mirror of
https://github.com/prometheus/prometheus.git
synced 2025-01-12 06:17:27 -08:00
Add abs() and over-time aggregation functions.
This implements aggregation functions over time as request in https://github.com/prometheus/prometheus/issues/383. Change-Id: Ifd69b850de8cfdf6e7a6c0e042056fa4c672410e
This commit is contained in:
parent
1bb7074fec
commit
c5984f1818
|
@ -21,6 +21,7 @@ import (
|
|||
|
||||
clientmodel "github.com/prometheus/client_golang/model"
|
||||
|
||||
"github.com/prometheus/prometheus/storage/metric"
|
||||
"github.com/prometheus/prometheus/utility"
|
||||
)
|
||||
|
||||
|
@ -275,7 +276,105 @@ func countScalarImpl(timestamp clientmodel.Timestamp, view *viewAdapter, args []
|
|||
return clientmodel.SampleValue(len(args[0].(VectorNode).Eval(timestamp, view)))
|
||||
}
|
||||
|
||||
func aggrOverTime(timestamp clientmodel.Timestamp, view *viewAdapter, args []Node, aggrFn func(metric.Values) clientmodel.SampleValue) interface{} {
|
||||
n := args[0].(MatrixNode)
|
||||
matrixVal := n.Eval(timestamp, view)
|
||||
resultVector := Vector{}
|
||||
|
||||
for _, el := range matrixVal {
|
||||
if len(el.Values) == 0 {
|
||||
continue
|
||||
}
|
||||
|
||||
resultVector = append(resultVector, &clientmodel.Sample{
|
||||
Metric: el.Metric,
|
||||
Value: aggrFn(el.Values),
|
||||
Timestamp: timestamp,
|
||||
})
|
||||
}
|
||||
return resultVector
|
||||
}
|
||||
|
||||
// === avg_over_time(matrix MatrixNode) Vector ===
|
||||
func avgOverTimeImpl(timestamp clientmodel.Timestamp, view *viewAdapter, args []Node) interface{} {
|
||||
return aggrOverTime(timestamp, view, args, func(values metric.Values) clientmodel.SampleValue {
|
||||
var sum clientmodel.SampleValue
|
||||
for _, v := range values {
|
||||
sum += v.Value
|
||||
}
|
||||
return sum / clientmodel.SampleValue(len(values))
|
||||
})
|
||||
}
|
||||
|
||||
// === count_over_time(matrix MatrixNode) Vector ===
|
||||
func countOverTimeImpl(timestamp clientmodel.Timestamp, view *viewAdapter, args []Node) interface{} {
|
||||
return aggrOverTime(timestamp, view, args, func(values metric.Values) clientmodel.SampleValue {
|
||||
return clientmodel.SampleValue(len(values))
|
||||
})
|
||||
}
|
||||
|
||||
// === max_over_time(matrix MatrixNode) Vector ===
|
||||
func maxOverTimeImpl(timestamp clientmodel.Timestamp, view *viewAdapter, args []Node) interface{} {
|
||||
return aggrOverTime(timestamp, view, args, func(values metric.Values) clientmodel.SampleValue {
|
||||
max := math.Inf(-1)
|
||||
for _, v := range values {
|
||||
max = math.Max(max, float64(v.Value))
|
||||
}
|
||||
return clientmodel.SampleValue(max)
|
||||
})
|
||||
}
|
||||
|
||||
// === min_over_time(matrix MatrixNode) Vector ===
|
||||
func minOverTimeImpl(timestamp clientmodel.Timestamp, view *viewAdapter, args []Node) interface{} {
|
||||
return aggrOverTime(timestamp, view, args, func(values metric.Values) clientmodel.SampleValue {
|
||||
min := math.Inf(1)
|
||||
for _, v := range values {
|
||||
min = math.Min(min, float64(v.Value))
|
||||
}
|
||||
return clientmodel.SampleValue(min)
|
||||
})
|
||||
}
|
||||
|
||||
// === sum_over_time(matrix MatrixNode) Vector ===
|
||||
func sumOverTimeImpl(timestamp clientmodel.Timestamp, view *viewAdapter, args []Node) interface{} {
|
||||
return aggrOverTime(timestamp, view, args, func(values metric.Values) clientmodel.SampleValue {
|
||||
var sum clientmodel.SampleValue
|
||||
for _, v := range values {
|
||||
sum += v.Value
|
||||
}
|
||||
return sum
|
||||
})
|
||||
}
|
||||
|
||||
// === abs(vector VectorNode) Vector ===
|
||||
func absImpl(timestamp clientmodel.Timestamp, view *viewAdapter, args []Node) interface{} {
|
||||
n := args[0].(VectorNode)
|
||||
vector := n.Eval(timestamp, view)
|
||||
for _, el := range vector {
|
||||
el.Value = clientmodel.SampleValue(math.Abs(float64(el.Value)))
|
||||
}
|
||||
return vector
|
||||
}
|
||||
|
||||
var functions = map[string]*Function{
|
||||
"abs": {
|
||||
name: "abs",
|
||||
argTypes: []ExprType{VECTOR},
|
||||
returnType: VECTOR,
|
||||
callFn: absImpl,
|
||||
},
|
||||
"avg_over_time": {
|
||||
name: "avg_over_time",
|
||||
argTypes: []ExprType{MATRIX},
|
||||
returnType: VECTOR,
|
||||
callFn: avgOverTimeImpl,
|
||||
},
|
||||
"count_over_time": {
|
||||
name: "count_over_time",
|
||||
argTypes: []ExprType{MATRIX},
|
||||
returnType: VECTOR,
|
||||
callFn: countOverTimeImpl,
|
||||
},
|
||||
"count_scalar": {
|
||||
name: "count_scalar",
|
||||
argTypes: []ExprType{VECTOR},
|
||||
|
@ -288,6 +387,18 @@ var functions = map[string]*Function{
|
|||
returnType: VECTOR,
|
||||
callFn: deltaImpl,
|
||||
},
|
||||
"max_over_time": {
|
||||
name: "max_over_time",
|
||||
argTypes: []ExprType{MATRIX},
|
||||
returnType: VECTOR,
|
||||
callFn: maxOverTimeImpl,
|
||||
},
|
||||
"min_over_time": {
|
||||
name: "min_over_time",
|
||||
argTypes: []ExprType{MATRIX},
|
||||
returnType: VECTOR,
|
||||
callFn: minOverTimeImpl,
|
||||
},
|
||||
"rate": {
|
||||
name: "rate",
|
||||
argTypes: []ExprType{MATRIX},
|
||||
|
@ -318,6 +429,12 @@ var functions = map[string]*Function{
|
|||
returnType: VECTOR,
|
||||
callFn: sortDescImpl,
|
||||
},
|
||||
"sum_over_time": {
|
||||
name: "sum_over_time",
|
||||
argTypes: []ExprType{MATRIX},
|
||||
returnType: VECTOR,
|
||||
callFn: sumOverTimeImpl,
|
||||
},
|
||||
"time": {
|
||||
name: "time",
|
||||
argTypes: []ExprType{},
|
||||
|
|
|
@ -436,12 +436,66 @@ func TestExpressions(t *testing.T) {
|
|||
}, {
|
||||
expr: `http_requests{group="production",job=~"^api"}`,
|
||||
output: []string{
|
||||
`http_requests{group="production", instance="1", job="api-server"} => 200 @[%v]`,
|
||||
`http_requests{group="production", instance="0", job="api-server"} => 100 @[%v]`,
|
||||
`http_requests{group="production", instance="1", job="api-server"} => 200 @[%v]`,
|
||||
},
|
||||
fullRanges: 0,
|
||||
intervalRanges: 2,
|
||||
},
|
||||
{
|
||||
expr: `abs(-1 * http_requests{group="production",job="api-server"})`,
|
||||
output: []string{
|
||||
`http_requests{group="production", instance="0", job="api-server"} => 100 @[%v]`,
|
||||
`http_requests{group="production", instance="1", job="api-server"} => 200 @[%v]`,
|
||||
},
|
||||
fullRanges: 0,
|
||||
intervalRanges: 2,
|
||||
},
|
||||
{
|
||||
expr: `avg_over_time(http_requests{group="production",job="api-server"}[1h])`,
|
||||
output: []string{
|
||||
`http_requests{group="production", instance="0", job="api-server"} => 50 @[%v]`,
|
||||
`http_requests{group="production", instance="1", job="api-server"} => 100 @[%v]`,
|
||||
},
|
||||
fullRanges: 2,
|
||||
intervalRanges: 0,
|
||||
},
|
||||
{
|
||||
expr: `count_over_time(http_requests{group="production",job="api-server"}[1h])`,
|
||||
output: []string{
|
||||
`http_requests{group="production", instance="0", job="api-server"} => 11 @[%v]`,
|
||||
`http_requests{group="production", instance="1", job="api-server"} => 11 @[%v]`,
|
||||
},
|
||||
fullRanges: 2,
|
||||
intervalRanges: 0,
|
||||
},
|
||||
{
|
||||
expr: `max_over_time(http_requests{group="production",job="api-server"}[1h])`,
|
||||
output: []string{
|
||||
`http_requests{group="production", instance="0", job="api-server"} => 100 @[%v]`,
|
||||
`http_requests{group="production", instance="1", job="api-server"} => 200 @[%v]`,
|
||||
},
|
||||
fullRanges: 2,
|
||||
intervalRanges: 0,
|
||||
},
|
||||
{
|
||||
expr: `min_over_time(http_requests{group="production",job="api-server"}[1h])`,
|
||||
output: []string{
|
||||
`http_requests{group="production", instance="0", job="api-server"} => 0 @[%v]`,
|
||||
`http_requests{group="production", instance="1", job="api-server"} => 0 @[%v]`,
|
||||
},
|
||||
fullRanges: 2,
|
||||
intervalRanges: 0,
|
||||
},
|
||||
{
|
||||
expr: `sum_over_time(http_requests{group="production",job="api-server"}[1h])`,
|
||||
output: []string{
|
||||
`http_requests{group="production", instance="0", job="api-server"} => 550 @[%v]`,
|
||||
`http_requests{group="production", instance="1", job="api-server"} => 1100 @[%v]`,
|
||||
},
|
||||
fullRanges: 2,
|
||||
intervalRanges: 0,
|
||||
},
|
||||
}
|
||||
|
||||
tieredStorage, closer := newTestStorage(t)
|
||||
|
|
Loading…
Reference in a new issue