histograms: Move to new exposition protobuf format

This is an incompatible protobuf change. Instrumented targets must
include https://github.com/prometheus/client_golang/pull/1092 to make
this work.

Signed-off-by: beorn7 <beorn@grafana.com>
This commit is contained in:
beorn7 2022-07-19 18:11:33 +02:00
parent 5937b4f5d4
commit c40b105efd
4 changed files with 728 additions and 719 deletions

View file

@ -38,7 +38,7 @@ import (
// protobuf format and then present it as it if were parsed by a // protobuf format and then present it as it if were parsed by a
// Prometheus-2-style text parser. This is only done so that we can easily plug // Prometheus-2-style text parser. This is only done so that we can easily plug
// in the protobuf format into Prometheus 2. For future use (with the final // in the protobuf format into Prometheus 2. For future use (with the final
// format that will be used for sparse histograms), we have to revisit the // format that will be used for native histograms), we have to revisit the
// parsing. A lot of the efficiency tricks of the Prometheus-2-style parsing // parsing. A lot of the efficiency tricks of the Prometheus-2-style parsing
// could be used in a similar fashion (byte-slice pointers into the raw // could be used in a similar fashion (byte-slice pointers into the raw
// payload), which requires some hand-coded protobuf handling. But the current // payload), which requires some hand-coded protobuf handling. But the current
@ -132,8 +132,8 @@ func (p *ProtobufParser) Series() ([]byte, *int64, float64) {
return p.metricBytes.Bytes(), nil, v return p.metricBytes.Bytes(), nil, v
} }
// Histogram returns the bytes of a series with a sparse histogram as a // Histogram returns the bytes of a series with a native histogram as a
// value, the timestamp if set, and the sparse histogram in the current // value, the timestamp if set, and the native histogram in the current
// sample. // sample.
func (p *ProtobufParser) Histogram() ([]byte, *int64, *histogram.Histogram) { func (p *ProtobufParser) Histogram() ([]byte, *int64, *histogram.Histogram) {
var ( var (
@ -144,19 +144,19 @@ func (p *ProtobufParser) Histogram() ([]byte, *int64, *histogram.Histogram) {
sh := histogram.Histogram{ sh := histogram.Histogram{
Count: h.GetSampleCount(), Count: h.GetSampleCount(),
Sum: h.GetSampleSum(), Sum: h.GetSampleSum(),
ZeroThreshold: h.GetSbZeroThreshold(), ZeroThreshold: h.GetZeroThreshold(),
ZeroCount: h.GetSbZeroCount(), ZeroCount: h.GetZeroCount(),
Schema: h.GetSbSchema(), Schema: h.GetSchema(),
PositiveSpans: make([]histogram.Span, len(h.GetSbPositive().GetSpan())), PositiveSpans: make([]histogram.Span, len(h.GetPositiveSpan())),
PositiveBuckets: h.GetSbPositive().GetDelta(), PositiveBuckets: h.GetPositiveDelta(),
NegativeSpans: make([]histogram.Span, len(h.GetSbNegative().GetSpan())), NegativeSpans: make([]histogram.Span, len(h.GetNegativeSpan())),
NegativeBuckets: h.GetSbNegative().GetDelta(), NegativeBuckets: h.GetNegativeDelta(),
} }
for i, span := range h.GetSbPositive().GetSpan() { for i, span := range h.GetPositiveSpan() {
sh.PositiveSpans[i].Offset = span.GetOffset() sh.PositiveSpans[i].Offset = span.GetOffset()
sh.PositiveSpans[i].Length = span.GetLength() sh.PositiveSpans[i].Length = span.GetLength()
} }
for i, span := range h.GetSbNegative().GetSpan() { for i, span := range h.GetNegativeSpan() {
sh.NegativeSpans[i].Offset = span.GetOffset() sh.NegativeSpans[i].Offset = span.GetOffset()
sh.NegativeSpans[i].Length = span.GetLength() sh.NegativeSpans[i].Length = span.GetLength()
} }
@ -231,7 +231,7 @@ func (p *ProtobufParser) Metric(l *labels.Labels) string {
} }
// Exemplar writes the exemplar of the current sample into the passed // Exemplar writes the exemplar of the current sample into the passed
// exemplar. It returns if an exemplar exists or not. In case of a sparse // exemplar. It returns if an exemplar exists or not. In case of a native
// histogram, the legacy bucket section is still used for exemplars. To ingest // histogram, the legacy bucket section is still used for exemplars. To ingest
// all examplars, call the Exemplar method repeatedly until it returns false. // all examplars, call the Exemplar method repeatedly until it returns false.
func (p *ProtobufParser) Exemplar(ex *exemplar.Exemplar) bool { func (p *ProtobufParser) Exemplar(ex *exemplar.Exemplar) bool {
@ -246,7 +246,7 @@ func (p *ProtobufParser) Exemplar(ex *exemplar.Exemplar) bool {
if p.state == EntrySeries { if p.state == EntrySeries {
return false // At _count or _sum. return false // At _count or _sum.
} }
p.fieldPos = 0 // Start at 1st bucket for sparse histograms. p.fieldPos = 0 // Start at 1st bucket for native histograms.
} }
for p.fieldPos < len(bb) { for p.fieldPos < len(bb) {
exProto = bb[p.fieldPos].GetExemplar() exProto = bb[p.fieldPos].GetExemplar()
@ -314,7 +314,7 @@ func (p *ProtobufParser) Next() (Entry, error) {
p.state = EntryType p.state = EntryType
case EntryType: case EntryType:
if p.mf.GetType() == dto.MetricType_HISTOGRAM && if p.mf.GetType() == dto.MetricType_HISTOGRAM &&
isSparseHistogram(p.mf.GetMetric()[0].GetHistogram()) { isNativeHistogram(p.mf.GetMetric()[0].GetHistogram()) {
p.state = EntryHistogram p.state = EntryHistogram
} else { } else {
p.state = EntrySeries p.state = EntrySeries
@ -465,18 +465,18 @@ func formatOpenMetricsFloat(f float64) string {
return s + ".0" return s + ".0"
} }
// isSparseHistogram returns false iff the provided histograms has no // isNativeHistogram returns false iff the provided histograms has no sparse
// SparseBuckets and a zero threshold of 0 and a zero count of 0. In principle, // buckets and a zero threshold of 0 and a zero count of 0. In principle, this
// this could still be meant to be a sparse histgram (with a zero threshold of 0 // could still be meant to be a native histogram (with a zero threshold of 0 and
// and no observations yet), but for now, we'll treat this case as a conventional // no observations yet), but for now, we'll treat this case as a conventional
// histogram. // histogram.
// //
// TODO(beorn7): In the final format, there should be an unambiguous way of // TODO(beorn7): In the final format, there should be an unambiguous way of
// deciding if a histogram should be ingested as a conventional one or a sparse // deciding if a histogram should be ingested as a conventional one or a native
// one. // one.
func isSparseHistogram(h *dto.Histogram) bool { func isNativeHistogram(h *dto.Histogram) bool {
return len(h.GetSbNegative().GetDelta()) > 0 || return len(h.GetNegativeDelta()) > 0 ||
len(h.GetSbPositive().GetDelta()) > 0 || len(h.GetPositiveDelta()) > 0 ||
h.GetSbZeroCount() > 0 || h.GetZeroCount() > 0 ||
h.GetSbZeroThreshold() > 0 h.GetZeroThreshold() > 0
} }

View file

@ -122,38 +122,34 @@ metric: <
value: -0.00029 value: -0.00029
> >
> >
sb_schema: 3 schema: 3
sb_zero_threshold: 2.938735877055719e-39 zero_threshold: 2.938735877055719e-39
sb_zero_count: 2 zero_count: 2
sb_negative: < negative_span: <
span: < offset: -162
offset: -162 length: 1
length: 1
>
span: <
offset: 23
length: 4
>
delta: 1
delta: 3
delta: -2
delta: -1
delta: 1
> >
sb_positive: < negative_span: <
span: < offset: 23
offset: -161 length: 4
length: 1
>
span: <
offset: 8
length: 3
>
delta: 1
delta: 2
delta: -1
delta: -1
> >
negative_delta: 1
negative_delta: 3
negative_delta: -2
negative_delta: -1
negative_delta: 1
positive_span: <
offset: -161
length: 1
>
positive_span: <
offset: 8
length: 3
>
positive_delta: 1
positive_delta: 2
positive_delta: -1
positive_delta: -1
> >
timestamp_ms: 1234568 timestamp_ms: 1234568
> >
@ -196,8 +192,8 @@ metric: <
value: -0.000295 value: -0.000295
> >
> >
sb_schema: 0 schema: 0
sb_zero_threshold: 0 zero_threshold: 0
> >
> >

File diff suppressed because it is too large Load diff

View file

@ -68,22 +68,39 @@ message Untyped {
} }
message Histogram { message Histogram {
uint64 sample_count = 1; uint64 sample_count = 1;
double sample_count_float = 9; // Overrides sample_count if > 0. double sample_count_float = 4; // Overrides sample_count if > 0.
double sample_sum = 2; double sample_sum = 2;
repeated Bucket bucket = 3; // Ordered in increasing order of upper_bound, +Inf bucket is optional. // Buckets for the conventional histogram.
// Sparse bucket (sb) stuff: repeated Bucket bucket = 3; // Ordered in increasing order of upper_bound, +Inf bucket is optional.
// The sb_schema defines the bucket schema. Currently, valid numbers are -4 <= n <= 8.
// Everything below here is for native histograms (also known as sparse histograms).
// schema defines the bucket schema. Currently, valid numbers are -4 <= n <= 8.
// They are all for base-2 bucket schemas, where 1 is a bucket boundary in each case, and // They are all for base-2 bucket schemas, where 1 is a bucket boundary in each case, and
// then each power of two is divided into 2^n logarithmic buckets. // then each power of two is divided into 2^n logarithmic buckets.
// Or in other words, each bucket boundary is the previous boundary times 2^(2^-n). // Or in other words, each bucket boundary is the previous boundary times 2^(2^-n).
// In the future, more bucket schemas may be added using numbers < -4 or > 8. // In the future, more bucket schemas may be added using numbers < -4 or > 8.
sint32 sb_schema = 4; sint32 schema = 5;
double sb_zero_threshold = 5; // Breadth of the zero bucket. double zero_threshold = 6; // Breadth of the zero bucket.
uint64 sb_zero_count = 6; // Count in zero bucket. uint64 zero_count = 7; // Count in zero bucket.
double sb_zero_count_float = 10; // Overrides sb_zero_count if > 0. double zero_count_float = 8; // Overrides sb_zero_count if > 0.
SparseBuckets sb_negative = 7; // Negative sparse buckets.
SparseBuckets sb_positive = 8; // Positive sparse buckets. // Negative buckets for the native histogram.
repeated BucketSpan negative_span = 9;
// Use either "negative_delta" or "negative_count", the former for
// regular histograms with integer counts, the latter for float
// histograms.
repeated sint64 negative_delta = 10; // Count delta of each bucket compared to previous one (or to zero for 1st bucket).
repeated double negative_count = 11; // Absolute count of each bucket.
// Positive buckets for the native histogram.
repeated BucketSpan positive_span = 12;
// Use either "positive_delta" or "positive_count", the former for
// regular histograms with integer counts, the latter for float
// histograms.
repeated sint64 positive_delta = 13; // Count delta of each bucket compared to previous one (or to zero for 1st bucket).
repeated double positive_count = 14; // Absolute count of each bucket.
} }
message Bucket { message Bucket {
@ -93,22 +110,15 @@ message Bucket {
Exemplar exemplar = 3; Exemplar exemplar = 3;
} }
message SparseBuckets { // A BucketSpan defines a number of consecutive buckets in a native
// A Span is a given number of consecutive buckets at a given // histogram with their offset. Logically, it would be more
// offset. Logically, it would be more straightforward to include // straightforward to include the bucket counts in the Span. However,
// the bucket counts in the Span. However, the protobuf // the protobuf representation is more compact in the way the data is
// representation is more compact in the way the data is structured // structured here (with all the buckets in a single array separate
// here (with all the buckets in a single array separate from the // from the Spans).
// Spans). message BucketSpan {
message Span { sint32 offset = 1; // Gap to previous span, or starting point for 1st span (which can be negative).
sint32 offset = 1; // Gap to previous span, or starting point for 1st span (which can be negative). uint32 length = 2; // Length of consecutive buckets.
uint32 length = 2; // Length of consecutive buckets.
}
repeated Span span = 1;
// Only one of "delta" or "count" may be used, the former for regular
// histograms with integer counts, the latter for float histograms.
repeated sint64 delta = 2; // Count delta of each bucket compared to previous one (or to zero for 1st bucket).
repeated double count = 3; // Absolute count of each bucket.
} }
message Exemplar { message Exemplar {