluator) aggregation(op parser.ItemType, grouping []string, without
|
|||
}
|
||||
switch op {
|
||||
case parser.STDVAR, parser.STDDEV:
|
||||
result[groupingKey].value = 0
|
||||
result[groupingKey].floatValue = 0
|
||||
case parser.TOPK, parser.QUANTILE:
|
||||
result[groupingKey].heap = make(vectorByValueHeap, 1, resultSize)
|
||||
result[groupingKey].heap[0] = Sample{
|
||||
Point: Point{V: s.V},
|
||||
F: s.F,
|
||||
Metric: s.Metric,
|
||||
}
|
||||
case parser.BOTTOMK:
|
||||
result[groupingKey].reverseHeap = make(vectorByReverseValueHeap, 1, resultSize)
|
||||
result[groupingKey].reverseHeap[0] = Sample{
|
||||
Point: Point{V: s.V},
|
||||
F: s.F,
|
||||
Metric: s.Metric,
|
||||
}
|
||||
case parser.GROUP:
|
||||
result[groupingKey].value = 1
|
||||
result[groupingKey].floatValue = 1
|
||||
}
|
||||
continue
|
||||
}
|
||||
|
@ -2459,19 +2584,19 @@ func (ev *evaluator) aggregation(op parser.ItemType, grouping []string, without
|
|||
// point in copying the histogram in that case.
|
||||
} else {
|
||||
group.hasFloat = true
|
||||
group.value += s.V
|
||||
group.floatValue += s.F
|
||||
}
|
||||
|
||||
case parser.AVG:
|
||||
group.groupCount++
|
||||
if math.IsInf(group.mean, 0) {
|
||||
if math.IsInf(s.V, 0) && (group.mean > 0) == (s.V > 0) {
|
||||
if math.IsInf(s.F, 0) && (group.mean > 0) == (s.F > 0) {
|
||||
// The `mean` and `s.V` values are `Inf` of the same sign. They
|
||||
// can't be subtracted, but the value of `mean` is correct
|
||||
// already.
|
||||
break
|
||||
}
|
||||
if !math.IsInf(s.V, 0) && !math.IsNaN(s.V) {
|
||||
if !math.IsInf(s.F, 0) && !math.IsNaN(s.F) {
|
||||
// At this stage, the mean is an infinite. If the added
|
||||
// value is neither an Inf or a Nan, we can keep that mean
|
||||
// value.
|
||||
|
@ -2482,19 +2607,19 @@ func (ev *evaluator) aggregation(op parser.ItemType, grouping []string, without
|
|||
}
|
||||
}
|
||||
// Divide each side of the `-` by `group.groupCount` to avoid float64 overflows.
|
||||
group.mean += s.V/float64(group.groupCount) - group.mean/float64(group.groupCount)
|
||||
group.mean += s.F/float64(group.groupCount) - group.mean/float64(group.groupCount)
|
||||
|
||||
case parser.GROUP:
|
||||
// Do nothing. Required to avoid the panic in `default:` below.
|
||||
|
||||
case parser.MAX:
|
||||
if group.value < s.V || math.IsNaN(group.value) {
|
||||
group.value = s.V
|
||||
if group.floatValue < s.F || math.IsNaN(group.floatValue) {
|
||||
group.floatValue = s.F
|
||||
}
|
||||
|
||||
case parser.MIN:
|
||||
if group.value > s.V || math.IsNaN(group.value) {
|
||||
group.value = s.V
|
||||
if group.floatValue > s.F || math.IsNaN(group.floatValue) {
|
||||
group.floatValue = s.F
|
||||
}
|
||||
|
||||
case parser.COUNT, parser.COUNT_VALUES:
|
||||
|
@ -2502,21 +2627,21 @@ func (ev *evaluator) aggregation(op parser.ItemType, grouping []string, without
|
|||
|
||||
case parser.STDVAR, parser.STDDEV:
|
||||
group.groupCount++
|
||||
delta := s.V - group.mean
|
||||
delta := s.F - group.mean
|
||||
group.mean += delta / float64(group.groupCount)
|
||||
group.value += delta * (s.V - group.mean)
|
||||
group.floatValue += delta * (s.F - group.mean)
|
||||
|
||||
case parser.TOPK:
|
||||
// We build a heap of up to k elements, with the smallest element at heap[0].
|
||||
if int64(len(group.heap)) < k {
|
||||
heap.Push(&group.heap, &Sample{
|
||||
Point: Point{V: s.V},
|
||||
F: s.F,
|
||||
Metric: s.Metric,
|
||||
})
|
||||
} else if group.heap[0].V < s.V || (math.IsNaN(group.heap[0].V) && !math.IsNaN(s.V)) {
|
||||
} else if group.heap[0].F < s.F || (math.IsNaN(group.heap[0].F) && !math.IsNaN(s.F)) {
|
||||
// This new element is bigger than the previous smallest element - overwrite that.
|
||||
group.heap[0] = Sample{
|
||||
Point: Point{V: s.V},
|
||||
F: s.F,
|
||||
Metric: s.Metric,
|
||||
}
|
||||
if k > 1 {
|
||||
|
@ -2528,13 +2653,13 @@ func (ev *evaluator) aggregation(op parser.ItemType, grouping []string, without
|
|||
// We build a heap of up to k elements, with the biggest element at heap[0].
|
||||
if int64(len(group.reverseHeap)) < k {
|
||||
heap.Push(&group.reverseHeap, &Sample{
|
||||
Point: Point{V: s.V},
|
||||
F: s.F,
|
||||
Metric: s.Metric,
|
||||
})
|
||||
} else if group.reverseHeap[0].V > s.V || (math.IsNaN(group.reverseHeap[0].V) && !math.IsNaN(s.V)) {
|
||||
} else if group.reverseHeap[0].F > s.F || (math.IsNaN(group.reverseHeap[0].F) && !math.IsNaN(s.F)) {
|
||||
// This new element is smaller than the previous biggest element - overwrite that.
|
||||
group.reverseHeap[0] = Sample{
|
||||
Point: Point{V: s.V},
|
||||
F: s.F,
|
||||
Metric: s.Metric,
|
||||
}
|
||||
if k > 1 {
|
||||
|
@ -2554,16 +2679,16 @@ func (ev *evaluator) aggregation(op parser.ItemType, grouping []string, without
|
|||
for _, aggr := range orderedResult {
|
||||
switch op {
|
||||
case parser.AVG:
|
||||
aggr.value = aggr.mean
|
||||
aggr.floatValue = aggr.mean
|
||||
|
||||
case parser.COUNT, parser.COUNT_VALUES:
|
||||
aggr.value = float64(aggr.groupCount)
|
||||
aggr.floatValue = float64(aggr.groupCount)
|
||||
|
||||
case parser.STDVAR:
|
||||
aggr.value = aggr.value / float64(aggr.groupCount)
|
||||
aggr.floatValue = aggr.floatValue / float64(aggr.groupCount)
|
||||
|
||||
case parser.STDDEV:
|
||||
aggr.value = math.Sqrt(aggr.value / float64(aggr.groupCount))
|
||||
aggr.floatValue = math.Sqrt(aggr.floatValue / float64(aggr.groupCount))
|
||||
|
||||
case parser.TOPK:
|
||||
// The heap keeps the lowest value on top, so reverse it.
|
||||
|
@ -2573,7 +2698,7 @@ func (ev *evaluator) aggregation(op parser.ItemType, grouping []string, without
|
|||
for _, v := range aggr.heap {
|
||||
enh.Out = append(enh.Out, Sample{
|
||||
Metric: v.Metric,
|
||||
Point: Point{V: v.V},
|
||||
F: v.F,
|
||||
})
|
||||
}
|
||||
continue // Bypass default append.
|
||||
|
@ -2586,13 +2711,13 @@ func (ev *evaluator) aggregation(op parser.ItemType, grouping []string, without
|
|||
for _, v := range aggr.reverseHeap {
|
||||
enh.Out = append(enh.Out, Sample{
|
||||
Metric: v.Metric,
|
||||
Point: Point{V: v.V},
|
||||
F: v.F,
|
||||
})
|
||||
}
|
||||
continue // Bypass default append.
|
||||
|
||||
case parser.QUANTILE:
|
||||
aggr.value = quantile(q, aggr.heap)
|
||||
aggr.floatValue = quantile(q, aggr.heap)
|
||||
|
||||
case parser.SUM:
|
||||
if aggr.hasFloat && aggr.hasHistogram {
|
||||
|
@ -2605,7 +2730,8 @@ func (ev *evaluator) aggregation(op parser.ItemType, grouping []string, without
|
|||
|
||||
enh.Out = append(enh.Out, Sample{
|
||||
Metric: aggr.labels,
|
||||
Point: Point{V: aggr.value, H: aggr.histogramValue},
|
||||
F: aggr.floatValue,
|
||||
H: aggr.histogramValue,
|
||||
})
|
||||
}
|
||||
return enh.Out
|
||||
|
|
|
@ -662,7 +662,8 @@ load 10s
|
|||
Query: "metric",
|
||||
Result: Vector{
|
||||
Sample{
|
||||
Point: Point{V: 1, T: 1000},
|
||||
F: 1,
|
||||
T: 1000,
|
||||
Metric: labels.FromStrings("__name__", "metric"),
|
||||
},
|
||||
},
|
||||
|
@ -672,7 +673,7 @@ load 10s
|
|||
Query: "metric[20s]",
|
||||
Result: Matrix{
|
||||
Series{
|
||||
Points: []Point{{V: 1, T: 0}, {V: 2, T: 10000}},
|
||||
Floats: []FPoint{{F: 1, T: 0}, {F: 2, T: 10000}},
|
||||
Metric: labels.FromStrings("__name__", "metric"),
|
||||
},
|
||||
},
|
||||
|
@ -683,7 +684,7 @@ load 10s
|
|||
Query: "1",
|
||||
Result: Matrix{
|
||||
Series{
|
||||
Points: []Point{{V: 1, T: 0}, {V: 1, T: 1000}, {V: 1, T: 2000}},
|
||||
Floats: []FPoint{{F: 1, T: 0}, {F: 1, T: 1000}, {F: 1, T: 2000}},
|
||||
Metric: labels.EmptyLabels(),
|
||||
},
|
||||
},
|
||||
|
@ -695,7 +696,7 @@ load 10s
|
|||
Query: "metric",
|
||||
Result: Matrix{
|
||||
Series{
|
||||
Points: []Point{{V: 1, T: 0}, {V: 1, T: 1000}, {V: 1, T: 2000}},
|
||||
Floats: []FPoint{{F: 1, T: 0}, {F: 1, T: 1000}, {F: 1, T: 2000}},
|
||||
Metric: labels.FromStrings("__name__", "metric"),
|
||||
},
|
||||
},
|
||||
|
@ -707,7 +708,7 @@ load 10s
|
|||
Query: "metric",
|
||||
Result: Matrix{
|
||||
Series{
|
||||
Points: []Point{{V: 1, T: 0}, {V: 1, T: 5000}, {V: 2, T: 10000}},
|
||||
Floats: []FPoint{{F: 1, T: 0}, {F: 1, T: 5000}, {F: 2, T: 10000}},
|
||||
Metric: labels.FromStrings("__name__", "metric"),
|
||||
},
|
||||
},
|
||||
|
@ -1462,20 +1463,20 @@ load 1ms
|
|||
query: `metric_neg @ 0`,
|
||||
start: 100,
|
||||
result: Vector{
|
||||
Sample{Point: Point{V: 1, T: 100000}, Metric: lblsneg},
|
||||
Sample{F: 1, T: 100000, Metric: lblsneg},
|
||||
},
|
||||
}, {
|
||||
query: `metric_neg @ -200`,
|
||||
start: 100,
|
||||
result: Vector{
|
||||
Sample{Point: Point{V: 201, T: 100000}, Metric: lblsneg},
|
||||
Sample{F: 201, T: 100000, Metric: lblsneg},
|
||||
},
|
||||
}, {
|
||||
query: `metric{job="2"} @ 50`,
|
||||
start: -2, end: 2, interval: 1,
|
||||
result: Matrix{
|
||||
Series{
|
||||
Points: []Point{{V: 10, T: -2000}, {V: 10, T: -1000}, {V: 10, T: 0}, {V: 10, T: 1000}, {V: 10, T: 2000}},
|
||||
Floats: []FPoint{{F: 10, T: -2000}, {F: 10, T: -1000}, {F: 10, T: 0}, {F: 10, T: 1000}, {F: 10, T: 2000}},
|
||||
Metric: lbls2,
|
||||
},
|
||||
},
|
||||
|
@ -1484,11 +1485,11 @@ load 1ms
|
|||
start: 10,
|
||||
result: Matrix{
|
||||
Series{
|
||||
Points: []Point{{V: 28, T: 280000}, {V: 29, T: 290000}, {V: 30, T: 300000}},
|
||||
Floats: []FPoint{{F: 28, T: 280000}, {F: 29, T: 290000}, {F: 30, T: 300000}},
|
||||
Metric: lbls1,
|
||||
},
|
||||
Series{
|
||||
Points: []Point{{V: 56, T: 280000}, {V: 58, T: 290000}, {V: 60, T: 300000}},
|
||||
Floats: []FPoint{{F: 56, T: 280000}, {F: 58, T: 290000}, {F: 60, T: 300000}},
|
||||
Metric: lbls2,
|
||||
},
|
||||
},
|
||||
|
@ -1497,7 +1498,7 @@ load 1ms
|
|||
start: 100,
|
||||
result: Matrix{
|
||||
Series{
|
||||
Points: []Point{{V: 3, T: -2000}, {V: 2, T: -1000}, {V: 1, T: 0}},
|
||||
Floats: []FPoint{{F: 3, T: -2000}, {F: 2, T: -1000}, {F: 1, T: 0}},
|
||||
Metric: lblsneg,
|
||||
},
|
||||
},
|
||||
|
@ -1506,7 +1507,7 @@ load 1ms
|
|||
start: 100,
|
||||
result: Matrix{
|
||||
Series{
|
||||
Points: []Point{{V: 504, T: -503000}, {V: 503, T: -502000}, {V: 502, T: -501000}, {V: 501, T: -500000}},
|
||||
Floats: []FPoint{{F: 504, T: -503000}, {F: 503, T: -502000}, {F: 502, T: -501000}, {F: 501, T: -500000}},
|
||||
Metric: lblsneg,
|
||||
},
|
||||
},
|
||||
|
@ -1515,7 +1516,7 @@ load 1ms
|
|||
start: 100,
|
||||
result: Matrix{
|
||||
Series{
|
||||
Points: []Point{{V: 2342, T: 2342}, {V: 2343, T: 2343}, {V: 2344, T: 2344}, {V: 2345, T: 2345}},
|
||||
Floats: []FPoint{{F: 2342, T: 2342}, {F: 2343, T: 2343}, {F: 2344, T: 2344}, {F: 2345, T: 2345}},
|
||||
Metric: lblsms,
|
||||
},
|
||||
},
|
||||
|
@ -1524,11 +1525,11 @@ load 1ms
|
|||
start: 100,
|
||||
result: Matrix{
|
||||
Series{
|
||||
Points: []Point{{V: 20, T: 200000}, {V: 22, T: 225000}, {V: 25, T: 250000}, {V: 27, T: 275000}, {V: 30, T: 300000}},
|
||||
Floats: []FPoint{{F: 20, T: 200000}, {F: 22, T: 225000}, {F: 25, T: 250000}, {F: 27, T: 275000}, {F: 30, T: 300000}},
|
||||
Metric: lbls1,
|
||||
},
|
||||
Series{
|
||||
Points: []Point{{V: 40, T: 200000}, {V: 44, T: 225000}, {V: 50, T: 250000}, {V: 54, T: 275000}, {V: 60, T: 300000}},
|
||||
Floats: []FPoint{{F: 40, T: 200000}, {F: 44, T: 225000}, {F: 50, T: 250000}, {F: 54, T: 275000}, {F: 60, T: 300000}},
|
||||
Metric: lbls2,
|
||||
},
|
||||
},
|
||||
|
@ -1537,7 +1538,7 @@ load 1ms
|
|||
start: 100,
|
||||
result: Matrix{
|
||||
Series{
|
||||
Points: []Point{{V: 51, T: -50000}, {V: 26, T: -25000}, {V: 1, T: 0}},
|
||||
Floats: []FPoint{{F: 51, T: -50000}, {F: 26, T: -25000}, {F: 1, T: 0}},
|
||||
Metric: lblsneg,
|
||||
},
|
||||
},
|
||||
|
@ -1546,7 +1547,7 @@ load 1ms
|
|||
start: 100,
|
||||
result: Matrix{
|
||||
Series{
|
||||
Points: []Point{{V: 151, T: -150000}, {V: 126, T: -125000}, {V: 101, T: -100000}},
|
||||
Floats: []FPoint{{F: 151, T: -150000}, {F: 126, T: -125000}, {F: 101, T: -100000}},
|
||||
Metric: lblsneg,
|
||||
},
|
||||
},
|
||||
|
@ -1555,7 +1556,7 @@ load 1ms
|
|||
start: 100,
|
||||
result: Matrix{
|
||||
Series{
|
||||
Points: []Point{{V: 2250, T: 2250}, {V: 2275, T: 2275}, {V: 2300, T: 2300}, {V: 2325, T: 2325}},
|
||||
Floats: []FPoint{{F: 2250, T: 2250}, {F: 2275, T: 2275}, {F: 2300, T: 2300}, {F: 2325, T: 2325}},
|
||||
Metric: lblsms,
|
||||
},
|
||||
},
|
||||
|
@ -1564,7 +1565,7 @@ load 1ms
|
|||
start: 50, end: 80, interval: 10,
|
||||
result: Matrix{
|
||||
Series{
|
||||
Points: []Point{{V: 995, T: 50000}, {V: 994, T: 60000}, {V: 993, T: 70000}, {V: 992, T: 80000}},
|
||||
Floats: []FPoint{{F: 995, T: 50000}, {F: 994, T: 60000}, {F: 993, T: 70000}, {F: 992, T: 80000}},
|
||||
Metric: lblstopk3,
|
||||
},
|
||||
},
|
||||
|
@ -1573,7 +1574,7 @@ load 1ms
|
|||
start: 50, end: 80, interval: 10,
|
||||
result: Matrix{
|
||||
Series{
|
||||
Points: []Point{{V: 10, T: 50000}, {V: 12, T: 60000}, {V: 14, T: 70000}, {V: 16, T: 80000}},
|
||||
Floats: []FPoint{{F: 10, T: 50000}, {F: 12, T: 60000}, {F: 14, T: 70000}, {F: 16, T: 80000}},
|
||||
Metric: lblstopk2,
|
||||
},
|
||||
},
|
||||
|
@ -1582,7 +1583,7 @@ load 1ms
|
|||
start: 70, end: 100, interval: 10,
|
||||
result: Matrix{
|
||||
Series{
|
||||
Points: []Point{{V: 993, T: 70000}, {V: 992, T: 80000}, {V: 991, T: 90000}, {V: 990, T: 100000}},
|
||||
Floats: []FPoint{{F: 993, T: 70000}, {F: 992, T: 80000}, {F: 991, T: 90000}, {F: 990, T: 100000}},
|
||||
Metric: lblstopk3,
|
||||
},
|
||||
},
|
||||
|
@ -1591,7 +1592,7 @@ load 1ms
|
|||
start: 100, end: 130, interval: 10,
|
||||
result: Matrix{
|
||||
Series{
|
||||
Points: []Point{{V: 990, T: 100000}, {V: 989, T: 110000}, {V: 988, T: 120000}, {V: 987, T: 130000}},
|
||||
Floats: []FPoint{{F: 990, T: 100000}, {F: 989, T: 110000}, {F: 988, T: 120000}, {F: 987, T: 130000}},
|
||||
Metric: lblstopk3,
|
||||
},
|
||||
},
|
||||
|
@ -1602,15 +1603,15 @@ load 1ms
|
|||
start: 0, end: 7 * 60, interval: 60,
|
||||
result: Matrix{
|
||||
Series{
|
||||
Points: []Point{
|
||||
{V: 3600, T: 0},
|
||||
{V: 3600, T: 60 * 1000},
|
||||
{V: 3600, T: 2 * 60 * 1000},
|
||||
{V: 3600, T: 3 * 60 * 1000},
|
||||
{V: 3600, T: 4 * 60 * 1000},
|
||||
{V: 3600, T: 5 * 60 * 1000},
|
||||
{V: 3600, T: 6 * 60 * 1000},
|
||||
{V: 3600, T: 7 * 60 * 1000},
|
||||
Floats: []FPoint{
|
||||
{F: 3600, T: 0},
|
||||
{F: 3600, T: 60 * 1000},
|
||||
{F: 3600, T: 2 * 60 * 1000},
|
||||
{F: 3600, T: 3 * 60 * 1000},
|
||||
{F: 3600, T: 4 * 60 * 1000},
|
||||
{F: 3600, T: 5 * 60 * 1000},
|
||||
{F: 3600, T: 6 * 60 * 1000},
|
||||
{F: 3600, T: 7 * 60 * 1000},
|
||||
},
|
||||
Metric: labels.EmptyLabels(),
|
||||
},
|
||||
|
@ -1723,7 +1724,7 @@ func TestSubquerySelector(t *testing.T) {
|
|||
nil,
|
||||
Matrix{
|
||||
Series{
|
||||
Points: []Point{{V: 1, T: 0}, {V: 2, T: 10000}},
|
||||
Floats: []FPoint{{F: 1, T: 0}, {F: 2, T: 10000}},
|
||||
Metric: labels.FromStrings("__name__", "metric"),
|
||||
},
|
||||
},
|
||||
|
@ -1737,7 +1738,7 @@ func TestSubquerySelector(t *testing.T) {
|
|||
nil,
|
||||
Matrix{
|
||||
Series{
|
||||
Points: []Point{{V: 1, T: 0}, {V: 1, T: 5000}, {V: 2, T: 10000}},
|
||||
Floats: []FPoint{{F: 1, T: 0}, {F: 1, T: 5000}, {F: 2, T: 10000}},
|
||||
Metric: labels.FromStrings("__name__", "metric"),
|
||||
},
|
||||
},
|
||||
|
@ -1751,7 +1752,7 @@ func TestSubquerySelector(t *testing.T) {
|
|||
nil,
|
||||
Matrix{
|
||||
Series{
|
||||
Points: []Point{{V: 1, T: 0}, {V: 1, T: 5000}, {V: 2, T: 10000}},
|
||||
Floats: []FPoint{{F: 1, T: 0}, {F: 1, T: 5000}, {F: 2, T: 10000}},
|
||||
Metric: labels.FromStrings("__name__", "metric"),
|
||||
},
|
||||
},
|
||||
|
@ -1765,7 +1766,7 @@ func TestSubquerySelector(t *testing.T) {
|
|||
nil,
|
||||
Matrix{
|
||||
Series{
|
||||
Points: []Point{{V: 1, T: 0}, {V: 1, T: 5000}, {V: 2, T: 10000}},
|
||||
Floats: []FPoint{{F: 1, T: 0}, {F: 1, T: 5000}, {F: 2, T: 10000}},
|
||||
Metric: labels.FromStrings("__name__", "metric"),
|
||||
},
|
||||
},
|
||||
|
@ -1779,7 +1780,7 @@ func TestSubquerySelector(t *testing.T) {
|
|||
nil,
|
||||
Matrix{
|
||||
Series{
|
||||
Points: []Point{{V: 2, T: 15000}, {V: 2, T: 20000}, {V: 2, T: 25000}, {V: 2, T: 30000}},
|
||||
Floats: []FPoint{{F: 2, T: 15000}, {F: 2, T: 20000}, {F: 2, T: 25000}, {F: 2, T: 30000}},
|
||||
Metric: labels.FromStrings("__name__", "metric"),
|
||||
},
|
||||
},
|
||||
|
@ -1793,7 +1794,7 @@ func TestSubquerySelector(t *testing.T) {
|
|||
nil,
|
||||
Matrix{
|
||||
Series{
|
||||
Points: []Point{{V: 2, T: 10000}, {V: 2, T: 15000}, {V: 2, T: 20000}, {V: 2, T: 25000}, {V: 2, T: 30000}},
|
||||
Floats: []FPoint{{F: 2, T: 10000}, {F: 2, T: 15000}, {F: 2, T: 20000}, {F: 2, T: 25000}, {F: 2, T: 30000}},
|
||||
Metric: labels.FromStrings("__name__", "metric"),
|
||||
},
|
||||
},
|
||||
|
@ -1807,7 +1808,7 @@ func TestSubquerySelector(t *testing.T) {
|
|||
nil,
|
||||
Matrix{
|
||||
Series{
|
||||
Points: []Point{{V: 2, T: 10000}, {V: 2, T: 15000}, {V: 2, T: 20000}, {V: 2, T: 25000}},
|
||||
Floats: []FPoint{{F: 2, T: 10000}, {F: 2, T: 15000}, {F: 2, T: 20000}, {F: 2, T: 25000}},
|
||||
Metric: labels.FromStrings("__name__", "metric"),
|
||||
},
|
||||
},
|
||||
|
@ -1821,7 +1822,7 @@ func TestSubquerySelector(t *testing.T) {
|
|||
nil,
|
||||
Matrix{
|
||||
Series{
|
||||
Points: []Point{{V: 2, T: 10000}, {V: 2, T: 15000}, {V: 2, T: 20000}, {V: 2, T: 25000}},
|
||||
Floats: []FPoint{{F: 2, T: 10000}, {F: 2, T: 15000}, {F: 2, T: 20000}, {F: 2, T: 25000}},
|
||||
Metric: labels.FromStrings("__name__", "metric"),
|
||||
},
|
||||
},
|
||||
|
@ -1844,7 +1845,7 @@ func TestSubquerySelector(t *testing.T) {
|
|||
nil,
|
||||
Matrix{
|
||||
Series{
|
||||
Points: []Point{{V: 9990, T: 9990000}, {V: 10000, T: 10000000}, {V: 100, T: 10010000}, {V: 130, T: 10020000}},
|
||||
Floats: []FPoint{{F: 9990, T: 9990000}, {F: 10000, T: 10000000}, {F: 100, T: 10010000}, {F: 130, T: 10020000}},
|
||||
Metric: labels.FromStrings("__name__", "http_requests", "job", "api-server", "instance", "0", "group", "production"),
|
||||
},
|
||||
},
|
||||
|
@ -1858,7 +1859,7 @@ func TestSubquerySelector(t *testing.T) {
|
|||
nil,
|
||||
Matrix{
|
||||
Series{
|
||||
Points: []Point{{V: 9840, T: 9840000}, {V: 9900, T: 9900000}, {V: 9960, T: 9960000}, {V: 130, T: 10020000}, {V: 310, T: 10080000}},
|
||||
Floats: []FPoint{{F: 9840, T: 9840000}, {F: 9900, T: 9900000}, {F: 9960, T: 9960000}, {F: 130, T: 10020000}, {F: 310, T: 10080000}},
|
||||
Metric: labels.FromStrings("__name__", "http_requests", "job", "api-server", "instance", "0", "group", "production"),
|
||||
},
|
||||
},
|
||||
|
@ -1872,7 +1873,7 @@ func TestSubquerySelector(t *testing.T) {
|
|||
nil,
|
||||
Matrix{
|
||||
Series{
|
||||
Points: []Point{{V: 8640, T: 8640000}, {V: 8700, T: 8700000}, {V: 8760, T: 8760000}, {V: 8820, T: 8820000}, {V: 8880, T: 8880000}},
|
||||
Floats: []FPoint{{F: 8640, T: 8640000}, {F: 8700, T: 8700000}, {F: 8760, T: 8760000}, {F: 8820, T: 8820000}, {F: 8880, T: 8880000}},
|
||||
Metric: labels.FromStrings("__name__", "http_requests", "job", "api-server", "instance", "0", "group", "production"),
|
||||
},
|
||||
},
|
||||
|
@ -1886,19 +1887,19 @@ func TestSubquerySelector(t *testing.T) {
|
|||
nil,
|
||||
Matrix{
|
||||
Series{
|
||||
Points: []Point{{V: 3, T: 7985000}, {V: 3, T: 7990000}, {V: 3, T: 7995000}, {V: 3, T: 8000000}},
|
||||
Floats: []FPoint{{F: 3, T: 7985000}, {F: 3, T: 7990000}, {F: 3, T: 7995000}, {F: 3, T: 8000000}},
|
||||
Metric: labels.FromStrings("job", "api-server", "instance", "0", "group", "canary"),
|
||||
},
|
||||
Series{
|
||||
Points: []Point{{V: 4, T: 7985000}, {V: 4, T: 7990000}, {V: 4, T: 7995000}, {V: 4, T: 8000000}},
|
||||
Floats: []FPoint{{F: 4, T: 7985000}, {F: 4, T: 7990000}, {F: 4, T: 7995000}, {F: 4, T: 8000000}},
|
||||
Metric: labels.FromStrings("job", "api-server", "instance", "1", "group", "canary"),
|
||||
},
|
||||
Series{
|
||||
Points: []Point{{V: 1, T: 7985000}, {V: 1, T: 7990000}, {V: 1, T: 7995000}, {V: 1, T: 8000000}},
|
||||
Floats: []FPoint{{F: 1, T: 7985000}, {F: 1, T: 7990000}, {F: 1, T: 7995000}, {F: 1, T: 8000000}},
|
||||
Metric: labels.FromStrings("job", "api-server", "instance", "0", "group", "production"),
|
||||
},
|
||||
Series{
|
||||
Points: []Point{{V: 2, T: 7985000}, {V: 2, T: 7990000}, {V: 2, T: 7995000}, {V: 2, T: 8000000}},
|
||||
Floats: []FPoint{{F: 2, T: 7985000}, {F: 2, T: 7990000}, {F: 2, T: 7995000}, {F: 2, T: 8000000}},
|
||||
Metric: labels.FromStrings("job", "api-server", "instance", "1", "group", "production"),
|
||||
},
|
||||
},
|
||||
|
@ -1912,7 +1913,7 @@ func TestSubquerySelector(t *testing.T) {
|
|||
nil,
|
||||
Matrix{
|
||||
Series{
|
||||
Points: []Point{{V: 270, T: 90000}, {V: 300, T: 100000}, {V: 330, T: 110000}, {V: 360, T: 120000}},
|
||||
Floats: []FPoint{{F: 270, T: 90000}, {F: 300, T: 100000}, {F: 330, T: 110000}, {F: 360, T: 120000}},
|
||||
Metric: labels.EmptyLabels(),
|
||||
},
|
||||
},
|
||||
|
@ -1926,7 +1927,7 @@ func TestSubquerySelector(t *testing.T) {
|
|||
nil,
|
||||
Matrix{
|
||||
Series{
|
||||
Points: []Point{{V: 800, T: 80000}, {V: 900, T: 90000}, {V: 1000, T: 100000}, {V: 1100, T: 110000}, {V: 1200, T: 120000}},
|
||||
Floats: []FPoint{{F: 800, T: 80000}, {F: 900, T: 90000}, {F: 1000, T: 100000}, {F: 1100, T: 110000}, {F: 1200, T: 120000}},
|
||||
Metric: labels.EmptyLabels(),
|
||||
},
|
||||
},
|
||||
|
@ -1940,7 +1941,7 @@ func TestSubquerySelector(t *testing.T) {
|
|||
nil,
|
||||
Matrix{
|
||||
Series{
|
||||
Points: []Point{{V: 1000, T: 100000}, {V: 1000, T: 105000}, {V: 1100, T: 110000}, {V: 1100, T: 115000}, {V: 1200, T: 120000}},
|
||||
Floats: []FPoint{{F: 1000, T: 100000}, {F: 1000, T: 105000}, {F: 1100, T: 110000}, {F: 1100, T: 115000}, {F: 1200, T: 120000}},
|
||||
Metric: labels.EmptyLabels(),
|
||||
},
|
||||
},
|
||||
|
@ -2996,7 +2997,7 @@ func TestRangeQuery(t *testing.T) {
|
|||
Query: "sum_over_time(bar[30s])",
|
||||
Result: Matrix{
|
||||
Series{
|
||||
Points: []Point{{V: 0, T: 0}, {V: 11, T: 60000}, {V: 1100, T: 120000}},
|
||||
Floats: []FPoint{{F: 0, T: 0}, {F: 11, T: 60000}, {F: 1100, T: 120000}},
|
||||
Metric: labels.EmptyLabels(),
|
||||
},
|
||||
},
|
||||
|
@ -3011,7 +3012,7 @@ func TestRangeQuery(t *testing.T) {
|
|||
Query: "sum_over_time(bar[30s])",
|
||||
Result: Matrix{
|
||||
Series{
|
||||
Points: []Point{{V: 0, T: 0}, {V: 11, T: 60000}, {V: 1100, T: 120000}},
|
||||
Floats: []FPoint{{F: 0, T: 0}, {F: 11, T: 60000}, {F: 1100, T: 120000}},
|
||||
Metric: labels.EmptyLabels(),
|
||||
},
|
||||
},
|
||||
|
@ -3026,7 +3027,7 @@ func TestRangeQuery(t *testing.T) {
|
|||
Query: "sum_over_time(bar[30s])",
|
||||
Result: Matrix{
|
||||
Series{
|
||||
Points: []Point{{V: 0, T: 0}, {V: 11, T: 60000}, {V: 1100, T: 120000}, {V: 110000, T: 180000}, {V: 11000000, T: 240000}},
|
||||
Floats: []FPoint{{F: 0, T: 0}, {F: 11, T: 60000}, {F: 1100, T: 120000}, {F: 110000, T: 180000}, {F: 11000000, T: 240000}},
|
||||
Metric: labels.EmptyLabels(),
|
||||
},
|
||||
},
|
||||
|
@ -3041,7 +3042,7 @@ func TestRangeQuery(t *testing.T) {
|
|||
Query: "sum_over_time(bar[30s])",
|
||||
Result: Matrix{
|
||||
Series{
|
||||
Points: []Point{{V: 5, T: 0}, {V: 59, T: 60000}, {V: 9, T: 120000}, {V: 956, T: 180000}},
|
||||
Floats: []FPoint{{F: 5, T: 0}, {F: 59, T: 60000}, {F: 9, T: 120000}, {F: 956, T: 180000}},
|
||||
Metric: labels.EmptyLabels(),
|
||||
},
|
||||
},
|
||||
|
@ -3056,7 +3057,7 @@ func TestRangeQuery(t *testing.T) {
|
|||
Query: "metric",
|
||||
Result: Matrix{
|
||||
Series{
|
||||
Points: []Point{{V: 1, T: 0}, {V: 3, T: 60000}, {V: 5, T: 120000}},
|
||||
Floats: []FPoint{{F: 1, T: 0}, {F: 3, T: 60000}, {F: 5, T: 120000}},
|
||||
Metric: labels.FromStrings("__name__", "metric"),
|
||||
},
|
||||
},
|
||||
|
@ -3071,7 +3072,7 @@ func TestRangeQuery(t *testing.T) {
|
|||
Query: "metric",
|
||||
Result: Matrix{
|
||||
Series{
|
||||
Points: []Point{{V: 1, T: 0}, {V: 3, T: 60000}, {V: 5, T: 120000}},
|
||||
Floats: []FPoint{{F: 1, T: 0}, {F: 3, T: 60000}, {F: 5, T: 120000}},
|
||||
Metric: labels.FromStrings("__name__", "metric"),
|
||||
},
|
||||
},
|
||||
|
@ -3087,14 +3088,14 @@ func TestRangeQuery(t *testing.T) {
|
|||
Query: `foo > 2 or bar`,
|
||||
Result: Matrix{
|
||||
Series{
|
||||
Points: []Point{{V: 1, T: 0}, {V: 3, T: 60000}, {V: 5, T: 120000}},
|
||||
Floats: []FPoint{{F: 1, T: 0}, {F: 3, T: 60000}, {F: 5, T: 120000}},
|
||||
Metric: labels.FromStrings(
|
||||
"__name__", "bar",
|
||||
"job", "2",
|
||||
),
|
||||
},
|
||||
Series{
|
||||
Points: []Point{{V: 3, T: 60000}, {V: 5, T: 120000}},
|
||||
Floats: []FPoint{{F: 3, T: 60000}, {F: 5, T: 120000}},
|
||||
Metric: labels.FromStrings(
|
||||
"__name__", "foo",
|
||||
"job", "1",
|
||||
|
@ -3266,9 +3267,9 @@ func TestNativeHistogram_HistogramCountAndSum(t *testing.T) {
|
|||
require.Len(t, vector, 1)
|
||||
require.Nil(t, vector[0].H)
|
||||
if floatHisto {
|
||||
require.Equal(t, float64(h.ToFloat().Count), vector[0].V)
|
||||
require.Equal(t, float64(h.ToFloat().Count), vector[0].F)
|
||||
} else {
|
||||
require.Equal(t, float64(h.Count), vector[0].V)
|
||||
require.Equal(t, float64(h.Count), vector[0].F)
|
||||
}
|
||||
|
||||
queryString = fmt.Sprintf("histogram_sum(%s)", seriesName)
|
||||
|
@ -3284,9 +3285,9 @@ func TestNativeHistogram_HistogramCountAndSum(t *testing.T) {
|
|||
require.Len(t, vector, 1)
|
||||
require.Nil(t, vector[0].H)
|
||||
if floatHisto {
|
||||
require.Equal(t, h.ToFloat().Sum, vector[0].V)
|
||||
require.Equal(t, h.ToFloat().Sum, vector[0].F)
|
||||
} else {
|
||||
require.Equal(t, h.Sum, vector[0].V)
|
||||
require.Equal(t, h.Sum, vector[0].F)
|
||||
}
|
||||
})
|
||||
}
|
||||
|
@ -3519,7 +3520,7 @@ func TestNativeHistogram_HistogramQuantile(t *testing.T) {
|
|||
|
||||
require.Len(t, vector, 1)
|
||||
require.Nil(t, vector[0].H)
|
||||
require.True(t, almostEqual(sc.value, vector[0].V))
|
||||
require.True(t, almostEqual(sc.value, vector[0].F))
|
||||
})
|
||||
}
|
||||
idx++
|
||||
|
@ -3951,10 +3952,10 @@ func TestNativeHistogram_HistogramFraction(t *testing.T) {
|
|||
require.Len(t, vector, 1)
|
||||
require.Nil(t, vector[0].H)
|
||||
if math.IsNaN(sc.value) {
|
||||
require.True(t, math.IsNaN(vector[0].V))
|
||||
require.True(t, math.IsNaN(vector[0].F))
|
||||
return
|
||||
}
|
||||
require.Equal(t, sc.value, vector[0].V)
|
||||
require.Equal(t, sc.value, vector[0].F)
|
||||
})
|
||||
}
|
||||
idx++
|
||||
|
@ -4090,24 +4091,18 @@ func TestNativeHistogram_Sum_Count_AddOperator(t *testing.T) {
|
|||
|
||||
// sum().
|
||||
queryString := fmt.Sprintf("sum(%s)", seriesName)
|
||||
queryAndCheck(queryString, []Sample{
|
||||
{Point{T: ts, H: &c.expected}, labels.EmptyLabels()},
|
||||
})
|
||||
queryAndCheck(queryString, []Sample{{T: ts, H: &c.expected, Metric: labels.EmptyLabels()}})
|
||||
|
||||
// + operator.
|
||||
queryString = fmt.Sprintf(`%s{idx="0"}`, seriesName)
|
||||
for idx := 1; idx < len(c.histograms); idx++ {
|
||||
queryString += fmt.Sprintf(` + ignoring(idx) %s{idx="%d"}`, seriesName, idx)
|
||||
}
|
||||
queryAndCheck(queryString, []Sample{
|
||||
{Point{T: ts, H: &c.expected}, labels.EmptyLabels()},
|
||||
})
|
||||
queryAndCheck(queryString, []Sample{{T: ts, H: &c.expected, Metric: labels.EmptyLabels()}})
|
||||
|
||||
// count().
|
||||
queryString = fmt.Sprintf("count(%s)", seriesName)
|
||||
queryAndCheck(queryString, []Sample{
|
||||
{Point{T: ts, V: 3}, labels.EmptyLabels()},
|
||||
})
|
||||
queryAndCheck(queryString, []Sample{{T: ts, F: 3, Metric: labels.EmptyLabels()}})
|
||||
})
|
||||
idx0++
|
||||
}
|
||||
|
|
|
@ -54,9 +54,9 @@ type FunctionCall func(vals []parser.Value, args parser.Expressions, enh *EvalNo
|
|||
|
||||
// === time() float64 ===
|
||||
func funcTime(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) Vector {
|
||||
return Vector{Sample{Point: Point{
|
||||
V: float64(enh.Ts) / 1000,
|
||||
}}}
|
||||
return Vector{Sample{
|
||||
F: float64(enh.Ts) / 1000,
|
||||
}}
|
||||
}
|
||||
|
||||
// extrapolatedRate is a utility function for rate/increase/delta.
|
||||
|
@ -67,65 +67,71 @@ func extrapolatedRate(vals []parser.Value, args parser.Expressions, enh *EvalNod
|
|||
ms := args[0].(*parser.MatrixSelector)
|
||||
vs := ms.VectorSelector.(*parser.VectorSelector)
|
||||
var (
|
||||
samples = vals[0].(Matrix)[0]
|
||||
rangeStart = enh.Ts - durationMilliseconds(ms.Range+vs.Offset)
|
||||
rangeEnd = enh.Ts - durationMilliseconds(vs.Offset)
|
||||
resultValue float64
|
||||
resultHistogram *histogram.FloatHistogram
|
||||
samples = vals[0].(Matrix)[0]
|
||||
rangeStart = enh.Ts - durationMilliseconds(ms.Range+vs.Offset)
|
||||
rangeEnd = enh.Ts - durationMilliseconds(vs.Offset)
|
||||
resultValue float64
|
||||
resultHistogram *histogram.FloatHistogram
|
||||
firstT, lastT int64
|
||||
numSamplesMinusOne int
|
||||
)
|
||||
|
||||
// No sense in trying to compute a rate without at least two points. Drop
|
||||
// this Vector element.
|
||||
if len(samples.Points) < 2 {
|
||||
// We need either at least two Histograms and no Floats, or at least two
|
||||
// Floats and no Histograms to calculate a rate. Otherwise, drop this
|
||||
// Vector element.
|
||||
if len(samples.Histograms) > 0 && len(samples.Floats) > 0 {
|
||||
// Mix of histograms and floats. TODO(beorn7): Communicate this failure reason.
|
||||
return enh.Out
|
||||
}
|
||||
|
||||
if samples.Points[0].H != nil {
|
||||
resultHistogram = histogramRate(samples.Points, isCounter)
|
||||
switch {
|
||||
case len(samples.Histograms) > 1:
|
||||
numSamplesMinusOne = len(samples.Histograms) - 1
|
||||
firstT = samples.Histograms[0].T
|
||||
lastT = samples.Histograms[numSamplesMinusOne].T
|
||||
resultHistogram = histogramRate(samples.Histograms, isCounter)
|
||||
if resultHistogram == nil {
|
||||
// Points are a mix of floats and histograms, or the histograms
|
||||
// are not compatible with each other.
|
||||
// TODO(beorn7): find a way of communicating the exact reason
|
||||
// The histograms are not compatible with each other.
|
||||
// TODO(beorn7): Communicate this failure reason.
|
||||
return enh.Out
|
||||
}
|
||||
} else {
|
||||
resultValue = samples.Points[len(samples.Points)-1].V - samples.Points[0].V
|
||||
prevValue := samples.Points[0].V
|
||||
// We have to iterate through everything even in the non-counter
|
||||
// case because we have to check that everything is a float.
|
||||
// TODO(beorn7): Find a way to check that earlier, e.g. by
|
||||
// handing in a []FloatPoint and a []HistogramPoint separately.
|
||||
for _, currPoint := range samples.Points[1:] {
|
||||
if currPoint.H != nil {
|
||||
return nil // Range contains a mix of histograms and floats.
|
||||
}
|
||||
if !isCounter {
|
||||
continue
|
||||
}
|
||||
if currPoint.V < prevValue {
|
||||
case len(samples.Floats) > 1:
|
||||
numSamplesMinusOne = len(samples.Floats) - 1
|
||||
firstT = samples.Floats[0].T
|
||||
lastT = samples.Floats[numSamplesMinusOne].T
|
||||
resultValue = samples.Floats[numSamplesMinusOne].F - samples.Floats[0].F
|
||||
if !isCounter {
|
||||
break
|
||||
}
|
||||
// Handle counter resets:
|
||||
prevValue := samples.Floats[0].F
|
||||
for _, currPoint := range samples.Floats[1:] {
|
||||
if currPoint.F < prevValue {
|
||||
resultValue += prevValue
|
||||
}
|
||||
prevValue = currPoint.V
|
||||
prevValue = currPoint.F
|
||||
}
|
||||
default:
|
||||
// Not enough samples. TODO(beorn7): Communicate this failure reason.
|
||||
return enh.Out
|
||||
}
|
||||
|
||||
// Duration between first/last samples and boundary of range.
|
||||
durationToStart := float64(samples.Points[0].T-rangeStart) / 1000
|
||||
durationToEnd := float64(rangeEnd-samples.Points[len(samples.Points)-1].T) / 1000
|
||||
durationToStart := float64(firstT-rangeStart) / 1000
|
||||
durationToEnd := float64(rangeEnd-lastT) / 1000
|
||||
|
||||
sampledInterval := float64(samples.Points[len(samples.Points)-1].T-samples.Points[0].T) / 1000
|
||||
averageDurationBetweenSamples := sampledInterval / float64(len(samples.Points)-1)
|
||||
sampledInterval := float64(lastT-firstT) / 1000
|
||||
averageDurationBetweenSamples := sampledInterval / float64(numSamplesMinusOne)
|
||||
|
||||
// TODO(beorn7): Do this for histograms, too.
|
||||
if isCounter && resultValue > 0 && samples.Points[0].V >= 0 {
|
||||
// Counters cannot be negative. If we have any slope at
|
||||
// all (i.e. resultValue went up), we can extrapolate
|
||||
// the zero point of the counter. If the duration to the
|
||||
// zero point is shorter than the durationToStart, we
|
||||
// take the zero point as the start of the series,
|
||||
// thereby avoiding extrapolation to negative counter
|
||||
// values.
|
||||
durationToZero := sampledInterval * (samples.Points[0].V / resultValue)
|
||||
if isCounter && resultValue > 0 && len(samples.Floats) > 0 && samples.Floats[0].F >= 0 {
|
||||
// Counters cannot be negative. If we have any slope at all
|
||||
// (i.e. resultValue went up), we can extrapolate the zero point
|
||||
// of the counter. If the duration to the zero point is shorter
|
||||
// than the durationToStart, we take the zero point as the start
|
||||
// of the series, thereby avoiding extrapolation to negative
|
||||
// counter values.
|
||||
durationToZero := sampledInterval * (samples.Floats[0].F / resultValue)
|
||||
if durationToZero < durationToStart {
|
||||
durationToStart = durationToZero
|
||||
}
|
||||
|
@ -158,16 +164,14 @@ func extrapolatedRate(vals []parser.Value, args parser.Expressions, enh *EvalNod
|
|||
resultHistogram.Scale(factor)
|
||||
}
|
||||
|
||||
return append(enh.Out, Sample{
|
||||
Point: Point{V: resultValue, H: resultHistogram},
|
||||
})
|
||||
return append(enh.Out, Sample{F: resultValue, H: resultHistogram})
|
||||
}
|
||||
|
||||
// histogramRate is a helper function for extrapolatedRate. It requires
|
||||
// points[0] to be a histogram. It returns nil if any other Point in points is
|
||||
// not a histogram.
|
||||
func histogramRate(points []Point, isCounter bool) *histogram.FloatHistogram {
|
||||
prev := points[0].H // We already know that this is a histogram.
|
||||
func histogramRate(points []HPoint, isCounter bool) *histogram.FloatHistogram {
|
||||
prev := points[0].H
|
||||
last := points[len(points)-1].H
|
||||
if last == nil {
|
||||
return nil // Range contains a mix of histograms and floats.
|
||||
|
@ -243,19 +247,19 @@ func instantValue(vals []parser.Value, out Vector, isRate bool) Vector {
|
|||
samples := vals[0].(Matrix)[0]
|
||||
// No sense in trying to compute a rate without at least two points. Drop
|
||||
// this Vector element.
|
||||
if len(samples.Points) < 2 {
|
||||
if len(samples.Floats) < 2 {
|
||||
return out
|
||||
}
|
||||
|
||||
lastSample := samples.Points[len(samples.Points)-1]
|
||||
previousSample := samples.Points[len(samples.Points)-2]
|
||||
lastSample := samples.Floats[len(samples.Floats)-1]
|
||||
previousSample := samples.Floats[len(samples.Floats)-2]
|
||||
|
||||
var resultValue float64
|
||||
if isRate && lastSample.V < previousSample.V {
|
||||
if isRate && lastSample.F < previousSample.F {
|
||||
// Counter reset.
|
||||
resultValue = lastSample.V
|
||||
resultValue = lastSample.F
|
||||
} else {
|
||||
resultValue = lastSample.V - previousSample.V
|
||||
resultValue = lastSample.F - previousSample.F
|
||||
}
|
||||
|
||||
sampledInterval := lastSample.T - previousSample.T
|
||||
|
@ -269,9 +273,7 @@ func instantValue(vals []parser.Value, out Vector, isRate bool) Vector {
|
|||
resultValue /= float64(sampledInterval) / 1000
|
||||
}
|
||||
|
||||
return append(out, Sample{
|
||||
Point: Point{V: resultValue},
|
||||
})
|
||||
return append(out, Sample{F: resultValue})
|
||||
}
|
||||
|
||||
// Calculate the trend value at the given index i in raw data d.
|
||||
|
@ -300,10 +302,10 @@ func funcHoltWinters(vals []parser.Value, args parser.Expressions, enh *EvalNode
|
|||
samples := vals[0].(Matrix)[0]
|
||||
|
||||
// The smoothing factor argument.
|
||||
sf := vals[1].(Vector)[0].V
|
||||
sf := vals[1].(Vector)[0].F
|
||||
|
||||
// The trend factor argument.
|
||||
tf := vals[2].(Vector)[0].V
|
||||
tf := vals[2].(Vector)[0].F
|
||||
|
||||
// Check that the input parameters are valid.
|
||||
if sf <= 0 || sf >= 1 {
|
||||
|
@ -313,7 +315,7 @@ func funcHoltWinters(vals []parser.Value, args parser.Expressions, enh *EvalNode
|
|||
panic(fmt.Errorf("invalid trend factor. Expected: 0 < tf < 1, got: %f", tf))
|
||||
}
|
||||
|
||||
l := len(samples.Points)
|
||||
l := len(samples.Floats)
|
||||
|
||||
// Can't do the smoothing operation with less than two points.
|
||||
if l < 2 {
|
||||
|
@ -322,15 +324,15 @@ func funcHoltWinters(vals []parser.Value, args parser.Expressions, enh *EvalNode
|
|||
|
||||
var s0, s1, b float64
|
||||
// Set initial values.
|
||||
s1 = samples.Points[0].V
|
||||
b = samples.Points[1].V - samples.Points[0].V
|
||||
s1 = samples.Floats[0].F
|
||||
b = samples.Floats[1].F - samples.Floats[0].F
|
||||
|
||||
// Run the smoothing operation.
|
||||
var x, y float64
|
||||
for i := 1; i < l; i++ {
|
||||
|
||||
// Scale the raw value against the smoothing factor.
|
||||
x = sf * samples.Points[i].V
|
||||
x = sf * samples.Floats[i].F
|
||||
|
||||
// Scale the last smoothed value with the trend at this point.
|
||||
b = calcTrendValue(i-1, tf, s0, s1, b)
|
||||
|
@ -339,9 +341,7 @@ func funcHoltWinters(vals []parser.Value, args parser.Expressions, enh *EvalNode
|
|||
s0, s1 = s1, x+y
|
||||
}
|
||||
|
||||
return append(enh.Out, Sample{
|
||||
Point: Point{V: s1},
|
||||
})
|
||||
return append(enh.Out, Sample{F: s1})
|
||||
}
|
||||
|
||||
// === sort(node parser.ValueTypeVector) Vector ===
|
||||
|
@ -365,15 +365,15 @@ func funcSortDesc(vals []parser.Value, args parser.Expressions, enh *EvalNodeHel
|
|||
// === clamp(Vector parser.ValueTypeVector, min, max Scalar) Vector ===
|
||||
func funcClamp(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) Vector {
|
||||
vec := vals[0].(Vector)
|
||||
min := vals[1].(Vector)[0].Point.V
|
||||
max := vals[2].(Vector)[0].Point.V
|
||||
min := vals[1].(Vector)[0].F
|
||||
max := vals[2].(Vector)[0].F
|
||||
if max < min {
|
||||
return enh.Out
|
||||
}
|
||||
for _, el := range vec {
|
||||
enh.Out = append(enh.Out, Sample{
|
||||
Metric: enh.DropMetricName(el.Metric),
|
||||
Point: Point{V: math.Max(min, math.Min(max, el.V))},
|
||||
F: math.Max(min, math.Min(max, el.F)),
|
||||
})
|
||||
}
|
||||
return enh.Out
|
||||
|
@ -382,11 +382,11 @@ func funcClamp(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper
|
|||
// === clamp_max(Vector parser.ValueTypeVector, max Scalar) Vector ===
|
||||
func funcClampMax(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) Vector {
|
||||
vec := vals[0].(Vector)
|
||||
max := vals[1].(Vector)[0].Point.V
|
||||
max := vals[1].(Vector)[0].F
|
||||
for _, el := range vec {
|
||||
enh.Out = append(enh.Out, Sample{
|
||||
Metric: enh.DropMetricName(el.Metric),
|
||||
Point: Point{V: math.Min(max, el.V)},
|
||||
F: math.Min(max, el.F),
|
||||
})
|
||||
}
|
||||
return enh.Out
|
||||
|
@ -395,11 +395,11 @@ func funcClampMax(vals []parser.Value, args parser.Expressions, enh *EvalNodeHel
|
|||
// === clamp_min(Vector parser.ValueTypeVector, min Scalar) Vector ===
|
||||
func funcClampMin(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) Vector {
|
||||
vec := vals[0].(Vector)
|
||||
min := vals[1].(Vector)[0].Point.V
|
||||
min := vals[1].(Vector)[0].F
|
||||
for _, el := range vec {
|
||||
enh.Out = append(enh.Out, Sample{
|
||||
Metric: enh.DropMetricName(el.Metric),
|
||||
Point: Point{V: math.Max(min, el.V)},
|
||||
F: math.Max(min, el.F),
|
||||
})
|
||||
}
|
||||
return enh.Out
|
||||
|
@ -412,16 +412,16 @@ func funcRound(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper
|
|||
// Ties are solved by rounding up.
|
||||
toNearest := float64(1)
|
||||
if len(args) >= 2 {
|
||||
toNearest = vals[1].(Vector)[0].Point.V
|
||||
toNearest = vals[1].(Vector)[0].F
|
||||
}
|
||||
// Invert as it seems to cause fewer floating point accuracy issues.
|
||||
toNearestInverse := 1.0 / toNearest
|
||||
|
||||
for _, el := range vec {
|
||||
v := math.Floor(el.V*toNearestInverse+0.5) / toNearestInverse
|
||||
v := math.Floor(el.F*toNearestInverse+0.5) / toNearestInverse
|
||||
enh.Out = append(enh.Out, Sample{
|
||||
Metric: enh.DropMetricName(el.Metric),
|
||||
Point: Point{V: v},
|
||||
F: v,
|
||||
})
|
||||
}
|
||||
return enh.Out
|
||||
|
@ -431,37 +431,38 @@ func funcRound(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper
|
|||
func funcScalar(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) Vector {
|
||||
v := vals[0].(Vector)
|
||||
if len(v) != 1 {
|
||||
return append(enh.Out, Sample{
|
||||
Point: Point{V: math.NaN()},
|
||||
})
|
||||
return append(enh.Out, Sample{F: math.NaN()})
|
||||
}
|
||||
return append(enh.Out, Sample{
|
||||
Point: Point{V: v[0].V},
|
||||
})
|
||||
return append(enh.Out, Sample{F: v[0].F})
|
||||
}
|
||||
|
||||
func aggrOverTime(vals []parser.Value, enh *EvalNodeHelper, aggrFn func([]Point) float64) Vector {
|
||||
func aggrOverTime(vals []parser.Value, enh *EvalNodeHelper, aggrFn func(Series) float64) Vector {
|
||||
el := vals[0].(Matrix)[0]
|
||||
|
||||
return append(enh.Out, Sample{
|
||||
Point: Point{V: aggrFn(el.Points)},
|
||||
})
|
||||
return append(enh.Out, Sample{F: aggrFn(el)})
|
||||
}
|
||||
|
||||
// === avg_over_time(Matrix parser.ValueTypeMatrix) Vector ===
|
||||
func funcAvgOverTime(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) Vector {
|
||||
return aggrOverTime(vals, enh, func(values []Point) float64 {
|
||||
if len(vals[0].(Matrix)[0].Floats) == 0 {
|
||||
// TODO(beorn7): The passed values only contain
|
||||
// histograms. avg_over_time ignores histograms for now. If
|
||||
// there are only histograms, we have to return without adding
|
||||
// anything to enh.Out.
|
||||
return enh.Out
|
||||
}
|
||||
return aggrOverTime(vals, enh, func(s Series) float64 {
|
||||
var mean, count, c float64
|
||||
for _, v := range values {
|
||||
for _, f := range s.Floats {
|
||||
count++
|
||||
if math.IsInf(mean, 0) {
|
||||
if math.IsInf(v.V, 0) && (mean > 0) == (v.V > 0) {
|
||||
// The `mean` and `v.V` values are `Inf` of the same sign. They
|
||||
if math.IsInf(f.F, 0) && (mean > 0) == (f.F > 0) {
|
||||
// The `mean` and `f.F` values are `Inf` of the same sign. They
|
||||
// can't be subtracted, but the value of `mean` is correct
|
||||
// already.
|
||||
continue
|
||||
}
|
||||
if !math.IsInf(v.V, 0) && !math.IsNaN(v.V) {
|
||||
if !math.IsInf(f.F, 0) && !math.IsNaN(f.F) {
|
||||
// At this stage, the mean is an infinite. If the added
|
||||
// value is neither an Inf or a Nan, we can keep that mean
|
||||
// value.
|
||||
|
@ -471,7 +472,7 @@ func funcAvgOverTime(vals []parser.Value, args parser.Expressions, enh *EvalNode
|
|||
continue
|
||||
}
|
||||
}
|
||||
mean, c = kahanSumInc(v.V/count-mean/count, mean, c)
|
||||
mean, c = kahanSumInc(f.F/count-mean/count, mean, c)
|
||||
}
|
||||
|
||||
if math.IsInf(mean, 0) {
|
||||
|
@ -483,8 +484,8 @@ func funcAvgOverTime(vals []parser.Value, args parser.Expressions, enh *EvalNode
|
|||
|
||||
// === count_over_time(Matrix parser.ValueTypeMatrix) Vector ===
|
||||
func funcCountOverTime(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) Vector {
|
||||
return aggrOverTime(vals, enh, func(values []Point) float64 {
|
||||
return float64(len(values))
|
||||
return aggrOverTime(vals, enh, func(s Series) float64 {
|
||||
return float64(len(s.Floats) + len(s.Histograms))
|
||||
})
|
||||
}
|
||||
|
||||
|
@ -492,19 +493,42 @@ func funcCountOverTime(vals []parser.Value, args parser.Expressions, enh *EvalNo
|
|||
func funcLastOverTime(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) Vector {
|
||||
el := vals[0].(Matrix)[0]
|
||||
|
||||
var f FPoint
|
||||
if len(el.Floats) > 0 {
|
||||
f = el.Floats[len(el.Floats)-1]
|
||||
}
|
||||
|
||||
var h HPoint
|
||||
if len(el.Histograms) > 0 {
|
||||
h = el.Histograms[len(el.Histograms)-1]
|
||||
}
|
||||
|
||||
if h.H == nil || h.T < f.T {
|
||||
return append(enh.Out, Sample{
|
||||
Metric: el.Metric,
|
||||
F: f.F,
|
||||
})
|
||||
}
|
||||
return append(enh.Out, Sample{
|
||||
Metric: el.Metric,
|
||||
Point: Point{V: el.Points[len(el.Points)-1].V},
|
||||
H: h.H,
|
||||
})
|
||||
}
|
||||
|
||||
// === max_over_time(Matrix parser.ValueTypeMatrix) Vector ===
|
||||
func funcMaxOverTime(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) Vector {
|
||||
return aggrOverTime(vals, enh, func(values []Point) float64 {
|
||||
max := values[0].V
|
||||
for _, v := range values {
|
||||
if v.V > max || math.IsNaN(max) {
|
||||
max = v.V
|
||||
if len(vals[0].(Matrix)[0].Floats) == 0 {
|
||||
// TODO(beorn7): The passed values only contain
|
||||
// histograms. max_over_time ignores histograms for now. If
|
||||
// there are only histograms, we have to return without adding
|
||||
// anything to enh.Out.
|
||||
return enh.Out
|
||||
}
|
||||
return aggrOverTime(vals, enh, func(s Series) float64 {
|
||||
max := s.Floats[0].F
|
||||
for _, f := range s.Floats {
|
||||
if f.F > max || math.IsNaN(max) {
|
||||
max = f.F
|
||||
}
|
||||
}
|
||||
return max
|
||||
|
@ -513,11 +537,18 @@ func funcMaxOverTime(vals []parser.Value, args parser.Expressions, enh *EvalNode
|
|||
|
||||
// === min_over_time(Matrix parser.ValueTypeMatrix) Vector ===
|
||||
func funcMinOverTime(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) Vector {
|
||||
return aggrOverTime(vals, enh, func(values []Point) float64 {
|
||||
min := values[0].V
|
||||
for _, v := range values {
|
||||
if v.V < min || math.IsNaN(min) {
|
||||
min = v.V
|
||||
if len(vals[0].(Matrix)[0].Floats) == 0 {
|
||||
// TODO(beorn7): The passed values only contain
|
||||
// histograms. min_over_time ignores histograms for now. If
|
||||
// there are only histograms, we have to return without adding
|
||||
// anything to enh.Out.
|
||||
return enh.Out
|
||||
}
|
||||
return aggrOverTime(vals, enh, func(s Series) float64 {
|
||||
min := s.Floats[0].F
|
||||
for _, f := range s.Floats {
|
||||
if f.F < min || math.IsNaN(min) {
|
||||
min = f.F
|
||||
}
|
||||
}
|
||||
return min
|
||||
|
@ -526,10 +557,17 @@ func funcMinOverTime(vals []parser.Value, args parser.Expressions, enh *EvalNode
|
|||
|
||||
// === sum_over_time(Matrix parser.ValueTypeMatrix) Vector ===
|
||||
func funcSumOverTime(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) Vector {
|
||||
return aggrOverTime(vals, enh, func(values []Point) float64 {
|
||||
if len(vals[0].(Matrix)[0].Floats) == 0 {
|
||||
// TODO(beorn7): The passed values only contain
|
||||
// histograms. sum_over_time ignores histograms for now. If
|
||||
// there are only histograms, we have to return without adding
|
||||
// anything to enh.Out.
|
||||
return enh.Out
|
||||
}
|
||||
return aggrOverTime(vals, enh, func(s Series) float64 {
|
||||
var sum, c float64
|
||||
for _, v := range values {
|
||||
sum, c = kahanSumInc(v.V, sum, c)
|
||||
for _, f := range s.Floats {
|
||||
sum, c = kahanSumInc(f.F, sum, c)
|
||||
}
|
||||
if math.IsInf(sum, 0) {
|
||||
return sum
|
||||
|
@ -540,29 +578,41 @@ func funcSumOverTime(vals []parser.Value, args parser.Expressions, enh *EvalNode
|
|||
|
||||
// === quantile_over_time(Matrix parser.ValueTypeMatrix) Vector ===
|
||||
func funcQuantileOverTime(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) Vector {
|
||||
q := vals[0].(Vector)[0].V
|
||||
q := vals[0].(Vector)[0].F
|
||||
el := vals[1].(Matrix)[0]
|
||||
|
||||
values := make(vectorByValueHeap, 0, len(el.Points))
|
||||
for _, v := range el.Points {
|
||||
values = append(values, Sample{Point: Point{V: v.V}})
|
||||
if len(el.Floats) == 0 {
|
||||
// TODO(beorn7): The passed values only contain
|
||||
// histograms. quantile_over_time ignores histograms for now. If
|
||||
// there are only histograms, we have to return without adding
|
||||
// anything to enh.Out.
|
||||
return enh.Out
|
||||
}
|
||||
return append(enh.Out, Sample{
|
||||
Point: Point{V: quantile(q, values)},
|
||||
})
|
||||
|
||||
values := make(vectorByValueHeap, 0, len(el.Floats))
|
||||
for _, f := range el.Floats {
|
||||
values = append(values, Sample{F: f.F})
|
||||
}
|
||||
return append(enh.Out, Sample{F: quantile(q, values)})
|
||||
}
|
||||
|
||||
// === stddev_over_time(Matrix parser.ValueTypeMatrix) Vector ===
|
||||
func funcStddevOverTime(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) Vector {
|
||||
return aggrOverTime(vals, enh, func(values []Point) float64 {
|
||||
if len(vals[0].(Matrix)[0].Floats) == 0 {
|
||||
// TODO(beorn7): The passed values only contain
|
||||
// histograms. stddev_over_time ignores histograms for now. If
|
||||
// there are only histograms, we have to return without adding
|
||||
// anything to enh.Out.
|
||||
return enh.Out
|
||||
}
|
||||
return aggrOverTime(vals, enh, func(s Series) float64 {
|
||||
var count float64
|
||||
var mean, cMean float64
|
||||
var aux, cAux float64
|
||||
for _, v := range values {
|
||||
for _, f := range s.Floats {
|
||||
count++
|
||||
delta := v.V - (mean + cMean)
|
||||
delta := f.F - (mean + cMean)
|
||||
mean, cMean = kahanSumInc(delta/count, mean, cMean)
|
||||
aux, cAux = kahanSumInc(delta*(v.V-(mean+cMean)), aux, cAux)
|
||||
aux, cAux = kahanSumInc(delta*(f.F-(mean+cMean)), aux, cAux)
|
||||
}
|
||||
return math.Sqrt((aux + cAux) / count)
|
||||
})
|
||||
|
@ -570,15 +620,22 @@ func funcStddevOverTime(vals []parser.Value, args parser.Expressions, enh *EvalN
|
|||
|
||||
// === stdvar_over_time(Matrix parser.ValueTypeMatrix) Vector ===
|
||||
func funcStdvarOverTime(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) Vector {
|
||||
return aggrOverTime(vals, enh, func(values []Point) float64 {
|
||||
if len(vals[0].(Matrix)[0].Floats) == 0 {
|
||||
// TODO(beorn7): The passed values only contain
|
||||
// histograms. stdvar_over_time ignores histograms for now. If
|
||||
// there are only histograms, we have to return without adding
|
||||
// anything to enh.Out.
|
||||
return enh.Out
|
||||
}
|
||||
return aggrOverTime(vals, enh, func(s Series) float64 {
|
||||
var count float64
|
||||
var mean, cMean float64
|
||||
var aux, cAux float64
|
||||
for _, v := range values {
|
||||
for _, f := range s.Floats {
|
||||
count++
|
||||
delta := v.V - (mean + cMean)
|
||||
delta := f.F - (mean + cMean)
|
||||
mean, cMean = kahanSumInc(delta/count, mean, cMean)
|
||||
aux, cAux = kahanSumInc(delta*(v.V-(mean+cMean)), aux, cAux)
|
||||
aux, cAux = kahanSumInc(delta*(f.F-(mean+cMean)), aux, cAux)
|
||||
}
|
||||
return (aux + cAux) / count
|
||||
})
|
||||
|
@ -592,7 +649,7 @@ func funcAbsent(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelpe
|
|||
return append(enh.Out,
|
||||
Sample{
|
||||
Metric: createLabelsForAbsentFunction(args[0]),
|
||||
Point: Point{V: 1},
|
||||
F: 1,
|
||||
})
|
||||
}
|
||||
|
||||
|
@ -602,25 +659,24 @@ func funcAbsent(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelpe
|
|||
// Due to engine optimization, this function is only called when this condition is true.
|
||||
// Then, the engine post-processes the results to get the expected output.
|
||||
func funcAbsentOverTime(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) Vector {
|
||||
return append(enh.Out,
|
||||
Sample{
|
||||
Point: Point{V: 1},
|
||||
})
|
||||
return append(enh.Out, Sample{F: 1})
|
||||
}
|
||||
|
||||
// === present_over_time(Vector parser.ValueTypeMatrix) Vector ===
|
||||
func funcPresentOverTime(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) Vector {
|
||||
return aggrOverTime(vals, enh, func(values []Point) float64 {
|
||||
return aggrOverTime(vals, enh, func(s Series) float64 {
|
||||
return 1
|
||||
})
|
||||
}
|
||||
|
||||
func simpleFunc(vals []parser.Value, enh *EvalNodeHelper, f func(float64) float64) Vector {
|
||||
for _, el := range vals[0].(Vector) {
|
||||
enh.Out = append(enh.Out, Sample{
|
||||
Metric: enh.DropMetricName(el.Metric),
|
||||
Point: Point{V: f(el.V)},
|
||||
})
|
||||
if el.H == nil { // Process only float samples.
|
||||
enh.Out = append(enh.Out, Sample{
|
||||
Metric: enh.DropMetricName(el.Metric),
|
||||
F: f(el.F),
|
||||
})
|
||||
}
|
||||
}
|
||||
return enh.Out
|
||||
}
|
||||
|
@ -741,9 +797,7 @@ func funcDeg(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper)
|
|||
|
||||
// === pi() Scalar ===
|
||||
func funcPi(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) Vector {
|
||||
return Vector{Sample{Point: Point{
|
||||
V: math.Pi,
|
||||
}}}
|
||||
return Vector{Sample{F: math.Pi}}
|
||||
}
|
||||
|
||||
// === sgn(Vector parser.ValueTypeVector) Vector ===
|
||||
|
@ -764,7 +818,7 @@ func funcTimestamp(vals []parser.Value, args parser.Expressions, enh *EvalNodeHe
|
|||
for _, el := range vec {
|
||||
enh.Out = append(enh.Out, Sample{
|
||||
Metric: enh.DropMetricName(el.Metric),
|
||||
Point: Point{V: float64(el.T) / 1000},
|
||||
F: float64(el.T) / 1000,
|
||||
})
|
||||
}
|
||||
return enh.Out
|
||||
|
@ -793,7 +847,7 @@ func kahanSumInc(inc, sum, c float64) (newSum, newC float64) {
|
|||
// linearRegression performs a least-square linear regression analysis on the
|
||||
// provided SamplePairs. It returns the slope, and the intercept value at the
|
||||
// provided time.
|
||||
func linearRegression(samples []Point, interceptTime int64) (slope, intercept float64) {
|
||||
func linearRegression(samples []FPoint, interceptTime int64) (slope, intercept float64) {
|
||||
var (
|
||||
n float64
|
||||
sumX, cX float64
|
||||
|
@ -803,18 +857,18 @@ func linearRegression(samples []Point, interceptTime int64) (slope, intercept fl
|
|||
initY float64
|
||||
constY bool
|
||||
)
|
||||
initY = samples[0].V
|
||||
initY = samples[0].F
|
||||
constY = true
|
||||
for i, sample := range samples {
|
||||
// Set constY to false if any new y values are encountered.
|
||||
if constY && i > 0 && sample.V != initY {
|
||||
if constY && i > 0 && sample.F != initY {
|
||||
constY = false
|
||||
}
|
||||
n += 1.0
|
||||
x := float64(sample.T-interceptTime) / 1e3
|
||||
sumX, cX = kahanSumInc(x, sumX, cX)
|
||||
sumY, cY = kahanSumInc(sample.V, sumY, cY)
|
||||
sumXY, cXY = kahanSumInc(x*sample.V, sumXY, cXY)
|
||||
sumY, cY = kahanSumInc(sample.F, sumY, cY)
|
||||
sumXY, cXY = kahanSumInc(x*sample.F, sumXY, cXY)
|
||||
sumX2, cX2 = kahanSumInc(x*x, sumX2, cX2)
|
||||
}
|
||||
if constY {
|
||||
|
@ -842,33 +896,29 @@ func funcDeriv(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper
|
|||
|
||||
// No sense in trying to compute a derivative without at least two points.
|
||||
// Drop this Vector element.
|
||||
if len(samples.Points) < 2 {
|
||||
if len(samples.Floats) < 2 {
|
||||
return enh.Out
|
||||
}
|
||||
|
||||
// We pass in an arbitrary timestamp that is near the values in use
|
||||
// to avoid floating point accuracy issues, see
|
||||
// https://github.com/prometheus/prometheus/issues/2674
|
||||
slope, _ := linearRegression(samples.Points, samples.Points[0].T)
|
||||
return append(enh.Out, Sample{
|
||||
Point: Point{V: slope},
|
||||
})
|
||||
slope, _ := linearRegression(samples.Floats, samples.Floats[0].T)
|
||||
return append(enh.Out, Sample{F: slope})
|
||||
}
|
||||
|
||||
// === predict_linear(node parser.ValueTypeMatrix, k parser.ValueTypeScalar) Vector ===
|
||||
func funcPredictLinear(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) Vector {
|
||||
samples := vals[0].(Matrix)[0]
|
||||
duration := vals[1].(Vector)[0].V
|
||||
duration := vals[1].(Vector)[0].F
|
||||
// No sense in trying to predict anything without at least two points.
|
||||
// Drop this Vector element.
|
||||
if len(samples.Points) < 2 {
|
||||
if len(samples.Floats) < 2 {
|
||||
return enh.Out
|
||||
}
|
||||
slope, intercept := linearRegression(samples.Points, enh.Ts)
|
||||
slope, intercept := linearRegression(samples.Floats, enh.Ts)
|
||||
|
||||
return append(enh.Out, Sample{
|
||||
Point: Point{V: slope*duration + intercept},
|
||||
})
|
||||
return append(enh.Out, Sample{F: slope*duration + intercept})
|
||||
}
|
||||
|
||||
// === histogram_count(Vector parser.ValueTypeVector) Vector ===
|
||||
|
@ -882,7 +932,7 @@ func funcHistogramCount(vals []parser.Value, args parser.Expressions, enh *EvalN
|
|||
}
|
||||
enh.Out = append(enh.Out, Sample{
|
||||
Metric: enh.DropMetricName(sample.Metric),
|
||||
Point: Point{V: sample.H.Count},
|
||||
F: sample.H.Count,
|
||||
})
|
||||
}
|
||||
return enh.Out
|
||||
|
@ -899,7 +949,7 @@ func funcHistogramSum(vals []parser.Value, args parser.Expressions, enh *EvalNod
|
|||
}
|
||||
enh.Out = append(enh.Out, Sample{
|
||||
Metric: enh.DropMetricName(sample.Metric),
|
||||
Point: Point{V: sample.H.Sum},
|
||||
F: sample.H.Sum,
|
||||
})
|
||||
}
|
||||
return enh.Out
|
||||
|
@ -907,8 +957,8 @@ func funcHistogramSum(vals []parser.Value, args parser.Expressions, enh *EvalNod
|
|||
|
||||
// === histogram_fraction(lower, upper parser.ValueTypeScalar, Vector parser.ValueTypeVector) Vector ===
|
||||
func funcHistogramFraction(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) Vector {
|
||||
lower := vals[0].(Vector)[0].V
|
||||
upper := vals[1].(Vector)[0].V
|
||||
lower := vals[0].(Vector)[0].F
|
||||
upper := vals[1].(Vector)[0].F
|
||||
inVec := vals[2].(Vector)
|
||||
|
||||
for _, sample := range inVec {
|
||||
|
@ -918,7 +968,7 @@ func funcHistogramFraction(vals []parser.Value, args parser.Expressions, enh *Ev
|
|||
}
|
||||
enh.Out = append(enh.Out, Sample{
|
||||
Metric: enh.DropMetricName(sample.Metric),
|
||||
Point: Point{V: histogramFraction(lower, upper, sample.H)},
|
||||
F: histogramFraction(lower, upper, sample.H),
|
||||
})
|
||||
}
|
||||
return enh.Out
|
||||
|
@ -926,7 +976,7 @@ func funcHistogramFraction(vals []parser.Value, args parser.Expressions, enh *Ev
|
|||
|
||||
// === histogram_quantile(k parser.ValueTypeScalar, Vector parser.ValueTypeVector) Vector ===
|
||||
func funcHistogramQuantile(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) Vector {
|
||||
q := vals[0].(Vector)[0].V
|
||||
q := vals[0].(Vector)[0].F
|
||||
inVec := vals[1].(Vector)
|
||||
|
||||
if enh.signatureToMetricWithBuckets == nil {
|
||||
|
@ -965,7 +1015,7 @@ func funcHistogramQuantile(vals []parser.Value, args parser.Expressions, enh *Ev
|
|||
mb = &metricWithBuckets{sample.Metric, nil}
|
||||
enh.signatureToMetricWithBuckets[string(enh.lblBuf)] = mb
|
||||
}
|
||||
mb.buckets = append(mb.buckets, bucket{upperBound, sample.V})
|
||||
mb.buckets = append(mb.buckets, bucket{upperBound, sample.F})
|
||||
|
||||
}
|
||||
|
||||
|
@ -985,7 +1035,7 @@ func funcHistogramQuantile(vals []parser.Value, args parser.Expressions, enh *Ev
|
|||
|
||||
enh.Out = append(enh.Out, Sample{
|
||||
Metric: enh.DropMetricName(sample.Metric),
|
||||
Point: Point{V: histogramQuantile(q, sample.H)},
|
||||
F: histogramQuantile(q, sample.H),
|
||||
})
|
||||
}
|
||||
|
||||
|
@ -993,7 +1043,7 @@ func funcHistogramQuantile(vals []parser.Value, args parser.Expressions, enh *Ev
|
|||
if len(mb.buckets) > 0 {
|
||||
enh.Out = append(enh.Out, Sample{
|
||||
Metric: mb.metric,
|
||||
Point: Point{V: bucketQuantile(q, mb.buckets)},
|
||||
F: bucketQuantile(q, mb.buckets),
|
||||
})
|
||||
}
|
||||
}
|
||||
|
@ -1003,40 +1053,55 @@ func funcHistogramQuantile(vals []parser.Value, args parser.Expressions, enh *Ev
|
|||
|
||||
// === resets(Matrix parser.ValueTypeMatrix) Vector ===
|
||||
func funcResets(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) Vector {
|
||||
samples := vals[0].(Matrix)[0]
|
||||
|
||||
floats := vals[0].(Matrix)[0].Floats
|
||||
histograms := vals[0].(Matrix)[0].Histograms
|
||||
resets := 0
|
||||
prev := samples.Points[0].V
|
||||
for _, sample := range samples.Points[1:] {
|
||||
current := sample.V
|
||||
if current < prev {
|
||||
resets++
|
||||
|
||||
if len(floats) > 1 {
|
||||
prev := floats[0].F
|
||||
for _, sample := range floats[1:] {
|
||||
current := sample.F
|
||||
if current < prev {
|
||||
resets++
|
||||
}
|
||||
prev = current
|
||||
}
|
||||
prev = current
|
||||
}
|
||||
|
||||
return append(enh.Out, Sample{
|
||||
Point: Point{V: float64(resets)},
|
||||
})
|
||||
if len(histograms) > 1 {
|
||||
prev := histograms[0].H
|
||||
for _, sample := range histograms[1:] {
|
||||
current := sample.H
|
||||
if current.DetectReset(prev) {
|
||||
resets++
|
||||
}
|
||||
prev = current
|
||||
}
|
||||
}
|
||||
|
||||
return append(enh.Out, Sample{F: float64(resets)})
|
||||
}
|
||||
|
||||
// === changes(Matrix parser.ValueTypeMatrix) Vector ===
|
||||
func funcChanges(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) Vector {
|
||||
samples := vals[0].(Matrix)[0]
|
||||
|
||||
floats := vals[0].(Matrix)[0].Floats
|
||||
changes := 0
|
||||
prev := samples.Points[0].V
|
||||
for _, sample := range samples.Points[1:] {
|
||||
current := sample.V
|
||||
|
||||
if len(floats) == 0 {
|
||||
// TODO(beorn7): Only histogram values, still need to add support.
|
||||
return enh.Out
|
||||
}
|
||||
|
||||
prev := floats[0].F
|
||||
for _, sample := range floats[1:] {
|
||||
current := sample.F
|
||||
if current != prev && !(math.IsNaN(current) && math.IsNaN(prev)) {
|
||||
changes++
|
||||
}
|
||||
prev = current
|
||||
}
|
||||
|
||||
return append(enh.Out, Sample{
|
||||
Point: Point{V: float64(changes)},
|
||||
})
|
||||
return append(enh.Out, Sample{F: float64(changes)})
|
||||
}
|
||||
|
||||
// === label_replace(Vector parser.ValueTypeVector, dst_label, replacement, src_labelname, regex parser.ValueTypeString) Vector ===
|
||||
|
@ -1087,7 +1152,8 @@ func funcLabelReplace(vals []parser.Value, args parser.Expressions, enh *EvalNod
|
|||
|
||||
enh.Out = append(enh.Out, Sample{
|
||||
Metric: outMetric,
|
||||
Point: Point{V: el.Point.V},
|
||||
F: el.F,
|
||||
H: el.H,
|
||||
})
|
||||
}
|
||||
return enh.Out
|
||||
|
@ -1098,7 +1164,7 @@ func funcVector(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelpe
|
|||
return append(enh.Out,
|
||||
Sample{
|
||||
Metric: labels.Labels{},
|
||||
Point: Point{V: vals[0].(Vector)[0].V},
|
||||
F: vals[0].(Vector)[0].F,
|
||||
})
|
||||
}
|
||||
|
||||
|
@ -1154,7 +1220,8 @@ func funcLabelJoin(vals []parser.Value, args parser.Expressions, enh *EvalNodeHe
|
|||
|
||||
enh.Out = append(enh.Out, Sample{
|
||||
Metric: outMetric,
|
||||
Point: Point{V: el.Point.V},
|
||||
F: el.F,
|
||||
H: el.H,
|
||||
})
|
||||
}
|
||||
return enh.Out
|
||||
|
@ -1166,15 +1233,15 @@ func dateWrapper(vals []parser.Value, enh *EvalNodeHelper, f func(time.Time) flo
|
|||
return append(enh.Out,
|
||||
Sample{
|
||||
Metric: labels.Labels{},
|
||||
Point: Point{V: f(time.Unix(enh.Ts/1000, 0).UTC())},
|
||||
F: f(time.Unix(enh.Ts/1000, 0).UTC()),
|
||||
})
|
||||
}
|
||||
|
||||
for _, el := range vals[0].(Vector) {
|
||||
t := time.Unix(int64(el.V), 0).UTC()
|
||||
t := time.Unix(int64(el.F), 0).UTC()
|
||||
enh.Out = append(enh.Out, Sample{
|
||||
Metric: enh.DropMetricName(el.Metric),
|
||||
Point: Point{V: f(t)},
|
||||
F: f(t),
|
||||
})
|
||||
}
|
||||
return enh.Out
|
||||
|
@ -1332,10 +1399,20 @@ func (s vectorByValueHeap) Len() int {
|
|||
}
|
||||
|
||||
func (s vectorByValueHeap) Less(i, j int) bool {
|
||||
if math.IsNaN(s[i].V) {
|
||||
// We compare histograms based on their sum of observations.
|
||||
// TODO(beorn7): Is that what we want?
|
||||
vi, vj := s[i].F, s[j].F
|
||||
if s[i].H != nil {
|
||||
vi = s[i].H.Sum
|
||||
}
|
||||
if s[j].H != nil {
|
||||
vj = s[j].H.Sum
|
||||
}
|
||||
|
||||
if math.IsNaN(vi) {
|
||||
return true
|
||||
}
|
||||
return s[i].V < s[j].V
|
||||
return vi < vj
|
||||
}
|
||||
|
||||
func (s vectorByValueHeap) Swap(i, j int) {
|
||||
|
@ -1361,10 +1438,20 @@ func (s vectorByReverseValueHeap) Len() int {
|
|||
}
|
||||
|
||||
func (s vectorByReverseValueHeap) Less(i, j int) bool {
|
||||
if math.IsNaN(s[i].V) {
|
||||
// We compare histograms based on their sum of observations.
|
||||
// TODO(beorn7): Is that what we want?
|
||||
vi, vj := s[i].F, s[j].F
|
||||
if s[i].H != nil {
|
||||
vi = s[i].H.Sum
|
||||
}
|
||||
if s[j].H != nil {
|
||||
vj = s[j].H.Sum
|
||||
}
|
||||
|
||||
if math.IsNaN(vi) {
|
||||
return true
|
||||
}
|
||||
return s[i].V > s[j].V
|
||||
return vi > vj
|
||||
}
|
||||
|
||||
func (s vectorByReverseValueHeap) Swap(i, j int) {
|
||||
|
|
|
@ -64,7 +64,7 @@ func TestDeriv(t *testing.T) {
|
|||
|
||||
vec, _ := result.Vector()
|
||||
require.Equal(t, 1, len(vec), "Expected 1 result, got %d", len(vec))
|
||||
require.Equal(t, 0.0, vec[0].V, "Expected 0.0 as value, got %f", vec[0].V)
|
||||
require.Equal(t, 0.0, vec[0].F, "Expected 0.0 as value, got %f", vec[0].F)
|
||||
}
|
||||
|
||||
func TestFunctionList(t *testing.T) {
|
||||
|
|
|
@ -382,5 +382,5 @@ func quantile(q float64, values vectorByValueHeap) float64 {
|
|||
upperIndex := math.Min(n-1, lowerIndex+1)
|
||||
|
||||
weight := rank - math.Floor(rank)
|
||||
return values[int(lowerIndex)].V*(1-weight) + values[int(upperIndex)].V*weight
|
||||
return values[int(lowerIndex)].F*(1-weight) + values[int(upperIndex)].F*weight
|
||||
}
|
||||
|
|
|
@ -281,7 +281,7 @@ func (*evalCmd) testCmd() {}
|
|||
type loadCmd struct {
|
||||
gap time.Duration
|
||||
metrics map[uint64]labels.Labels
|
||||
defs map[uint64][]Point
|
||||
defs map[uint64][]FPoint
|
||||
exemplars map[uint64][]exemplar.Exemplar
|
||||
}
|
||||
|
||||
|
@ -289,7 +289,7 @@ func newLoadCmd(gap time.Duration) *loadCmd {
|
|||
return &loadCmd{
|
||||
gap: gap,
|
||||
metrics: map[uint64]labels.Labels{},
|
||||
defs: map[uint64][]Point{},
|
||||
defs: map[uint64][]FPoint{},
|
||||
exemplars: map[uint64][]exemplar.Exemplar{},
|
||||
}
|
||||
}
|
||||
|
@ -302,13 +302,13 @@ func (cmd loadCmd) String() string {
|
|||
func (cmd *loadCmd) set(m labels.Labels, vals ...parser.SequenceValue) {
|
||||
h := m.Hash()
|
||||
|
||||
samples := make([]Point, 0, len(vals))
|
||||
samples := make([]FPoint, 0, len(vals))
|
||||
ts := testStartTime
|
||||
for _, v := range vals {
|
||||
if !v.Omitted {
|
||||
samples = append(samples, Point{
|
||||
samples = append(samples, FPoint{
|
||||
T: ts.UnixNano() / int64(time.Millisecond/time.Nanosecond),
|
||||
V: v.Value,
|
||||
F: v.Value,
|
||||
})
|
||||
}
|
||||
ts = ts.Add(cmd.gap)
|
||||
|
@ -323,7 +323,7 @@ func (cmd *loadCmd) append(a storage.Appender) error {
|
|||
m := cmd.metrics[h]
|
||||
|
||||
for _, s := range smpls {
|
||||
if _, err := a.Append(0, m, s.T, s.V); err != nil {
|
||||
if _, err := a.Append(0, m, s.T, s.F); err != nil {
|
||||
return err
|
||||
}
|
||||
}
|
||||
|
@ -399,8 +399,8 @@ func (ev *evalCmd) compareResult(result parser.Value) error {
|
|||
if ev.ordered && exp.pos != pos+1 {
|
||||
return fmt.Errorf("expected metric %s with %v at position %d but was at %d", v.Metric, exp.vals, exp.pos, pos+1)
|
||||
}
|
||||
if !almostEqual(exp.vals[0].Value, v.V) {
|
||||
return fmt.Errorf("expected %v for %s but got %v", exp.vals[0].Value, v.Metric, v.V)
|
||||
if !almostEqual(exp.vals[0].Value, v.F) {
|
||||
return fmt.Errorf("expected %v for %s but got %v", exp.vals[0].Value, v.Metric, v.F)
|
||||
}
|
||||
|
||||
seen[fp] = true
|
||||
|
@ -409,7 +409,7 @@ func (ev *evalCmd) compareResult(result parser.Value) error {
|
|||
if !seen[fp] {
|
||||
fmt.Println("vector result", len(val), ev.expr)
|
||||
for _, ss := range val {
|
||||
fmt.Println(" ", ss.Metric, ss.Point)
|
||||
fmt.Println(" ", ss.Metric, ss.T, ss.F)
|
||||
}
|
||||
return fmt.Errorf("expected metric %s with %v not found", ev.metrics[fp], expVals)
|
||||
}
|
||||
|
@ -576,15 +576,15 @@ func (t *Test) exec(tc testCommand) error {
|
|||
mat := rangeRes.Value.(Matrix)
|
||||
vec := make(Vector, 0, len(mat))
|
||||
for _, series := range mat {
|
||||
for _, point := range series.Points {
|
||||
for _, point := range series.Floats {
|
||||
if point.T == timeMilliseconds(iq.evalTime) {
|
||||
vec = append(vec, Sample{Metric: series.Metric, Point: point})
|
||||
vec = append(vec, Sample{Metric: series.Metric, T: point.T, F: point.F})
|
||||
break
|
||||
}
|
||||
}
|
||||
}
|
||||
if _, ok := res.Value.(Scalar); ok {
|
||||
err = cmd.compareResult(Scalar{V: vec[0].Point.V})
|
||||
err = cmd.compareResult(Scalar{V: vec[0].F})
|
||||
} else {
|
||||
err = cmd.compareResult(vec)
|
||||
}
|
||||
|
@ -763,7 +763,7 @@ func (ll *LazyLoader) appendTill(ts int64) error {
|
|||
ll.loadCmd.defs[h] = smpls[i:]
|
||||
break
|
||||
}
|
||||
if _, err := app.Append(0, m, s.T, s.V); err != nil {
|
||||
if _, err := app.Append(0, m, s.T, s.F); err != nil {
|
||||
return err
|
||||
}
|
||||
if i == len(smpls)-1 {
|
||||
|
|
|
@ -47,8 +47,8 @@ func TestLazyLoader_WithSamplesTill(t *testing.T) {
|
|||
series: []Series{
|
||||
{
|
||||
Metric: labels.FromStrings("__name__", "metric1"),
|
||||
Points: []Point{
|
||||
{0, 1, nil}, {10000, 2, nil}, {20000, 3, nil}, {30000, 4, nil}, {40000, 5, nil},
|
||||
Floats: []FPoint{
|
||||
{0, 1}, {10000, 2}, {20000, 3}, {30000, 4}, {40000, 5},
|
||||
},
|
||||
},
|
||||
},
|
||||
|
@ -58,8 +58,8 @@ func TestLazyLoader_WithSamplesTill(t *testing.T) {
|
|||
series: []Series{
|
||||
{
|
||||
Metric: labels.FromStrings("__name__", "metric1"),
|
||||
Points: []Point{
|
||||
{0, 1, nil}, {10000, 2, nil}, {20000, 3, nil}, {30000, 4, nil}, {40000, 5, nil},
|
||||
Floats: []FPoint{
|
||||
{0, 1}, {10000, 2}, {20000, 3}, {30000, 4}, {40000, 5},
|
||||
},
|
||||
},
|
||||
},
|
||||
|
@ -69,8 +69,8 @@ func TestLazyLoader_WithSamplesTill(t *testing.T) {
|
|||
series: []Series{
|
||||
{
|
||||
Metric: labels.FromStrings("__name__", "metric1"),
|
||||
Points: []Point{
|
||||
{0, 1, nil}, {10000, 2, nil}, {20000, 3, nil}, {30000, 4, nil}, {40000, 5, nil}, {50000, 6, nil}, {60000, 7, nil},
|
||||
Floats: []FPoint{
|
||||
{0, 1}, {10000, 2}, {20000, 3}, {30000, 4}, {40000, 5}, {50000, 6}, {60000, 7},
|
||||
},
|
||||
},
|
||||
},
|
||||
|
@ -89,14 +89,14 @@ func TestLazyLoader_WithSamplesTill(t *testing.T) {
|
|||
series: []Series{
|
||||
{
|
||||
Metric: labels.FromStrings("__name__", "metric1"),
|
||||
Points: []Point{
|
||||
{0, 1, nil}, {10000, 1, nil}, {20000, 1, nil}, {30000, 1, nil}, {40000, 1, nil}, {50000, 1, nil},
|
||||
Floats: []FPoint{
|
||||
{0, 1}, {10000, 1}, {20000, 1}, {30000, 1}, {40000, 1}, {50000, 1},
|
||||
},
|
||||
},
|
||||
{
|
||||
Metric: labels.FromStrings("__name__", "metric2"),
|
||||
Points: []Point{
|
||||
{0, 1, nil}, {10000, 2, nil}, {20000, 3, nil}, {30000, 4, nil}, {40000, 5, nil}, {50000, 6, nil}, {60000, 7, nil}, {70000, 8, nil},
|
||||
Floats: []FPoint{
|
||||
{0, 1}, {10000, 2}, {20000, 3}, {30000, 4}, {40000, 5}, {50000, 6}, {60000, 7}, {70000, 8},
|
||||
},
|
||||
},
|
||||
},
|
||||
|
@ -146,7 +146,7 @@ func TestLazyLoader_WithSamplesTill(t *testing.T) {
|
|||
it := storageSeries.Iterator(nil)
|
||||
for it.Next() == chunkenc.ValFloat {
|
||||
t, v := it.At()
|
||||
got.Points = append(got.Points, Point{T: t, V: v})
|
||||
got.Floats = append(got.Floats, FPoint{T: t, F: v})
|
||||
}
|
||||
require.NoError(t, it.Err())
|
||||
|
||||
|
|
243
promql/value.go
243
promql/value.go
|
@ -17,6 +17,7 @@ import (
|
|||
"encoding/json"
|
||||
"errors"
|
||||
"fmt"
|
||||
"math"
|
||||
"strconv"
|
||||
"strings"
|
||||
|
||||
|
@ -64,76 +65,72 @@ func (s Scalar) MarshalJSON() ([]byte, error) {
|
|||
|
||||
// Series is a stream of data points belonging to a metric.
|
||||
type Series struct {
|
||||
Metric labels.Labels
|
||||
Points []Point
|
||||
Metric labels.Labels `json:"metric"`
|
||||
Floats []FPoint `json:"values,omitempty"`
|
||||
Histograms []HPoint `json:"histograms,omitempty"`
|
||||
}
|
||||
|
||||
func (s Series) String() string {
|
||||
vals := make([]string, len(s.Points))
|
||||
for i, v := range s.Points {
|
||||
vals[i] = v.String()
|
||||
// TODO(beorn7): This currently renders floats first and then
|
||||
// histograms, each sorted by timestamp. Maybe, in mixed series, that's
|
||||
// fine. Maybe, however, primary sorting by timestamp is preferred, in
|
||||
// which case this has to be changed.
|
||||
vals := make([]string, 0, len(s.Floats)+len(s.Histograms))
|
||||
for _, f := range s.Floats {
|
||||
vals = append(vals, f.String())
|
||||
}
|
||||
for _, h := range s.Histograms {
|
||||
vals = append(vals, h.String())
|
||||
}
|
||||
return fmt.Sprintf("%s =>\n%s", s.Metric, strings.Join(vals, "\n"))
|
||||
}
|
||||
|
||||
// MarshalJSON is mirrored in web/api/v1/api.go for efficiency reasons.
|
||||
// This implementation is still provided for debug purposes and usage
|
||||
// without jsoniter.
|
||||
func (s Series) MarshalJSON() ([]byte, error) {
|
||||
// Note that this is rather inefficient because it re-creates the whole
|
||||
// series, just separated by Histogram Points and Value Points. For API
|
||||
// purposes, there is a more efficient jsoniter implementation in
|
||||
// web/api/v1/api.go.
|
||||
series := struct {
|
||||
M labels.Labels `json:"metric"`
|
||||
V []Point `json:"values,omitempty"`
|
||||
H []Point `json:"histograms,omitempty"`
|
||||
}{
|
||||
M: s.Metric,
|
||||
}
|
||||
for _, p := range s.Points {
|
||||
if p.H == nil {
|
||||
series.V = append(series.V, p)
|
||||
continue
|
||||
}
|
||||
series.H = append(series.H, p)
|
||||
}
|
||||
return json.Marshal(series)
|
||||
}
|
||||
|
||||
// Point represents a single data point for a given timestamp.
|
||||
// If H is not nil, then this is a histogram point and only (T, H) is valid.
|
||||
// If H is nil, then only (T, V) is valid.
|
||||
type Point struct {
|
||||
// FPoint represents a single float data point for a given timestamp.
|
||||
type FPoint struct {
|
||||
T int64
|
||||
V float64
|
||||
H *histogram.FloatHistogram
|
||||
F float64
|
||||
}
|
||||
|
||||
func (p Point) String() string {
|
||||
var s string
|
||||
if p.H != nil {
|
||||
s = p.H.String()
|
||||
} else {
|
||||
s = strconv.FormatFloat(p.V, 'f', -1, 64)
|
||||
}
|
||||
func (p FPoint) String() string {
|
||||
s := strconv.FormatFloat(p.F, 'f', -1, 64)
|
||||
return fmt.Sprintf("%s @[%v]", s, p.T)
|
||||
}
|
||||
|
||||
// MarshalJSON implements json.Marshaler.
|
||||
//
|
||||
// JSON marshaling is only needed for the HTTP API. Since Point is such a
|
||||
// JSON marshaling is only needed for the HTTP API. Since FPoint is such a
|
||||
// frequently marshaled type, it gets an optimized treatment directly in
|
||||
// web/api/v1/api.go. Therefore, this method is unused within Prometheus. It is
|
||||
// still provided here as convenience for debugging and for other users of this
|
||||
// code. Also note that the different marshaling implementations might lead to
|
||||
// slightly different results in terms of formatting and rounding of the
|
||||
// timestamp.
|
||||
func (p Point) MarshalJSON() ([]byte, error) {
|
||||
if p.H == nil {
|
||||
v := strconv.FormatFloat(p.V, 'f', -1, 64)
|
||||
return json.Marshal([...]interface{}{float64(p.T) / 1000, v})
|
||||
}
|
||||
func (p FPoint) MarshalJSON() ([]byte, error) {
|
||||
v := strconv.FormatFloat(p.F, 'f', -1, 64)
|
||||
return json.Marshal([...]interface{}{float64(p.T) / 1000, v})
|
||||
}
|
||||
|
||||
// HPoint represents a single histogram data point for a given timestamp.
|
||||
// H must never be nil.
|
||||
type HPoint struct {
|
||||
T int64
|
||||
H *histogram.FloatHistogram
|
||||
}
|
||||
|
||||
func (p HPoint) String() string {
|
||||
return fmt.Sprintf("%s @[%v]", p.H.String(), p.T)
|
||||
}
|
||||
|
||||
// MarshalJSON implements json.Marshaler.
|
||||
//
|
||||
// JSON marshaling is only needed for the HTTP API. Since HPoint is such a
|
||||
// frequently marshaled type, it gets an optimized treatment directly in
|
||||
// web/api/v1/api.go. Therefore, this method is unused within Prometheus. It is
|
||||
// still provided here as convenience for debugging and for other users of this
|
||||
// code. Also note that the different marshaling implementations might lead to
|
||||
// slightly different results in terms of formatting and rounding of the
|
||||
// timestamp.
|
||||
func (p HPoint) MarshalJSON() ([]byte, error) {
|
||||
h := struct {
|
||||
Count string `json:"count"`
|
||||
Sum string `json:"sum"`
|
||||
|
@ -171,42 +168,54 @@ func (p Point) MarshalJSON() ([]byte, error) {
|
|||
return json.Marshal([...]interface{}{float64(p.T) / 1000, h})
|
||||
}
|
||||
|
||||
// Sample is a single sample belonging to a metric.
|
||||
// Sample is a single sample belonging to a metric. It represents either a float
|
||||
// sample or a histogram sample. If H is nil, it is a float sample. Otherwise,
|
||||
// it is a histogram sample.
|
||||
type Sample struct {
|
||||
Point
|
||||
T int64
|
||||
F float64
|
||||
H *histogram.FloatHistogram
|
||||
|
||||
Metric labels.Labels
|
||||
}
|
||||
|
||||
func (s Sample) String() string {
|
||||
return fmt.Sprintf("%s => %s", s.Metric, s.Point)
|
||||
var str string
|
||||
if s.H == nil {
|
||||
p := FPoint{T: s.T, F: s.F}
|
||||
str = p.String()
|
||||
} else {
|
||||
p := HPoint{T: s.T, H: s.H}
|
||||
str = p.String()
|
||||
}
|
||||
return fmt.Sprintf("%s => %s", s.Metric, str)
|
||||
}
|
||||
|
||||
// MarshalJSON is mirrored in web/api/v1/api.go with jsoniter because Point
|
||||
// wouldn't be marshaled with jsoniter in all cases otherwise.
|
||||
// MarshalJSON is mirrored in web/api/v1/api.go with jsoniter because FPoint and
|
||||
// HPoint wouldn't be marshaled with jsoniter otherwise.
|
||||
func (s Sample) MarshalJSON() ([]byte, error) {
|
||||
if s.Point.H == nil {
|
||||
v := struct {
|
||||
if s.H == nil {
|
||||
f := struct {
|
||||
M labels.Labels `json:"metric"`
|
||||
V Point `json:"value"`
|
||||
F FPoint `json:"value"`
|
||||
}{
|
||||
M: s.Metric,
|
||||
V: s.Point,
|
||||
F: FPoint{T: s.T, F: s.F},
|
||||
}
|
||||
return json.Marshal(v)
|
||||
return json.Marshal(f)
|
||||
}
|
||||
h := struct {
|
||||
M labels.Labels `json:"metric"`
|
||||
H Point `json:"histogram"`
|
||||
H HPoint `json:"histogram"`
|
||||
}{
|
||||
M: s.Metric,
|
||||
H: s.Point,
|
||||
H: HPoint{T: s.T, H: s.H},
|
||||
}
|
||||
return json.Marshal(h)
|
||||
}
|
||||
|
||||
// Vector is basically only an alias for model.Samples, but the
|
||||
// contract is that in a Vector, all Samples have the same timestamp.
|
||||
// Vector is basically only an an alias for []Sample, but the contract is that
|
||||
// in a Vector, all Samples have the same timestamp.
|
||||
type Vector []Sample
|
||||
|
||||
func (vec Vector) String() string {
|
||||
|
@ -258,7 +267,7 @@ func (m Matrix) String() string {
|
|||
func (m Matrix) TotalSamples() int {
|
||||
numSamples := 0
|
||||
for _, series := range m {
|
||||
numSamples += len(series.Points)
|
||||
numSamples += len(series.Floats) + len(series.Histograms)
|
||||
}
|
||||
return numSamples
|
||||
}
|
||||
|
@ -362,7 +371,8 @@ func (ss *StorageSeries) Labels() labels.Labels {
|
|||
return ss.series.Metric
|
||||
}
|
||||
|
||||
// Iterator returns a new iterator of the data of the series.
|
||||
// Iterator returns a new iterator of the data of the series. In case of
|
||||
// multiple samples with the same timestamp, it returns the float samples first.
|
||||
func (ss *StorageSeries) Iterator(it chunkenc.Iterator) chunkenc.Iterator {
|
||||
if ssi, ok := it.(*storageSeriesIterator); ok {
|
||||
ssi.reset(ss.series)
|
||||
|
@ -372,44 +382,51 @@ func (ss *StorageSeries) Iterator(it chunkenc.Iterator) chunkenc.Iterator {
|
|||
}
|
||||
|
||||
type storageSeriesIterator struct {
|
||||
points []Point
|
||||
curr int
|
||||
floats []FPoint
|
||||
histograms []HPoint
|
||||
iFloats, iHistograms int
|
||||
currT int64
|
||||
currF float64
|
||||
currH *histogram.FloatHistogram
|
||||
}
|
||||
|
||||
func newStorageSeriesIterator(series Series) *storageSeriesIterator {
|
||||
return &storageSeriesIterator{
|
||||
points: series.Points,
|
||||
curr: -1,
|
||||
floats: series.Floats,
|
||||
histograms: series.Histograms,
|
||||
iFloats: -1,
|
||||
iHistograms: 0,
|
||||
currT: math.MinInt64,
|
||||
}
|
||||
}
|
||||
|
||||
func (ssi *storageSeriesIterator) reset(series Series) {
|
||||
ssi.points = series.Points
|
||||
ssi.curr = -1
|
||||
ssi.floats = series.Floats
|
||||
ssi.histograms = series.Histograms
|
||||
ssi.iFloats = -1
|
||||
ssi.iHistograms = 0
|
||||
ssi.currT = math.MinInt64
|
||||
ssi.currF = 0
|
||||
ssi.currH = nil
|
||||
}
|
||||
|
||||
func (ssi *storageSeriesIterator) Seek(t int64) chunkenc.ValueType {
|
||||
i := ssi.curr
|
||||
if i < 0 {
|
||||
i = 0
|
||||
if ssi.iFloats >= len(ssi.floats) && ssi.iHistograms >= len(ssi.histograms) {
|
||||
return chunkenc.ValNone
|
||||
}
|
||||
for ; i < len(ssi.points); i++ {
|
||||
p := ssi.points[i]
|
||||
if p.T >= t {
|
||||
ssi.curr = i
|
||||
if p.H != nil {
|
||||
return chunkenc.ValFloatHistogram
|
||||
}
|
||||
return chunkenc.ValFloat
|
||||
for ssi.currT < t {
|
||||
if ssi.Next() == chunkenc.ValNone {
|
||||
return chunkenc.ValNone
|
||||
}
|
||||
}
|
||||
ssi.curr = len(ssi.points) - 1
|
||||
return chunkenc.ValNone
|
||||
if ssi.currH != nil {
|
||||
return chunkenc.ValFloatHistogram
|
||||
}
|
||||
return chunkenc.ValFloat
|
||||
}
|
||||
|
||||
func (ssi *storageSeriesIterator) At() (t int64, v float64) {
|
||||
p := ssi.points[ssi.curr]
|
||||
return p.T, p.V
|
||||
return ssi.currT, ssi.currF
|
||||
}
|
||||
|
||||
func (ssi *storageSeriesIterator) AtHistogram() (int64, *histogram.Histogram) {
|
||||
|
@ -417,25 +434,59 @@ func (ssi *storageSeriesIterator) AtHistogram() (int64, *histogram.Histogram) {
|
|||
}
|
||||
|
||||
func (ssi *storageSeriesIterator) AtFloatHistogram() (int64, *histogram.FloatHistogram) {
|
||||
p := ssi.points[ssi.curr]
|
||||
return p.T, p.H
|
||||
return ssi.currT, ssi.currH
|
||||
}
|
||||
|
||||
func (ssi *storageSeriesIterator) AtT() int64 {
|
||||
p := ssi.points[ssi.curr]
|
||||
return p.T
|
||||
return ssi.currT
|
||||
}
|
||||
|
||||
func (ssi *storageSeriesIterator) Next() chunkenc.ValueType {
|
||||
ssi.curr++
|
||||
if ssi.curr >= len(ssi.points) {
|
||||
return chunkenc.ValNone
|
||||
if ssi.currH != nil {
|
||||
ssi.iHistograms++
|
||||
} else {
|
||||
ssi.iFloats++
|
||||
}
|
||||
p := ssi.points[ssi.curr]
|
||||
if p.H != nil {
|
||||
var (
|
||||
pickH, pickF = false, false
|
||||
floatsExhausted = ssi.iFloats >= len(ssi.floats)
|
||||
histogramsExhausted = ssi.iHistograms >= len(ssi.histograms)
|
||||
)
|
||||
|
||||
switch {
|
||||
case floatsExhausted:
|
||||
if histogramsExhausted { // Both exhausted!
|
||||
return chunkenc.ValNone
|
||||
}
|
||||
pickH = true
|
||||
case histogramsExhausted: // and floats not exhausted.
|
||||
pickF = true
|
||||
// From here on, we have to look at timestamps.
|
||||
case ssi.histograms[ssi.iHistograms].T < ssi.floats[ssi.iFloats].T:
|
||||
// Next histogram comes before next float.
|
||||
pickH = true
|
||||
default:
|
||||
// In all other cases, we pick float so that we first iterate
|
||||
// through floats if the timestamp is the same.
|
||||
pickF = true
|
||||
}
|
||||
|
||||
switch {
|
||||
case pickF:
|
||||
p := ssi.floats[ssi.iFloats]
|
||||
ssi.currT = p.T
|
||||
ssi.currF = p.F
|
||||
ssi.currH = nil
|
||||
return chunkenc.ValFloat
|
||||
case pickH:
|
||||
p := ssi.histograms[ssi.iHistograms]
|
||||
ssi.currT = p.T
|
||||
ssi.currF = 0
|
||||
ssi.currH = p.H
|
||||
return chunkenc.ValFloatHistogram
|
||||
default:
|
||||
panic("storageSeriesIterater.Next failed to pick value type")
|
||||
}
|
||||
return chunkenc.ValFloat
|
||||
}
|
||||
|
||||
func (ssi *storageSeriesIterator) Err() error {
|
||||
|
|
|
@ -235,7 +235,8 @@ func (r *AlertingRule) sample(alert *Alert, ts time.Time) promql.Sample {
|
|||
|
||||
s := promql.Sample{
|
||||
Metric: lb.Labels(),
|
||||
Point: promql.Point{T: timestamp.FromTime(ts), V: 1},
|
||||
T: timestamp.FromTime(ts),
|
||||
F: 1,
|
||||
}
|
||||
return s
|
||||
}
|
||||
|
@ -253,7 +254,8 @@ func (r *AlertingRule) forStateSample(alert *Alert, ts time.Time, v float64) pro
|
|||
|
||||
s := promql.Sample{
|
||||
Metric: lb.Labels(),
|
||||
Point: promql.Point{T: timestamp.FromTime(ts), V: v},
|
||||
T: timestamp.FromTime(ts),
|
||||
F: v,
|
||||
}
|
||||
return s
|
||||
}
|
||||
|
@ -339,7 +341,7 @@ func (r *AlertingRule) Eval(ctx context.Context, ts time.Time, query QueryFunc,
|
|||
// Provide the alert information to the template.
|
||||
l := smpl.Metric.Map()
|
||||
|
||||
tmplData := template.AlertTemplateData(l, r.externalLabels, r.externalURL, smpl.V)
|
||||
tmplData := template.AlertTemplateData(l, r.externalLabels, r.externalURL, smpl.F)
|
||||
// Inject some convenience variables that are easier to remember for users
|
||||
// who are not used to Go's templating system.
|
||||
defs := []string{
|
||||
|
@ -394,7 +396,7 @@ func (r *AlertingRule) Eval(ctx context.Context, ts time.Time, query QueryFunc,
|
|||
Annotations: annotations,
|
||||
ActiveAt: ts,
|
||||
State: StatePending,
|
||||
Value: smpl.V,
|
||||
Value: smpl.F,
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -109,7 +109,7 @@ func TestAlertingRuleLabelsUpdate(t *testing.T) {
|
|||
"job", "app-server",
|
||||
"severity", "critical",
|
||||
),
|
||||
Point: promql.Point{V: 1},
|
||||
F: 1,
|
||||
},
|
||||
},
|
||||
{
|
||||
|
@ -122,7 +122,7 @@ func TestAlertingRuleLabelsUpdate(t *testing.T) {
|
|||
"job", "app-server",
|
||||
"severity", "warning",
|
||||
),
|
||||
Point: promql.Point{V: 1},
|
||||
F: 1,
|
||||
},
|
||||
},
|
||||
{
|
||||
|
@ -135,7 +135,7 @@ func TestAlertingRuleLabelsUpdate(t *testing.T) {
|
|||
"job", "app-server",
|
||||
"severity", "critical",
|
||||
),
|
||||
Point: promql.Point{V: 1},
|
||||
F: 1,
|
||||
},
|
||||
},
|
||||
{
|
||||
|
@ -148,7 +148,7 @@ func TestAlertingRuleLabelsUpdate(t *testing.T) {
|
|||
"job", "app-server",
|
||||
"severity", "critical",
|
||||
),
|
||||
Point: promql.Point{V: 1},
|
||||
F: 1,
|
||||
},
|
||||
},
|
||||
}
|
||||
|
@ -157,7 +157,7 @@ func TestAlertingRuleLabelsUpdate(t *testing.T) {
|
|||
for i, result := range results {
|
||||
t.Logf("case %d", i)
|
||||
evalTime := baseTime.Add(time.Duration(i) * time.Minute)
|
||||
result[0].Point.T = timestamp.FromTime(evalTime)
|
||||
result[0].T = timestamp.FromTime(evalTime)
|
||||
res, err := rule.Eval(suite.Context(), evalTime, EngineQueryFunc(suite.QueryEngine(), suite.Storage()), nil, 0)
|
||||
require.NoError(t, err)
|
||||
|
||||
|
@ -225,7 +225,7 @@ func TestAlertingRuleExternalLabelsInTemplate(t *testing.T) {
|
|||
"job", "app-server",
|
||||
"templated_label", "There are 0 external Labels, of which foo is .",
|
||||
),
|
||||
Point: promql.Point{V: 1},
|
||||
F: 1,
|
||||
},
|
||||
promql.Sample{
|
||||
Metric: labels.FromStrings(
|
||||
|
@ -236,13 +236,13 @@ func TestAlertingRuleExternalLabelsInTemplate(t *testing.T) {
|
|||
"job", "app-server",
|
||||
"templated_label", "There are 2 external Labels, of which foo is bar.",
|
||||
),
|
||||
Point: promql.Point{V: 1},
|
||||
F: 1,
|
||||
},
|
||||
}
|
||||
|
||||
evalTime := time.Unix(0, 0)
|
||||
result[0].Point.T = timestamp.FromTime(evalTime)
|
||||
result[1].Point.T = timestamp.FromTime(evalTime)
|
||||
result[0].T = timestamp.FromTime(evalTime)
|
||||
result[1].T = timestamp.FromTime(evalTime)
|
||||
|
||||
var filteredRes promql.Vector // After removing 'ALERTS_FOR_STATE' samples.
|
||||
res, err := ruleWithoutExternalLabels.Eval(
|
||||
|
@ -321,7 +321,7 @@ func TestAlertingRuleExternalURLInTemplate(t *testing.T) {
|
|||
"job", "app-server",
|
||||
"templated_label", "The external URL is .",
|
||||
),
|
||||
Point: promql.Point{V: 1},
|
||||
F: 1,
|
||||
},
|
||||
promql.Sample{
|
||||
Metric: labels.FromStrings(
|
||||
|
@ -332,13 +332,13 @@ func TestAlertingRuleExternalURLInTemplate(t *testing.T) {
|
|||
"job", "app-server",
|
||||
"templated_label", "The external URL is http://localhost:1234.",
|
||||
),
|
||||
Point: promql.Point{V: 1},
|
||||
F: 1,
|
||||
},
|
||||
}
|
||||
|
||||
evalTime := time.Unix(0, 0)
|
||||
result[0].Point.T = timestamp.FromTime(evalTime)
|
||||
result[1].Point.T = timestamp.FromTime(evalTime)
|
||||
result[0].T = timestamp.FromTime(evalTime)
|
||||
result[1].T = timestamp.FromTime(evalTime)
|
||||
|
||||
var filteredRes promql.Vector // After removing 'ALERTS_FOR_STATE' samples.
|
||||
res, err := ruleWithoutExternalURL.Eval(
|
||||
|
@ -405,12 +405,12 @@ func TestAlertingRuleEmptyLabelFromTemplate(t *testing.T) {
|
|||
"instance", "0",
|
||||
"job", "app-server",
|
||||
),
|
||||
Point: promql.Point{V: 1},
|
||||
F: 1,
|
||||
},
|
||||
}
|
||||
|
||||
evalTime := time.Unix(0, 0)
|
||||
result[0].Point.T = timestamp.FromTime(evalTime)
|
||||
result[0].T = timestamp.FromTime(evalTime)
|
||||
|
||||
var filteredRes promql.Vector // After removing 'ALERTS_FOR_STATE' samples.
|
||||
res, err := rule.Eval(
|
||||
|
@ -760,7 +760,7 @@ func TestKeepFiringFor(t *testing.T) {
|
|||
"instance", "0",
|
||||
"job", "app-server",
|
||||
),
|
||||
Point: promql.Point{V: 1},
|
||||
F: 1,
|
||||
},
|
||||
},
|
||||
{
|
||||
|
@ -772,7 +772,7 @@ func TestKeepFiringFor(t *testing.T) {
|
|||
"instance", "0",
|
||||
"job", "app-server",
|
||||
),
|
||||
Point: promql.Point{V: 1},
|
||||
F: 1,
|
||||
},
|
||||
},
|
||||
{
|
||||
|
@ -784,7 +784,7 @@ func TestKeepFiringFor(t *testing.T) {
|
|||
"instance", "0",
|
||||
"job", "app-server",
|
||||
),
|
||||
Point: promql.Point{V: 1},
|
||||
F: 1,
|
||||
},
|
||||
},
|
||||
{
|
||||
|
@ -796,7 +796,7 @@ func TestKeepFiringFor(t *testing.T) {
|
|||
"instance", "0",
|
||||
"job", "app-server",
|
||||
),
|
||||
Point: promql.Point{V: 1},
|
||||
F: 1,
|
||||
},
|
||||
},
|
||||
// From now on the alert should keep firing.
|
||||
|
@ -809,7 +809,7 @@ func TestKeepFiringFor(t *testing.T) {
|
|||
"instance", "0",
|
||||
"job", "app-server",
|
||||
),
|
||||
Point: promql.Point{V: 1},
|
||||
F: 1,
|
||||
},
|
||||
},
|
||||
}
|
||||
|
@ -818,7 +818,7 @@ func TestKeepFiringFor(t *testing.T) {
|
|||
for i, result := range results {
|
||||
t.Logf("case %d", i)
|
||||
evalTime := baseTime.Add(time.Duration(i) * time.Minute)
|
||||
result[0].Point.T = timestamp.FromTime(evalTime)
|
||||
result[0].T = timestamp.FromTime(evalTime)
|
||||
res, err := rule.Eval(suite.Context(), evalTime, EngineQueryFunc(suite.QueryEngine(), suite.Storage()), nil, 0)
|
||||
require.NoError(t, err)
|
||||
|
||||
|
@ -871,11 +871,11 @@ func TestPendingAndKeepFiringFor(t *testing.T) {
|
|||
"instance", "0",
|
||||
"job", "app-server",
|
||||
),
|
||||
Point: promql.Point{V: 1},
|
||||
F: 1,
|
||||
}
|
||||
|
||||
baseTime := time.Unix(0, 0)
|
||||
result.Point.T = timestamp.FromTime(baseTime)
|
||||
result.T = timestamp.FromTime(baseTime)
|
||||
res, err := rule.Eval(suite.Context(), baseTime, EngineQueryFunc(suite.QueryEngine(), suite.Storage()), nil, 0)
|
||||
require.NoError(t, err)
|
||||
|
||||
|
|
|
@ -202,7 +202,8 @@ func EngineQueryFunc(engine *promql.Engine, q storage.Queryable) QueryFunc {
|
|||
return v, nil
|
||||
case promql.Scalar:
|
||||
return promql.Vector{promql.Sample{
|
||||
Point: promql.Point{T: v.T, V: v.V},
|
||||
T: v.T,
|
||||
F: v.V,
|
||||
Metric: labels.Labels{},
|
||||
}}, nil
|
||||
default:
|
||||
|
@ -695,7 +696,7 @@ func (g *Group) Eval(ctx context.Context, ts time.Time) {
|
|||
if s.H != nil {
|
||||
_, err = app.AppendHistogram(0, s.Metric, s.T, nil, s.H)
|
||||
} else {
|
||||
_, err = app.Append(0, s.Metric, s.T, s.V)
|
||||
_, err = app.Append(0, s.Metric, s.T, s.F)
|
||||
}
|
||||
|
||||
if err != nil {
|
||||
|
|
|
@ -80,7 +80,7 @@ func TestAlertingRule(t *testing.T) {
|
|||
"job", "app-server",
|
||||
"severity", "critical",
|
||||
),
|
||||
Point: promql.Point{V: 1},
|
||||
F: 1,
|
||||
},
|
||||
promql.Sample{
|
||||
Metric: labels.FromStrings(
|
||||
|
@ -92,7 +92,7 @@ func TestAlertingRule(t *testing.T) {
|
|||
"job", "app-server",
|
||||
"severity", "critical",
|
||||
),
|
||||
Point: promql.Point{V: 1},
|
||||
F: 1,
|
||||
},
|
||||
promql.Sample{
|
||||
Metric: labels.FromStrings(
|
||||
|
@ -104,7 +104,7 @@ func TestAlertingRule(t *testing.T) {
|
|||
"job", "app-server",
|
||||
"severity", "critical",
|
||||
),
|
||||
Point: promql.Point{V: 1},
|
||||
F: 1,
|
||||
},
|
||||
promql.Sample{
|
||||
Metric: labels.FromStrings(
|
||||
|
@ -116,7 +116,7 @@ func TestAlertingRule(t *testing.T) {
|
|||
"job", "app-server",
|
||||
"severity", "critical",
|
||||
),
|
||||
Point: promql.Point{V: 1},
|
||||
F: 1,
|
||||
},
|
||||
}
|
||||
|
||||
|
@ -223,7 +223,7 @@ func TestForStateAddSamples(t *testing.T) {
|
|||
"job", "app-server",
|
||||
"severity", "critical",
|
||||
),
|
||||
Point: promql.Point{V: 1},
|
||||
F: 1,
|
||||
},
|
||||
promql.Sample{
|
||||
Metric: labels.FromStrings(
|
||||
|
@ -234,7 +234,7 @@ func TestForStateAddSamples(t *testing.T) {
|
|||
"job", "app-server",
|
||||
"severity", "critical",
|
||||
),
|
||||
Point: promql.Point{V: 1},
|
||||
F: 1,
|
||||
},
|
||||
promql.Sample{
|
||||
Metric: labels.FromStrings(
|
||||
|
@ -245,7 +245,7 @@ func TestForStateAddSamples(t *testing.T) {
|
|||
"job", "app-server",
|
||||
"severity", "critical",
|
||||
),
|
||||
Point: promql.Point{V: 1},
|
||||
F: 1,
|
||||
},
|
||||
promql.Sample{
|
||||
Metric: labels.FromStrings(
|
||||
|
@ -256,7 +256,7 @@ func TestForStateAddSamples(t *testing.T) {
|
|||
"job", "app-server",
|
||||
"severity", "critical",
|
||||
),
|
||||
Point: promql.Point{V: 1},
|
||||
F: 1,
|
||||
},
|
||||
}
|
||||
|
||||
|
@ -327,8 +327,8 @@ func TestForStateAddSamples(t *testing.T) {
|
|||
for i := range test.result {
|
||||
test.result[i].T = timestamp.FromTime(evalTime)
|
||||
// Updating the expected 'for' state.
|
||||
if test.result[i].V >= 0 {
|
||||
test.result[i].V = forState
|
||||
if test.result[i].F >= 0 {
|
||||
test.result[i].F = forState
|
||||
}
|
||||
}
|
||||
require.Equal(t, len(test.result), len(filteredRes), "%d. Number of samples in expected and actual output don't match (%d vs. %d)", i, len(test.result), len(res))
|
||||
|
@ -584,29 +584,29 @@ func TestStaleness(t *testing.T) {
|
|||
metricSample, ok := samples[metric]
|
||||
|
||||
require.True(t, ok, "Series %s not returned.", metric)
|
||||
require.True(t, value.IsStaleNaN(metricSample[2].V), "Appended second sample not as expected. Wanted: stale NaN Got: %x", math.Float64bits(metricSample[2].V))
|
||||
metricSample[2].V = 42 // require.Equal cannot handle NaN.
|
||||
require.True(t, value.IsStaleNaN(metricSample[2].F), "Appended second sample not as expected. Wanted: stale NaN Got: %x", math.Float64bits(metricSample[2].F))
|
||||
metricSample[2].F = 42 // require.Equal cannot handle NaN.
|
||||
|
||||
want := map[string][]promql.Point{
|
||||
metric: {{T: 0, V: 2}, {T: 1000, V: 3}, {T: 2000, V: 42}},
|
||||
want := map[string][]promql.FPoint{
|
||||
metric: {{T: 0, F: 2}, {T: 1000, F: 3}, {T: 2000, F: 42}},
|
||||
}
|
||||
|
||||
require.Equal(t, want, samples)
|
||||
}
|
||||
|
||||
// Convert a SeriesSet into a form usable with require.Equal.
|
||||
func readSeriesSet(ss storage.SeriesSet) (map[string][]promql.Point, error) {
|
||||
result := map[string][]promql.Point{}
|
||||
func readSeriesSet(ss storage.SeriesSet) (map[string][]promql.FPoint, error) {
|
||||
result := map[string][]promql.FPoint{}
|
||||
var it chunkenc.Iterator
|
||||
|
||||
for ss.Next() {
|
||||
series := ss.At()
|
||||
|
||||
points := []promql.Point{}
|
||||
points := []promql.FPoint{}
|
||||
it := series.Iterator(it)
|
||||
for it.Next() == chunkenc.ValFloat {
|
||||
t, v := it.At()
|
||||
points = append(points, promql.Point{T: t, V: v})
|
||||
points = append(points, promql.FPoint{T: t, F: v})
|
||||
}
|
||||
|
||||
name := series.Labels().String()
|
||||
|
@ -707,7 +707,7 @@ func TestDeletedRuleMarkedStale(t *testing.T) {
|
|||
metricSample, ok := samples[metric]
|
||||
|
||||
require.True(t, ok, "Series %s not returned.", metric)
|
||||
require.True(t, value.IsStaleNaN(metricSample[0].V), "Appended sample not as expected. Wanted: stale NaN Got: %x", math.Float64bits(metricSample[0].V))
|
||||
require.True(t, value.IsStaleNaN(metricSample[0].F), "Appended sample not as expected. Wanted: stale NaN Got: %x", math.Float64bits(metricSample[0].F))
|
||||
}
|
||||
|
||||
func TestUpdate(t *testing.T) {
|
||||
|
@ -1134,7 +1134,7 @@ func countStaleNaN(t *testing.T, st storage.Storage) int {
|
|||
|
||||
require.True(t, ok, "Series %s not returned.", metric)
|
||||
for _, s := range metricSample {
|
||||
if value.IsStaleNaN(s.V) {
|
||||
if value.IsStaleNaN(s.F) {
|
||||
c++
|
||||
}
|
||||
}
|
||||
|
|
|
@ -46,11 +46,13 @@ var ruleEvalTestScenarios = []struct {
|
|||
expected: promql.Vector{
|
||||
promql.Sample{
|
||||
Metric: labels.FromStrings("__name__", "test_rule", "label_a", "1", "label_b", "3"),
|
||||
Point: promql.Point{V: 1, T: timestamp.FromTime(ruleEvaluationTime)},
|
||||
F: 1,
|
||||
T: timestamp.FromTime(ruleEvaluationTime),
|
||||
},
|
||||
promql.Sample{
|
||||
Metric: labels.FromStrings("__name__", "test_rule", "label_a", "2", "label_b", "4"),
|
||||
Point: promql.Point{V: 10, T: timestamp.FromTime(ruleEvaluationTime)},
|
||||
F: 10,
|
||||
T: timestamp.FromTime(ruleEvaluationTime),
|
||||
},
|
||||
},
|
||||
},
|
||||
|
@ -61,11 +63,13 @@ var ruleEvalTestScenarios = []struct {
|
|||
expected: promql.Vector{
|
||||
promql.Sample{
|
||||
Metric: labels.FromStrings("__name__", "test_rule", "label_a", "1", "label_b", "3", "extra_from_rule", "foo"),
|
||||
Point: promql.Point{V: 1, T: timestamp.FromTime(ruleEvaluationTime)},
|
||||
F: 1,
|
||||
T: timestamp.FromTime(ruleEvaluationTime),
|
||||
},
|
||||
promql.Sample{
|
||||
Metric: labels.FromStrings("__name__", "test_rule", "label_a", "2", "label_b", "4", "extra_from_rule", "foo"),
|
||||
Point: promql.Point{V: 10, T: timestamp.FromTime(ruleEvaluationTime)},
|
||||
F: 10,
|
||||
T: timestamp.FromTime(ruleEvaluationTime),
|
||||
},
|
||||
},
|
||||
},
|
||||
|
@ -76,11 +80,13 @@ var ruleEvalTestScenarios = []struct {
|
|||
expected: promql.Vector{
|
||||
promql.Sample{
|
||||
Metric: labels.FromStrings("__name__", "test_rule", "label_a", "from_rule", "label_b", "3"),
|
||||
Point: promql.Point{V: 1, T: timestamp.FromTime(ruleEvaluationTime)},
|
||||
F: 1,
|
||||
T: timestamp.FromTime(ruleEvaluationTime),
|
||||
},
|
||||
promql.Sample{
|
||||
Metric: labels.FromStrings("__name__", "test_rule", "label_a", "from_rule", "label_b", "4"),
|
||||
Point: promql.Point{V: 10, T: timestamp.FromTime(ruleEvaluationTime)},
|
||||
F: 10,
|
||||
T: timestamp.FromTime(ruleEvaluationTime),
|
||||
},
|
||||
},
|
||||
},
|
||||
|
@ -91,11 +97,13 @@ var ruleEvalTestScenarios = []struct {
|
|||
expected: promql.Vector{
|
||||
promql.Sample{
|
||||
Metric: labels.FromStrings("__name__", "test_rule", "label_a", "1", "label_b", "3"),
|
||||
Point: promql.Point{V: 2, T: timestamp.FromTime(ruleEvaluationTime)},
|
||||
F: 2,
|
||||
T: timestamp.FromTime(ruleEvaluationTime),
|
||||
},
|
||||
promql.Sample{
|
||||
Metric: labels.FromStrings("__name__", "test_rule", "label_a", "2", "label_b", "4"),
|
||||
Point: promql.Point{V: 20, T: timestamp.FromTime(ruleEvaluationTime)},
|
||||
F: 20,
|
||||
T: timestamp.FromTime(ruleEvaluationTime),
|
||||
},
|
||||
},
|
||||
},
|
||||
|
|
|
@ -93,7 +93,7 @@ func query(ctx context.Context, q string, ts time.Time, queryFn QueryFunc) (quer
|
|||
result := make(queryResult, len(vector))
|
||||
for n, v := range vector {
|
||||
s := sample{
|
||||
Value: v.V,
|
||||
Value: v.F,
|
||||
Labels: v.Metric.Map(),
|
||||
}
|
||||
result[n] = &s
|
||||
|
|
|
@ -70,7 +70,7 @@ func TestTemplateExpansion(t *testing.T) {
|
|||
{
|
||||
text: "{{ query \"1.5\" | first | value }}",
|
||||
output: "1.5",
|
||||
queryResult: promql.Vector{{Point: promql.Point{T: 0, V: 1.5}}},
|
||||
queryResult: promql.Vector{{T: 0, F: 1.5}},
|
||||
},
|
||||
{
|
||||
// Get value from query.
|
||||
|
@ -78,7 +78,8 @@ func TestTemplateExpansion(t *testing.T) {
|
|||
queryResult: promql.Vector{
|
||||
{
|
||||
Metric: labels.FromStrings(labels.MetricName, "metric", "instance", "a"),
|
||||
Point: promql.Point{T: 0, V: 11},
|
||||
T: 0,
|
||||
F: 11,
|
||||
},
|
||||
},
|
||||
output: "11",
|
||||
|
@ -90,7 +91,8 @@ func TestTemplateExpansion(t *testing.T) {
|
|||
queryResult: promql.Vector{
|
||||
{
|
||||
Metric: labels.FromStrings(labels.MetricName, "metric", "instance", "a"),
|
||||
Point: promql.Point{T: 0, V: 11},
|
||||
T: 0,
|
||||
F: 11,
|
||||
},
|
||||
},
|
||||
output: "a",
|
||||
|
@ -101,7 +103,8 @@ func TestTemplateExpansion(t *testing.T) {
|
|||
queryResult: promql.Vector{
|
||||
{
|
||||
Metric: labels.FromStrings(labels.MetricName, "metric", "__value__", "a"),
|
||||
Point: promql.Point{T: 0, V: 11},
|
||||
T: 0,
|
||||
F: 11,
|
||||
},
|
||||
},
|
||||
output: "a",
|
||||
|
@ -112,7 +115,8 @@ func TestTemplateExpansion(t *testing.T) {
|
|||
queryResult: promql.Vector{
|
||||
{
|
||||
Metric: labels.FromStrings(labels.MetricName, "metric", "instance", "a"),
|
||||
Point: promql.Point{T: 0, V: 11},
|
||||
T: 0,
|
||||
F: 11,
|
||||
},
|
||||
},
|
||||
output: "",
|
||||
|
@ -123,7 +127,8 @@ func TestTemplateExpansion(t *testing.T) {
|
|||
queryResult: promql.Vector{
|
||||
{
|
||||
Metric: labels.FromStrings(labels.MetricName, "metric", "instance", "a"),
|
||||
Point: promql.Point{T: 0, V: 11},
|
||||
T: 0,
|
||||
F: 11,
|
||||
},
|
||||
},
|
||||
output: "",
|
||||
|
@ -133,7 +138,8 @@ func TestTemplateExpansion(t *testing.T) {
|
|||
queryResult: promql.Vector{
|
||||
{
|
||||
Metric: labels.FromStrings(labels.MetricName, "metric", "instance", "a"),
|
||||
Point: promql.Point{T: 0, V: 11},
|
||||
T: 0,
|
||||
F: 11,
|
||||
},
|
||||
},
|
||||
output: "",
|
||||
|
@ -145,10 +151,12 @@ func TestTemplateExpansion(t *testing.T) {
|
|||
queryResult: promql.Vector{
|
||||
{
|
||||
Metric: labels.FromStrings(labels.MetricName, "metric", "instance", "b"),
|
||||
Point: promql.Point{T: 0, V: 21},
|
||||
T: 0,
|
||||
F: 21,
|
||||
}, {
|
||||
Metric: labels.FromStrings(labels.MetricName, "metric", "instance", "a"),
|
||||
Point: promql.Point{T: 0, V: 11},
|
||||
T: 0,
|
||||
F: 11,
|
||||
},
|
||||
},
|
||||
output: "a:11: b:21: ",
|
||||
|
|
|
@ -18,6 +18,8 @@ import (
|
|||
"strconv"
|
||||
|
||||
jsoniter "github.com/json-iterator/go"
|
||||
|
||||
"github.com/prometheus/prometheus/model/histogram"
|
||||
)
|
||||
|
||||
// MarshalTimestamp marshals a point timestamp using the passed jsoniter stream.
|
||||
|
@ -42,8 +44,8 @@ func MarshalTimestamp(t int64, stream *jsoniter.Stream) {
|
|||
}
|
||||
}
|
||||
|
||||
// MarshalValue marshals a point value using the passed jsoniter stream.
|
||||
func MarshalValue(v float64, stream *jsoniter.Stream) {
|
||||
// MarshalFloat marshals a float value using the passed jsoniter stream.
|
||||
func MarshalFloat(v float64, stream *jsoniter.Stream) {
|
||||
stream.WriteRaw(`"`)
|
||||
// Taken from https://github.com/json-iterator/go/blob/master/stream_float.go#L71 as a workaround
|
||||
// to https://github.com/json-iterator/go/issues/365 (jsoniter, to follow json standard, doesn't allow inf/nan).
|
||||
|
@ -60,3 +62,76 @@ func MarshalValue(v float64, stream *jsoniter.Stream) {
|
|||
stream.SetBuffer(buf)
|
||||
stream.WriteRaw(`"`)
|
||||
}
|
||||
|
||||
// MarshalHistogram marshals a histogram value using the passed jsoniter stream.
|
||||
// It writes something like:
|
||||
//
|
||||
// {
|
||||
// "count": "42",
|
||||
// "sum": "34593.34",
|
||||
// "buckets": [
|
||||
// [ 3, "-0.25", "0.25", "3"],
|
||||
// [ 0, "0.25", "0.5", "12"],
|
||||
// [ 0, "0.5", "1", "21"],
|
||||
// [ 0, "2", "4", "6"]
|
||||
// ]
|
||||
// }
|
||||
//
|
||||
// The 1st element in each bucket array determines if the boundaries are
|
||||
// inclusive (AKA closed) or exclusive (AKA open):
|
||||
//
|
||||
// 0: lower exclusive, upper inclusive
|
||||
// 1: lower inclusive, upper exclusive
|
||||
// 2: both exclusive
|
||||
// 3: both inclusive
|
||||
//
|
||||
// The 2nd and 3rd elements are the lower and upper boundary. The 4th element is
|
||||
// the bucket count.
|
||||
func MarshalHistogram(h *histogram.FloatHistogram, stream *jsoniter.Stream) {
|
||||
stream.WriteObjectStart()
|
||||
stream.WriteObjectField(`count`)
|
||||
MarshalFloat(h.Count, stream)
|
||||
stream.WriteMore()
|
||||
stream.WriteObjectField(`sum`)
|
||||
MarshalFloat(h.Sum, stream)
|
||||
|
||||
bucketFound := false
|
||||
it := h.AllBucketIterator()
|
||||
for it.Next() {
|
||||
bucket := it.At()
|
||||
if bucket.Count == 0 {
|
||||
continue // No need to expose empty buckets in JSON.
|
||||
}
|
||||
stream.WriteMore()
|
||||
if !bucketFound {
|
||||
stream.WriteObjectField(`buckets`)
|
||||
stream.WriteArrayStart()
|
||||
}
|
||||
bucketFound = true
|
||||
boundaries := 2 // Exclusive on both sides AKA open interval.
|
||||
if bucket.LowerInclusive {
|
||||
if bucket.UpperInclusive {
|
||||
boundaries = 3 // Inclusive on both sides AKA closed interval.
|
||||
} else {
|
||||
boundaries = 1 // Inclusive only on lower end AKA right open.
|
||||
}
|
||||
} else {
|
||||
if bucket.UpperInclusive {
|
||||
boundaries = 0 // Inclusive only on upper end AKA left open.
|
||||
}
|
||||
}
|
||||
stream.WriteArrayStart()
|
||||
stream.WriteInt(boundaries)
|
||||
stream.WriteMore()
|
||||
MarshalFloat(bucket.Lower, stream)
|
||||
stream.WriteMore()
|
||||
MarshalFloat(bucket.Upper, stream)
|
||||
stream.WriteMore()
|
||||
MarshalFloat(bucket.Count, stream)
|
||||
stream.WriteArrayEnd()
|
||||
}
|
||||
if bucketFound {
|
||||
stream.WriteArrayEnd()
|
||||
}
|
||||
stream.WriteObjectEnd()
|
||||
}
|
||||
|
|
|
@ -41,7 +41,6 @@ import (
|
|||
|
||||
"github.com/prometheus/prometheus/config"
|
||||
"github.com/prometheus/prometheus/model/exemplar"
|
||||
"github.com/prometheus/prometheus/model/histogram"
|
||||
"github.com/prometheus/prometheus/model/labels"
|
||||
"github.com/prometheus/prometheus/model/textparse"
|
||||
"github.com/prometheus/prometheus/model/timestamp"
|
||||
|
@ -217,7 +216,8 @@ type API struct {
|
|||
func init() {
|
||||
jsoniter.RegisterTypeEncoderFunc("promql.Series", marshalSeriesJSON, marshalSeriesJSONIsEmpty)
|
||||
jsoniter.RegisterTypeEncoderFunc("promql.Sample", marshalSampleJSON, marshalSampleJSONIsEmpty)
|
||||
jsoniter.RegisterTypeEncoderFunc("promql.Point", marshalPointJSON, marshalPointJSONIsEmpty)
|
||||
jsoniter.RegisterTypeEncoderFunc("promql.FPoint", marshalFPointJSON, marshalPointJSONIsEmpty)
|
||||
jsoniter.RegisterTypeEncoderFunc("promql.HPoint", marshalHPointJSON, marshalPointJSONIsEmpty)
|
||||
jsoniter.RegisterTypeEncoderFunc("exemplar.Exemplar", marshalExemplarJSON, marshalExemplarJSONEmpty)
|
||||
}
|
||||
|
||||
|
@ -1724,7 +1724,7 @@ OUTER:
|
|||
// < more values>
|
||||
// ],
|
||||
// "histograms": [
|
||||
// [ 1435781451.781, { < histogram, see below > } ],
|
||||
// [ 1435781451.781, { < histogram, see jsonutil.MarshalHistogram > } ],
|
||||
// < more histograms >
|
||||
// ],
|
||||
// },
|
||||
|
@ -1739,41 +1739,26 @@ func marshalSeriesJSON(ptr unsafe.Pointer, stream *jsoniter.Stream) {
|
|||
}
|
||||
stream.SetBuffer(append(stream.Buffer(), m...))
|
||||
|
||||
// We make two passes through the series here: In the first marshaling
|
||||
// all value points, in the second marshaling all histogram
|
||||
// points. That's probably cheaper than just one pass in which we copy
|
||||
// out histogram Points into a newly allocated slice for separate
|
||||
// marshaling. (Could be benchmarked, though.)
|
||||
var foundValue, foundHistogram bool
|
||||
for _, p := range s.Points {
|
||||
if p.H == nil {
|
||||
stream.WriteMore()
|
||||
if !foundValue {
|
||||
stream.WriteObjectField(`values`)
|
||||
stream.WriteArrayStart()
|
||||
}
|
||||
foundValue = true
|
||||
marshalPointJSON(unsafe.Pointer(&p), stream)
|
||||
} else {
|
||||
foundHistogram = true
|
||||
for i, p := range s.Floats {
|
||||
stream.WriteMore()
|
||||
if i == 0 {
|
||||
stream.WriteObjectField(`values`)
|
||||
stream.WriteArrayStart()
|
||||
}
|
||||
marshalFPointJSON(unsafe.Pointer(&p), stream)
|
||||
}
|
||||
if foundValue {
|
||||
if len(s.Floats) > 0 {
|
||||
stream.WriteArrayEnd()
|
||||
}
|
||||
if foundHistogram {
|
||||
firstHistogram := true
|
||||
for _, p := range s.Points {
|
||||
if p.H != nil {
|
||||
stream.WriteMore()
|
||||
if firstHistogram {
|
||||
stream.WriteObjectField(`histograms`)
|
||||
stream.WriteArrayStart()
|
||||
}
|
||||
firstHistogram = false
|
||||
marshalPointJSON(unsafe.Pointer(&p), stream)
|
||||
}
|
||||
for i, p := range s.Histograms {
|
||||
stream.WriteMore()
|
||||
if i == 0 {
|
||||
stream.WriteObjectField(`histograms`)
|
||||
stream.WriteArrayStart()
|
||||
}
|
||||
marshalHPointJSON(unsafe.Pointer(&p), stream)
|
||||
}
|
||||
if len(s.Histograms) > 0 {
|
||||
stream.WriteArrayEnd()
|
||||
}
|
||||
stream.WriteObjectEnd()
|
||||
|
@ -1791,7 +1776,7 @@ func marshalSeriesJSONIsEmpty(ptr unsafe.Pointer) bool {
|
|||
// "job" : "prometheus",
|
||||
// "instance" : "localhost:9090"
|
||||
// },
|
||||
// "value": [ 1435781451.781, "1" ]
|
||||
// "value": [ 1435781451.781, "1.234" ]
|
||||
// },
|
||||
//
|
||||
// For histogram samples, it writes something like this:
|
||||
|
@ -1802,7 +1787,7 @@ func marshalSeriesJSONIsEmpty(ptr unsafe.Pointer) bool {
|
|||
// "job" : "prometheus",
|
||||
// "instance" : "localhost:9090"
|
||||
// },
|
||||
// "histogram": [ 1435781451.781, { < histogram, see below > } ]
|
||||
// "histogram": [ 1435781451.781, { < histogram, see jsonutil.MarshalHistogram > } ]
|
||||
// },
|
||||
func marshalSampleJSON(ptr unsafe.Pointer, stream *jsoniter.Stream) {
|
||||
s := *((*promql.Sample)(ptr))
|
||||
|
@ -1815,12 +1800,20 @@ func marshalSampleJSON(ptr unsafe.Pointer, stream *jsoniter.Stream) {
|
|||
}
|
||||
stream.SetBuffer(append(stream.Buffer(), m...))
|
||||
stream.WriteMore()
|
||||
if s.Point.H == nil {
|
||||
if s.H == nil {
|
||||
stream.WriteObjectField(`value`)
|
||||
} else {
|
||||
stream.WriteObjectField(`histogram`)
|
||||
}
|
||||
marshalPointJSON(unsafe.Pointer(&s.Point), stream)
|
||||
stream.WriteArrayStart()
|
||||
jsonutil.MarshalTimestamp(s.T, stream)
|
||||
stream.WriteMore()
|
||||
if s.H == nil {
|
||||
jsonutil.MarshalFloat(s.F, stream)
|
||||
} else {
|
||||
jsonutil.MarshalHistogram(s.H, stream)
|
||||
}
|
||||
stream.WriteArrayEnd()
|
||||
stream.WriteObjectEnd()
|
||||
}
|
||||
|
||||
|
@ -1828,17 +1821,23 @@ func marshalSampleJSONIsEmpty(ptr unsafe.Pointer) bool {
|
|||
return false
|
||||
}
|
||||
|
||||
// marshalPointJSON writes `[ts, "val"]`.
|
||||
func marshalPointJSON(ptr unsafe.Pointer, stream *jsoniter.Stream) {
|
||||
p := *((*promql.Point)(ptr))
|
||||
// marshalFPointJSON writes `[ts, "1.234"]`.
|
||||
func marshalFPointJSON(ptr unsafe.Pointer, stream *jsoniter.Stream) {
|
||||
p := *((*promql.FPoint)(ptr))
|
||||
stream.WriteArrayStart()
|
||||
jsonutil.MarshalTimestamp(p.T, stream)
|
||||
stream.WriteMore()
|
||||
if p.H == nil {
|
||||
jsonutil.MarshalValue(p.V, stream)
|
||||
} else {
|
||||
marshalHistogram(p.H, stream)
|
||||
}
|
||||
jsonutil.MarshalFloat(p.F, stream)
|
||||
stream.WriteArrayEnd()
|
||||
}
|
||||
|
||||
// marshalHPointJSON writes `[ts, { < histogram, see jsonutil.MarshalHistogram > } ]`.
|
||||
func marshalHPointJSON(ptr unsafe.Pointer, stream *jsoniter.Stream) {
|
||||
p := *((*promql.HPoint)(ptr))
|
||||
stream.WriteArrayStart()
|
||||
jsonutil.MarshalTimestamp(p.T, stream)
|
||||
stream.WriteMore()
|
||||
jsonutil.MarshalHistogram(p.H, stream)
|
||||
stream.WriteArrayEnd()
|
||||
}
|
||||
|
||||
|
@ -1846,78 +1845,6 @@ func marshalPointJSONIsEmpty(ptr unsafe.Pointer) bool {
|
|||
return false
|
||||
}
|
||||
|
||||
// marshalHistogramJSON writes something like:
|
||||
//
|
||||
// {
|
||||
// "count": "42",
|
||||
// "sum": "34593.34",
|
||||
// "buckets": [
|
||||
// [ 3, "-0.25", "0.25", "3"],
|
||||
// [ 0, "0.25", "0.5", "12"],
|
||||
// [ 0, "0.5", "1", "21"],
|
||||
// [ 0, "2", "4", "6"]
|
||||
// ]
|
||||
// }
|
||||
//
|
||||
// The 1st element in each bucket array determines if the boundaries are
|
||||
// inclusive (AKA closed) or exclusive (AKA open):
|
||||
//
|
||||
// 0: lower exclusive, upper inclusive
|
||||
// 1: lower inclusive, upper exclusive
|
||||
// 2: both exclusive
|
||||
// 3: both inclusive
|
||||
//
|
||||
// The 2nd and 3rd elements are the lower and upper boundary. The 4th element is
|
||||
// the bucket count.
|
||||
func marshalHistogram(h *histogram.FloatHistogram, stream *jsoniter.Stream) {
|
||||
stream.WriteObjectStart()
|
||||
stream.WriteObjectField(`count`)
|
||||
jsonutil.MarshalValue(h.Count, stream)
|
||||
stream.WriteMore()
|
||||
stream.WriteObjectField(`sum`)
|
||||
jsonutil.MarshalValue(h.Sum, stream)
|
||||
|
||||
bucketFound := false
|
||||
it := h.AllBucketIterator()
|
||||
for it.Next() {
|
||||
bucket := it.At()
|
||||
if bucket.Count == 0 {
|
||||
continue // No need to expose empty buckets in JSON.
|
||||
}
|
||||
stream.WriteMore()
|
||||
if !bucketFound {
|
||||
stream.WriteObjectField(`buckets`)
|
||||
stream.WriteArrayStart()
|
||||
}
|
||||
bucketFound = true
|
||||
boundaries := 2 // Exclusive on both sides AKA open interval.
|
||||
if bucket.LowerInclusive {
|
||||
if bucket.UpperInclusive {
|
||||
boundaries = 3 // Inclusive on both sides AKA closed interval.
|
||||
} else {
|
||||
boundaries = 1 // Inclusive only on lower end AKA right open.
|
||||
}
|
||||
} else {
|
||||
if bucket.UpperInclusive {
|
||||
boundaries = 0 // Inclusive only on upper end AKA left open.
|
||||
}
|
||||
}
|
||||
stream.WriteArrayStart()
|
||||
stream.WriteInt(boundaries)
|
||||
stream.WriteMore()
|
||||
jsonutil.MarshalValue(bucket.Lower, stream)
|
||||
stream.WriteMore()
|
||||
jsonutil.MarshalValue(bucket.Upper, stream)
|
||||
stream.WriteMore()
|
||||
jsonutil.MarshalValue(bucket.Count, stream)
|
||||
stream.WriteArrayEnd()
|
||||
}
|
||||
if bucketFound {
|
||||
stream.WriteArrayEnd()
|
||||
}
|
||||
stream.WriteObjectEnd()
|
||||
}
|
||||
|
||||
// marshalExemplarJSON writes.
|
||||
//
|
||||
// {
|
||||
|
@ -1941,7 +1868,7 @@ func marshalExemplarJSON(ptr unsafe.Pointer, stream *jsoniter.Stream) {
|
|||
// "value" key.
|
||||
stream.WriteMore()
|
||||
stream.WriteObjectField(`value`)
|
||||
jsonutil.MarshalValue(p.Value, stream)
|
||||
jsonutil.MarshalFloat(p.Value, stream)
|
||||
|
||||
// "timestamp" key.
|
||||
stream.WriteMore()
|
||||
|
|
|
@ -1102,10 +1102,10 @@ func testEndpoints(t *testing.T, api *API, tr *testTargetRetriever, es storage.E
|
|||
ResultType: parser.ValueTypeMatrix,
|
||||
Result: promql.Matrix{
|
||||
promql.Series{
|
||||
Points: []promql.Point{
|
||||
{V: 0, T: timestamp.FromTime(start)},
|
||||
{V: 1, T: timestamp.FromTime(start.Add(1 * time.Second))},
|
||||
{V: 2, T: timestamp.FromTime(start.Add(2 * time.Second))},
|
||||
Floats: []promql.FPoint{
|
||||
{F: 0, T: timestamp.FromTime(start)},
|
||||
{F: 1, T: timestamp.FromTime(start.Add(1 * time.Second))},
|
||||
{F: 2, T: timestamp.FromTime(start.Add(2 * time.Second))},
|
||||
},
|
||||
// No Metric returned - use zero value for comparison.
|
||||
},
|
||||
|
@ -3059,7 +3059,7 @@ func TestRespond(t *testing.T) {
|
|||
ResultType: parser.ValueTypeMatrix,
|
||||
Result: promql.Matrix{
|
||||
promql.Series{
|
||||
Points: []promql.Point{{V: 1, T: 1000}},
|
||||
Floats: []promql.FPoint{{F: 1, T: 1000}},
|
||||
Metric: labels.FromStrings("__name__", "foo"),
|
||||
},
|
||||
},
|
||||
|
@ -3071,7 +3071,7 @@ func TestRespond(t *testing.T) {
|
|||
ResultType: parser.ValueTypeMatrix,
|
||||
Result: promql.Matrix{
|
||||
promql.Series{
|
||||
Points: []promql.Point{{H: &histogram.FloatHistogram{
|
||||
Histograms: []promql.HPoint{{H: &histogram.FloatHistogram{
|
||||
Schema: 2,
|
||||
ZeroThreshold: 0.001,
|
||||
ZeroCount: 12,
|
||||
|
@ -3094,63 +3094,63 @@ func TestRespond(t *testing.T) {
|
|||
expected: `{"status":"success","data":{"resultType":"matrix","result":[{"metric":{"__name__":"foo"},"histograms":[[1,{"count":"10","sum":"20","buckets":[[1,"-1.6817928305074288","-1.414213562373095","1"],[1,"-1.414213562373095","-1.189207115002721","2"],[3,"-0.001","0.001","12"],[0,"1.414213562373095","1.6817928305074288","1"],[0,"1.6817928305074288","2","2"],[0,"2.378414230005442","2.82842712474619","2"],[0,"2.82842712474619","3.3635856610148576","1"],[0,"3.3635856610148576","4","1"]]}]]}]}}`,
|
||||
},
|
||||
{
|
||||
response: promql.Point{V: 0, T: 0},
|
||||
response: promql.FPoint{F: 0, T: 0},
|
||||
expected: `{"status":"success","data":[0,"0"]}`,
|
||||
},
|
||||
{
|
||||
response: promql.Point{V: 20, T: 1},
|
||||
response: promql.FPoint{F: 20, T: 1},
|
||||
expected: `{"status":"success","data":[0.001,"20"]}`,
|
||||
},
|
||||
{
|
||||
response: promql.Point{V: 20, T: 10},
|
||||
response: promql.FPoint{F: 20, T: 10},
|
||||
expected: `{"status":"success","data":[0.010,"20"]}`,
|
||||
},
|
||||
{
|
||||
response: promql.Point{V: 20, T: 100},
|
||||
response: promql.FPoint{F: 20, T: 100},
|
||||
expected: `{"status":"success","data":[0.100,"20"]}`,
|
||||
},
|
||||
{
|
||||
response: promql.Point{V: 20, T: 1001},
|
||||
response: promql.FPoint{F: 20, T: 1001},
|
||||
expected: `{"status":"success","data":[1.001,"20"]}`,
|
||||
},
|
||||
{
|
||||
response: promql.Point{V: 20, T: 1010},
|
||||
response: promql.FPoint{F: 20, T: 1010},
|
||||
expected: `{"status":"success","data":[1.010,"20"]}`,
|
||||
},
|
||||
{
|
||||
response: promql.Point{V: 20, T: 1100},
|
||||
response: promql.FPoint{F: 20, T: 1100},
|
||||
expected: `{"status":"success","data":[1.100,"20"]}`,
|
||||
},
|
||||
{
|
||||
response: promql.Point{V: 20, T: 12345678123456555},
|
||||
response: promql.FPoint{F: 20, T: 12345678123456555},
|
||||
expected: `{"status":"success","data":[12345678123456.555,"20"]}`,
|
||||
},
|
||||
{
|
||||
response: promql.Point{V: 20, T: -1},
|
||||
response: promql.FPoint{F: 20, T: -1},
|
||||
expected: `{"status":"success","data":[-0.001,"20"]}`,
|
||||
},
|
||||
{
|
||||
response: promql.Point{V: math.NaN(), T: 0},
|
||||
response: promql.FPoint{F: math.NaN(), T: 0},
|
||||
expected: `{"status":"success","data":[0,"NaN"]}`,
|
||||
},
|
||||
{
|
||||
response: promql.Point{V: math.Inf(1), T: 0},
|
||||
response: promql.FPoint{F: math.Inf(1), T: 0},
|
||||
expected: `{"status":"success","data":[0,"+Inf"]}`,
|
||||
},
|
||||
{
|
||||
response: promql.Point{V: math.Inf(-1), T: 0},
|
||||
response: promql.FPoint{F: math.Inf(-1), T: 0},
|
||||
expected: `{"status":"success","data":[0,"-Inf"]}`,
|
||||
},
|
||||
{
|
||||
response: promql.Point{V: 1.2345678e6, T: 0},
|
||||
response: promql.FPoint{F: 1.2345678e6, T: 0},
|
||||
expected: `{"status":"success","data":[0,"1234567.8"]}`,
|
||||
},
|
||||
{
|
||||
response: promql.Point{V: 1.2345678e-6, T: 0},
|
||||
response: promql.FPoint{F: 1.2345678e-6, T: 0},
|
||||
expected: `{"status":"success","data":[0,"0.0000012345678"]}`,
|
||||
},
|
||||
{
|
||||
response: promql.Point{V: 1.2345678e-67, T: 0},
|
||||
response: promql.FPoint{F: 1.2345678e-67, T: 0},
|
||||
expected: `{"status":"success","data":[0,"1.2345678e-67"]}`,
|
||||
},
|
||||
{
|
||||
|
@ -3283,15 +3283,15 @@ var testResponseWriter = httptest.ResponseRecorder{}
|
|||
|
||||
func BenchmarkRespond(b *testing.B) {
|
||||
b.ReportAllocs()
|
||||
points := []promql.Point{}
|
||||
points := []promql.FPoint{}
|
||||
for i := 0; i < 10000; i++ {
|
||||
points = append(points, promql.Point{V: float64(i * 1000000), T: int64(i)})
|
||||
points = append(points, promql.FPoint{F: float64(i * 1000000), T: int64(i)})
|
||||
}
|
||||
response := &queryData{
|
||||
ResultType: parser.ValueTypeMatrix,
|
||||
Result: promql.Matrix{
|
||||
promql.Series{
|
||||
Points: points,
|
||||
Floats: points,
|
||||
Metric: labels.EmptyLabels(),
|
||||
},
|
||||
},
|
||||
|
|
|
@ -145,7 +145,9 @@ Loop:
|
|||
|
||||
vec = append(vec, promql.Sample{
|
||||
Metric: s.Labels(),
|
||||
Point: promql.Point{T: t, V: v, H: fh},
|
||||
T: t,
|
||||
F: v,
|
||||
H: fh,
|
||||
})
|
||||
}
|
||||
if ws := set.Warnings(); len(ws) > 0 {
|
||||
|
@ -262,7 +264,7 @@ Loop:
|
|||
if !isHistogram {
|
||||
lastHistogramWasGauge = false
|
||||
protMetric.Untyped = &dto.Untyped{
|
||||
Value: proto.Float64(s.V),
|
||||
Value: proto.Float64(s.F),
|
||||
}
|
||||
} else {
|
||||
lastHistogramWasGauge = s.H.CounterResetHint == histogram.GaugeType
|
||||
|
|
|
@ -342,14 +342,16 @@ func TestFederationWithNativeHistograms(t *testing.T) {
|
|||
if i%3 == 0 {
|
||||
_, err = app.Append(0, l, 100*60*1000, float64(i*100))
|
||||
expVec = append(expVec, promql.Sample{
|
||||
Point: promql.Point{T: 100 * 60 * 1000, V: float64(i * 100)},
|
||||
T: 100 * 60 * 1000,
|
||||
F: float64(i * 100),
|
||||
Metric: expL,
|
||||
})
|
||||
} else {
|
||||
hist.ZeroCount++
|
||||
_, err = app.AppendHistogram(0, l, 100*60*1000, hist.Copy(), nil)
|
||||
expVec = append(expVec, promql.Sample{
|
||||
Point: promql.Point{T: 100 * 60 * 1000, H: hist.ToFloat()},
|
||||
T: 100 * 60 * 1000,
|
||||
H: hist.ToFloat(),
|
||||
Metric: expL,
|
||||
})
|
||||
}
|
||||
|
@ -379,6 +381,7 @@ func TestFederationWithNativeHistograms(t *testing.T) {
|
|||
p := textparse.NewProtobufParser(body)
|
||||
var actVec promql.Vector
|
||||
metricFamilies := 0
|
||||
l := labels.Labels{}
|
||||
for {
|
||||
et, err := p.Next()
|
||||
if err == io.EOF {
|
||||
|
@ -389,23 +392,23 @@ func TestFederationWithNativeHistograms(t *testing.T) {
|
|||
metricFamilies++
|
||||
}
|
||||
if et == textparse.EntryHistogram || et == textparse.EntrySeries {
|
||||
l := labels.Labels{}
|
||||
p.Metric(&l)
|
||||
actVec = append(actVec, promql.Sample{Metric: l})
|
||||
}
|
||||
if et == textparse.EntryHistogram {
|
||||
_, parsedTimestamp, h, fh := p.Histogram()
|
||||
require.Nil(t, h)
|
||||
actVec[len(actVec)-1].Point = promql.Point{
|
||||
T: *parsedTimestamp,
|
||||
H: fh,
|
||||
}
|
||||
actVec = append(actVec, promql.Sample{
|
||||
T: *parsedTimestamp,
|
||||
H: fh,
|
||||
Metric: l,
|
||||
})
|
||||
} else if et == textparse.EntrySeries {
|
||||
_, parsedTimestamp, v := p.Series()
|
||||
actVec[len(actVec)-1].Point = promql.Point{
|
||||
T: *parsedTimestamp,
|
||||
V: v,
|
||||
}
|
||||
_, parsedTimestamp, f := p.Series()
|
||||
actVec = append(actVec, promql.Sample{
|
||||
T: *parsedTimestamp,
|
||||
F: f,
|
||||
Metric: l,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
|
|
Loading…
Reference in a new issue