Merge pull request #1799 from prometheus/quantile

Implement quantile and quantile_over_time
This commit is contained in:
Brian Brazil 2016-07-21 10:34:27 +01:00 committed by GitHub
commit c3a7941da7
7 changed files with 148 additions and 16 deletions

View file

@ -1076,6 +1076,10 @@ func (ev *evaluator) aggregation(op itemType, grouping model.LabelNames, without
return vector{}
}
}
var q float64
if op == itemQuantile {
q = ev.evalFloat(param)
}
var valueLabel model.LabelName
if op == itemCountValues {
valueLabel = model.LabelName(ev.evalString(param).Value)
@ -1133,7 +1137,7 @@ func (ev *evaluator) aggregation(op itemType, grouping model.LabelNames, without
valuesSquaredSum: s.Value * s.Value,
groupCount: 1,
}
if op == itemTopK {
if op == itemTopK || op == itemQuantile {
result[groupingKey].heap = make(vectorByValueHeap, 0, k)
heap.Push(&result[groupingKey].heap, &sample{Value: s.Value, Metric: s.Metric})
} else if op == itemBottomK {
@ -1181,6 +1185,8 @@ func (ev *evaluator) aggregation(op itemType, grouping model.LabelNames, without
}
heap.Push(&groupedResult.reverseHeap, &sample{Value: s.Value, Metric: s.Metric})
}
case itemQuantile:
groupedResult.heap = append(groupedResult.heap, s)
default:
panic(fmt.Errorf("expected aggregation operator but got %q", op))
}
@ -1223,6 +1229,8 @@ func (ev *evaluator) aggregation(op itemType, grouping model.LabelNames, without
})
}
continue // Bypass default append.
case itemQuantile:
aggr.value = model.SampleValue(quantile(q, aggr.heap))
default:
// For other aggregations, we already have the right value.
}

View file

@ -478,6 +478,31 @@ func funcSumOverTime(ev *evaluator, args Expressions) model.Value {
})
}
// === quantile_over_time(matrix model.ValMatrix) Vector ===
func funcQuantileOverTime(ev *evaluator, args Expressions) model.Value {
q := ev.evalFloat(args[0])
mat := ev.evalMatrix(args[1])
resultVector := vector{}
for _, el := range mat {
if len(el.Values) == 0 {
continue
}
el.Metric.Del(model.MetricNameLabel)
values := make(vectorByValueHeap, 0, len(el.Values))
for _, v := range el.Values {
values = append(values, &sample{Value: v.Value})
}
resultVector = append(resultVector, &sample{
Metric: el.Metric,
Value: model.SampleValue(quantile(q, values)),
Timestamp: ev.Timestamp,
})
}
return resultVector
}
// === stddev_over_time(matrix model.ValMatrix) Vector ===
func funcStddevOverTime(ev *evaluator, args Expressions) model.Value {
return aggrOverTime(ev, args, func(values []model.SamplePair) model.SampleValue {
@ -705,7 +730,7 @@ func funcHistogramQuantile(ev *evaluator, args Expressions) model.Value {
for _, mb := range signatureToMetricWithBuckets {
outVec = append(outVec, &sample{
Metric: mb.metric,
Value: model.SampleValue(quantile(q, mb.buckets)),
Value: model.SampleValue(bucketQuantile(q, mb.buckets)),
Timestamp: ev.Timestamp,
})
}
@ -973,6 +998,12 @@ var functions = map[string]*Function{
ReturnType: model.ValVector,
Call: funcPredictLinear,
},
"quantile_over_time": {
Name: "quantile_over_time",
ArgTypes: []model.ValueType{model.ValScalar, model.ValMatrix},
ReturnType: model.ValVector,
Call: funcQuantileOverTime,
},
"rate": {
Name: "rate",
ArgTypes: []model.ValueType{model.ValMatrix},

View file

@ -59,7 +59,7 @@ func (i itemType) isAggregator() bool { return i > aggregatorsStart && i < aggre
// isAggregator returns true if the item is an aggregator that takes a parameter.
// Returns false otherwise
func (i itemType) isAggregatorWithParam() bool {
return i == itemTopK || i == itemBottomK || i == itemCountValues
return i == itemTopK || i == itemBottomK || i == itemCountValues || i == itemQuantile
}
// isKeyword returns true if the item corresponds to a keyword.
@ -177,6 +177,7 @@ const (
itemTopK
itemBottomK
itemCountValues
itemQuantile
aggregatorsEnd
keywordsStart
@ -215,6 +216,7 @@ var key = map[string]itemType{
"topk": itemTopK,
"bottomk": itemBottomK,
"count_values": itemCountValues,
"quantile": itemQuantile,
// Keywords.
"alert": itemAlert,

View file

@ -1042,7 +1042,7 @@ func (p *parser) checkType(node Node) (typ model.ValueType) {
p.errorf("aggregation operator expected in aggregation expression but got %q", n.Op)
}
p.expectType(n.Expr, model.ValVector, "aggregation expression")
if n.Op == itemTopK || n.Op == itemBottomK {
if n.Op == itemTopK || n.Op == itemBottomK || n.Op == itemQuantile {
p.expectType(n.Param, model.ValScalar, "aggregation parameter")
}
if n.Op == itemCountValues {

View file

@ -48,16 +48,16 @@ type metricWithBuckets struct {
buckets buckets
}
// quantile calculates the quantile 'q' based on the given buckets. The buckets
// will be sorted by upperBound by this function (i.e. no sorting needed before
// calling this function). The quantile value is interpolated assuming a linear
// distribution within a bucket. However, if the quantile falls into the highest
// bucket, the upper bound of the 2nd highest bucket is returned. A natural
// lower bound of 0 is assumed if the upper bound of the lowest bucket is
// greater 0. In that case, interpolation in the lowest bucket happens linearly
// between 0 and the upper bound of the lowest bucket. However, if the lowest
// bucket has an upper bound less or equal 0, this upper bound is returned if
// the quantile falls into the lowest bucket.
// bucketQuantile calculates the quantile 'q' based on the given buckets. The
// buckets will be sorted by upperBound by this function (i.e. no sorting
// needed before calling this function). The quantile value is interpolated
// assuming a linear distribution within a bucket. However, if the quantile
// falls into the highest bucket, the upper bound of the 2nd highest bucket is
// returned. A natural lower bound of 0 is assumed if the upper bound of the
// lowest bucket is greater 0. In that case, interpolation in the lowest bucket
// happens linearly between 0 and the upper bound of the lowest bucket.
// However, if the lowest bucket has an upper bound less or equal 0, this upper
// bound is returned if the quantile falls into the lowest bucket.
//
// There are a number of special cases (once we have a way to report errors
// happening during evaluations of AST functions, we should report those
@ -70,7 +70,7 @@ type metricWithBuckets struct {
// If q<0, -Inf is returned.
//
// If q>1, +Inf is returned.
func quantile(q model.SampleValue, buckets buckets) float64 {
func bucketQuantile(q model.SampleValue, buckets buckets) float64 {
if q < 0 {
return math.Inf(-1)
}
@ -106,3 +106,33 @@ func quantile(q model.SampleValue, buckets buckets) float64 {
}
return bucketStart + (bucketEnd-bucketStart)*float64(rank/count)
}
// qauntile calculates the given quantile of a vector of samples.
//
// The vector will be sorted.
// If 'values' has zero elements, NaN is returned.
// If q<0, -Inf is returned.
// If q>1, +Inf is returned.
func quantile(q float64, values vectorByValueHeap) float64 {
if len(values) == 0 {
return math.NaN()
}
if q < 0 {
return math.Inf(-1)
}
if q > 1 {
return math.Inf(+1)
}
sort.Sort(values)
n := float64(len(values))
// When the quantile lies between two samples,
// we use a weighted average of the two samples.
rank := q * (n - 1)
lowerIndex := math.Max(0, math.Floor(rank))
upperIndex := math.Min(n-1, lowerIndex+1)
weight := rank - math.Floor(rank)
return float64(values[int(lowerIndex)].Value)*(1-weight) + float64(values[int(upperIndex)].Value)*weight
}

View file

@ -220,3 +220,22 @@ eval instant at 5m count_values by (job, group)("job", version)
{job="6", group="production"} 5
{job="8", group="canary"} 2
{job="7", group="canary"} 2
# Tests for quantile.
clear
load 10s
data{test="two samples",point="a"} 0
data{test="two samples",point="b"} 1
data{test="three samples",point="a"} 0
data{test="three samples",point="b"} 1
data{test="three samples",point="c"} 2
data{test="uneven samples",point="a"} 0
data{test="uneven samples",point="b"} 1
data{test="uneven samples",point="c"} 4
eval instant at 1m quantile without(point)(0.8, data)
{test="two samples"} 0.8
{test="three samples"} 1.6
{test="uneven samples"} 2.8

View file

@ -276,7 +276,6 @@ eval instant at 8000s holt_winters(http_requests[1m], 0.01, 0.1)
{job="api-server", instance="0", group="canary"} 24000
{job="api-server", instance="1", group="canary"} -32000
# Tests for stddev_over_time and stdvar_over_time.
clear
load 10s
@ -287,3 +286,46 @@ eval instant at 1m stdvar_over_time(metric[1m])
eval instant at 1m stddev_over_time(metric[1m])
{} 3.249615
# Tests for quantile_over_time
clear
load 10s
data{test="two samples"} 0 1
data{test="three samples"} 0 1 2
data{test="uneven samples"} 0 1 4
eval instant at 1m quantile_over_time(0, data[1m])
{test="two samples"} 0
{test="three samples"} 0
{test="uneven samples"} 0
eval instant at 1m quantile_over_time(0.5, data[1m])
{test="two samples"} 0.5
{test="three samples"} 1
{test="uneven samples"} 1
eval instant at 1m quantile_over_time(0.75, data[1m])
{test="two samples"} 0.75
{test="three samples"} 1.5
{test="uneven samples"} 2.5
eval instant at 1m quantile_over_time(0.8, data[1m])
{test="two samples"} 0.8
{test="three samples"} 1.6
{test="uneven samples"} 2.8
eval instant at 1m quantile_over_time(1, data[1m])
{test="two samples"} 1
{test="three samples"} 2
{test="uneven samples"} 4
eval instant at 1m quantile_over_time(-1, data[1m])
{test="two samples"} -Inf
{test="three samples"} -Inf
{test="uneven samples"} -Inf
eval instant at 1m quantile_over_time(2, data[1m])
{test="two samples"} +Inf
{test="three samples"} +Inf
{test="uneven samples"} +Inf