diff --git a/promql/promqltest/testdata/histograms.test b/promql/promqltest/testdata/histograms.test index e1fb1d85ac..349a1e79c0 100644 --- a/promql/promqltest/testdata/histograms.test +++ b/promql/promqltest/testdata/histograms.test @@ -73,22 +73,32 @@ eval instant at 50m histogram_count(testhistogram3) {start="positive"} 110 {start="negative"} 20 +# Classic way of accessing the count still works. +eval instant at 50m testhistogram3_count + testhistogram3_count{start="positive"} 110 + testhistogram3_count{start="negative"} 20 + # Test histogram_sum. eval instant at 50m histogram_sum(testhistogram3) {start="positive"} 330 {start="negative"} 80 -# Test histogram_avg. +# Classic way of accessing the sum still works. +eval instant at 50m testhistogram3_sum + testhistogram3_sum{start="positive"} 330 + testhistogram3_sum{start="negative"} 80 + +# Test histogram_avg. This has no classic equivalent. eval instant at 50m histogram_avg(testhistogram3) {start="positive"} 3 {start="negative"} 4 -# Test histogram_stddev. +# Test histogram_stddev. This has no classic equivalent. eval instant at 50m histogram_stddev(testhistogram3) {start="positive"} 2.8189265757336734 {start="negative"} 4.182715937754936 -# Test histogram_stdvar. +# Test histogram_stdvar. This has no classic equivalent. eval instant at 50m histogram_stdvar(testhistogram3) {start="positive"} 7.946347039377573 {start="negative"} 17.495112615949154 @@ -103,137 +113,282 @@ eval instant at 50m histogram_fraction(0, 0.2, rate(testhistogram3[5m])) {start="positive"} 0.6363636363636364 {start="negative"} 0 -# Test histogram_quantile. +# In the classic histogram, we can access the corresponding bucket (if +# it exists) and divide by the count to get the same result. + +eval instant at 50m testhistogram3_bucket{le=".2"} / ignoring(le) testhistogram3_count + {start="positive"} 0.6363636363636364 + +eval instant at 50m rate(testhistogram3_bucket{le=".2"}[5m]) / ignoring(le) rate(testhistogram3_count[5m]) + {start="positive"} 0.6363636363636364 + +# Test histogram_quantile, native and classic. + +eval instant at 50m histogram_quantile(0, testhistogram3) + {start="positive"} 0 + {start="negative"} -0.25 eval instant at 50m histogram_quantile(0, testhistogram3_bucket) {start="positive"} 0 {start="negative"} -0.25 +eval instant at 50m histogram_quantile(0.25, testhistogram3) + {start="positive"} 0.055 + {start="negative"} -0.225 + eval instant at 50m histogram_quantile(0.25, testhistogram3_bucket) {start="positive"} 0.055 {start="negative"} -0.225 +eval instant at 50m histogram_quantile(0.5, testhistogram3) + {start="positive"} 0.125 + {start="negative"} -0.2 + eval instant at 50m histogram_quantile(0.5, testhistogram3_bucket) {start="positive"} 0.125 {start="negative"} -0.2 +eval instant at 50m histogram_quantile(0.75, testhistogram3) + {start="positive"} 0.45 + {start="negative"} -0.15 + eval instant at 50m histogram_quantile(0.75, testhistogram3_bucket) {start="positive"} 0.45 {start="negative"} -0.15 +eval instant at 50m histogram_quantile(1, testhistogram3) + {start="positive"} 1 + {start="negative"} -0.1 + eval instant at 50m histogram_quantile(1, testhistogram3_bucket) {start="positive"} 1 {start="negative"} -0.1 # Quantile too low. + +eval_warn instant at 50m histogram_quantile(-0.1, testhistogram) + {start="positive"} -Inf + {start="negative"} -Inf + eval_warn instant at 50m histogram_quantile(-0.1, testhistogram_bucket) {start="positive"} -Inf {start="negative"} -Inf # Quantile too high. + +eval_warn instant at 50m histogram_quantile(1.01, testhistogram) + {start="positive"} +Inf + {start="negative"} +Inf + eval_warn instant at 50m histogram_quantile(1.01, testhistogram_bucket) {start="positive"} +Inf {start="negative"} +Inf # Quantile invalid. + +eval_warn instant at 50m histogram_quantile(NaN, testhistogram) + {start="positive"} NaN + {start="negative"} NaN + eval_warn instant at 50m histogram_quantile(NaN, testhistogram_bucket) {start="positive"} NaN {start="negative"} NaN # Quantile value in lowest bucket. + +eval instant at 50m histogram_quantile(0, testhistogram) + {start="positive"} 0 + {start="negative"} -0.2 + eval instant at 50m histogram_quantile(0, testhistogram_bucket) {start="positive"} 0 {start="negative"} -0.2 # Quantile value in highest bucket. + +eval instant at 50m histogram_quantile(1, testhistogram) + {start="positive"} 1 + {start="negative"} 0.3 + eval instant at 50m histogram_quantile(1, testhistogram_bucket) {start="positive"} 1 {start="negative"} 0.3 # Finally some useful quantiles. + +eval instant at 50m histogram_quantile(0.2, testhistogram) + {start="positive"} 0.048 + {start="negative"} -0.2 + eval instant at 50m histogram_quantile(0.2, testhistogram_bucket) {start="positive"} 0.048 {start="negative"} -0.2 +eval instant at 50m histogram_quantile(0.5, testhistogram) + {start="positive"} 0.15 + {start="negative"} -0.15 + eval instant at 50m histogram_quantile(0.5, testhistogram_bucket) {start="positive"} 0.15 {start="negative"} -0.15 +eval instant at 50m histogram_quantile(0.8, testhistogram) + {start="positive"} 0.72 + {start="negative"} 0.3 + eval instant at 50m histogram_quantile(0.8, testhistogram_bucket) {start="positive"} 0.72 {start="negative"} 0.3 # More realistic with rates. + +eval instant at 50m histogram_quantile(0.2, rate(testhistogram[5m])) + {start="positive"} 0.048 + {start="negative"} -0.2 + eval instant at 50m histogram_quantile(0.2, rate(testhistogram_bucket[5m])) {start="positive"} 0.048 {start="negative"} -0.2 +eval instant at 50m histogram_quantile(0.5, rate(testhistogram[5m])) + {start="positive"} 0.15 + {start="negative"} -0.15 + eval instant at 50m histogram_quantile(0.5, rate(testhistogram_bucket[5m])) {start="positive"} 0.15 {start="negative"} -0.15 +eval instant at 50m histogram_quantile(0.8, rate(testhistogram[5m])) + {start="positive"} 0.72 + {start="negative"} 0.3 + eval instant at 50m histogram_quantile(0.8, rate(testhistogram_bucket[5m])) {start="positive"} 0.72 {start="negative"} 0.3 # Want results exactly in the middle of the bucket. + +eval instant at 7m histogram_quantile(1./6., testhistogram2) + {} 1 + eval instant at 7m histogram_quantile(1./6., testhistogram2_bucket) {} 1 +eval instant at 7m histogram_quantile(0.5, testhistogram2) + {} 3 + eval instant at 7m histogram_quantile(0.5, testhistogram2_bucket) {} 3 +eval instant at 7m histogram_quantile(5./6., testhistogram2) + {} 5 + eval instant at 7m histogram_quantile(5./6., testhistogram2_bucket) {} 5 +eval instant at 47m histogram_quantile(1./6., rate(testhistogram2[15m])) + {} 1 + eval instant at 47m histogram_quantile(1./6., rate(testhistogram2_bucket[15m])) {} 1 +eval instant at 47m histogram_quantile(0.5, rate(testhistogram2[15m])) + {} 3 + eval instant at 47m histogram_quantile(0.5, rate(testhistogram2_bucket[15m])) {} 3 +eval instant at 47m histogram_quantile(5./6., rate(testhistogram2[15m])) + {} 5 + eval instant at 47m histogram_quantile(5./6., rate(testhistogram2_bucket[15m])) {} 5 -# Aggregated histogram: Everything in one. +# Aggregated histogram: Everything in one. Note how native histograms +# don't require aggregation by le. + +eval instant at 50m histogram_quantile(0.3, sum(rate(request_duration_seconds[5m]))) + {} 0.075 + eval instant at 50m histogram_quantile(0.3, sum(rate(request_duration_seconds_bucket[5m])) by (le)) {} 0.075 +eval instant at 50m histogram_quantile(0.5, sum(rate(request_duration_seconds[5m]))) + {} 0.1277777777777778 + eval instant at 50m histogram_quantile(0.5, sum(rate(request_duration_seconds_bucket[5m])) by (le)) {} 0.1277777777777778 # Aggregated histogram: Everything in one. Now with avg, which does not change anything. + +eval instant at 50m histogram_quantile(0.3, avg(rate(request_duration_seconds[5m]))) + {} 0.075 + eval instant at 50m histogram_quantile(0.3, avg(rate(request_duration_seconds_bucket[5m])) by (le)) {} 0.075 +eval instant at 50m histogram_quantile(0.5, avg(rate(request_duration_seconds[5m]))) + {} 0.12777777777777778 + eval instant at 50m histogram_quantile(0.5, avg(rate(request_duration_seconds_bucket[5m])) by (le)) {} 0.12777777777777778 # Aggregated histogram: By instance. + +eval instant at 50m histogram_quantile(0.3, sum(rate(request_duration_seconds[5m])) by (instance)) + {instance="ins1"} 0.075 + {instance="ins2"} 0.075 + eval instant at 50m histogram_quantile(0.3, sum(rate(request_duration_seconds_bucket[5m])) by (le, instance)) {instance="ins1"} 0.075 {instance="ins2"} 0.075 +eval instant at 50m histogram_quantile(0.5, sum(rate(request_duration_seconds[5m])) by (instance)) + {instance="ins1"} 0.1333333333 + {instance="ins2"} 0.125 + eval instant at 50m histogram_quantile(0.5, sum(rate(request_duration_seconds_bucket[5m])) by (le, instance)) {instance="ins1"} 0.1333333333 {instance="ins2"} 0.125 # Aggregated histogram: By job. + +eval instant at 50m histogram_quantile(0.3, sum(rate(request_duration_seconds[5m])) by (job)) + {job="job1"} 0.1 + {job="job2"} 0.0642857142857143 + eval instant at 50m histogram_quantile(0.3, sum(rate(request_duration_seconds_bucket[5m])) by (le, job)) {job="job1"} 0.1 {job="job2"} 0.0642857142857143 +eval instant at 50m histogram_quantile(0.5, sum(rate(request_duration_seconds[5m])) by (job)) + {job="job1"} 0.14 + {job="job2"} 0.1125 + eval instant at 50m histogram_quantile(0.5, sum(rate(request_duration_seconds_bucket[5m])) by (le, job)) {job="job1"} 0.14 {job="job2"} 0.1125 # Aggregated histogram: By job and instance. + +eval instant at 50m histogram_quantile(0.3, sum(rate(request_duration_seconds[5m])) by (job, instance)) + {instance="ins1", job="job1"} 0.11 + {instance="ins2", job="job1"} 0.09 + {instance="ins1", job="job2"} 0.06 + {instance="ins2", job="job2"} 0.0675 + eval instant at 50m histogram_quantile(0.3, sum(rate(request_duration_seconds_bucket[5m])) by (le, job, instance)) {instance="ins1", job="job1"} 0.11 {instance="ins2", job="job1"} 0.09 {instance="ins1", job="job2"} 0.06 {instance="ins2", job="job2"} 0.0675 +eval instant at 50m histogram_quantile(0.5, sum(rate(request_duration_seconds[5m])) by (job, instance)) + {instance="ins1", job="job1"} 0.15 + {instance="ins2", job="job1"} 0.1333333333333333 + {instance="ins1", job="job2"} 0.1 + {instance="ins2", job="job2"} 0.1166666666666667 + eval instant at 50m histogram_quantile(0.5, sum(rate(request_duration_seconds_bucket[5m])) by (le, job, instance)) {instance="ins1", job="job1"} 0.15 {instance="ins2", job="job1"} 0.1333333333333333 @@ -241,18 +396,32 @@ eval instant at 50m histogram_quantile(0.5, sum(rate(request_duration_seconds_bu {instance="ins2", job="job2"} 0.1166666666666667 # The unaggregated histogram for comparison. Same result as the previous one. + +eval instant at 50m histogram_quantile(0.3, rate(request_duration_seconds[5m])) + {instance="ins1", job="job1"} 0.11 + {instance="ins2", job="job1"} 0.09 + {instance="ins1", job="job2"} 0.06 + {instance="ins2", job="job2"} 0.0675 + eval instant at 50m histogram_quantile(0.3, rate(request_duration_seconds_bucket[5m])) {instance="ins1", job="job1"} 0.11 {instance="ins2", job="job1"} 0.09 {instance="ins1", job="job2"} 0.06 {instance="ins2", job="job2"} 0.0675 +eval instant at 50m histogram_quantile(0.5, rate(request_duration_seconds[5m])) + {instance="ins1", job="job1"} 0.15 + {instance="ins2", job="job1"} 0.13333333333333333 + {instance="ins1", job="job2"} 0.1 + {instance="ins2", job="job2"} 0.11666666666666667 + eval instant at 50m histogram_quantile(0.5, rate(request_duration_seconds_bucket[5m])) {instance="ins1", job="job1"} 0.15 {instance="ins2", job="job1"} 0.13333333333333333 {instance="ins1", job="job2"} 0.1 {instance="ins2", job="job2"} 0.11666666666666667 +# All NHCBs summed into one. eval instant at 50m sum(request_duration_seconds) {} {{schema:-53 count:250 custom_values:[0.1 0.2] buckets:[100 90 60]}} @@ -303,11 +472,13 @@ load_with_nhcb 5m eval instant at 50m histogram_quantile(0.2, rate(empty_bucket[5m])) {instance="ins1", job="job1"} NaN -# Load a duplicate histogram with a different name to test failure scenario on multiple histograms with the same label set +# Load a duplicate histogram with a different name to test failure scenario on multiple histograms with the same label set. # https://github.com/prometheus/prometheus/issues/9910 load_with_nhcb 5m - request_duration_seconds2_bucket{job="job1", instance="ins1", le="0.1"} 0+1x10 - request_duration_seconds2_bucket{job="job1", instance="ins1", le="0.2"} 0+3x10 - request_duration_seconds2_bucket{job="job1", instance="ins1", le="+Inf"} 0+4x10 + request_duration_seconds2_bucket{job="job1", instance="ins1", le="0.1"} 0+1x10 + request_duration_seconds2_bucket{job="job1", instance="ins1", le="0.2"} 0+3x10 + request_duration_seconds2_bucket{job="job1", instance="ins1", le="+Inf"} 0+4x10 -eval_fail instant at 50m histogram_quantile(0.99, {__name__=~"request_duration_seconds\\d*_bucket$"}) +eval_fail instant at 50m histogram_quantile(0.99, {__name__=~"request_duration_seconds\\d*_bucket"}) + +eval_fail instant at 50m histogram_quantile(0.99, {__name__=~"request_duration_seconds\\d*"})