mirror of
https://github.com/prometheus/prometheus.git
synced 2025-01-23 11:41:54 -08:00
PromQL: ignore small errors for bucketQuantile (#13153)
promql: Improve histogram_quantile calculation for classic buckets Tiny differences between classic buckets are most likely caused by floating point precision issues. With this commit, relative changes below a certain threshold are ignored. This makes the result of histogram_quantile more meaningful, and also avoids triggering the _input to histogram_quantile needed to be fixed for monotonicity_ annotations in unactionable cases. This commit also adds explanation of the new adjustment and of the monotonicity annotation to the documentation of `histogram_quantile`. --------- Signed-off-by: Jeanette Tan <jeanette.tan@grafana.com>
This commit is contained in:
parent
2e205ee95c
commit
ccfe14d7e7
|
@ -323,6 +323,24 @@ a histogram.
|
|||
You can use `histogram_quantile(1, v instant-vector)` to get the estimated maximum value stored in
|
||||
a histogram.
|
||||
|
||||
Buckets of classic histograms are cumulative. Therefore, the following should always be the case:
|
||||
|
||||
- The counts in the buckets are monotonically increasing (strictly non-decreasing).
|
||||
- A lack of observations between the upper limits of two consecutive buckets results in equal counts
|
||||
in those two buckets.
|
||||
|
||||
However, floating point precision issues (e.g. small discrepancies introduced by computing of buckets
|
||||
with `sum(rate(...))`) or invalid data might violate these assumptions. In that case,
|
||||
`histogram_quantile` would be unable to return meaningful results. To mitigate the issue,
|
||||
`histogram_quantile` assumes that tiny relative differences between consecutive buckets are happening
|
||||
because of floating point precision errors and ignores them. (The threshold to ignore a difference
|
||||
between two buckets is a trillionth (1e-12) of the sum of both buckets.) Furthermore, if there are
|
||||
non-monotonic bucket counts even after this adjustment, they are increased to the value of the
|
||||
previous buckets to enforce monotonicity. The latter is evidence for an actual issue with the input
|
||||
data and is therefore flagged with an informational annotation reading `input to histogram_quantile
|
||||
needed to be fixed for monotonicity`. If you encounter this annotation, you should find and remove
|
||||
the source of the invalid data.
|
||||
|
||||
## `histogram_stddev()` and `histogram_stdvar()`
|
||||
|
||||
_Both functions only act on native histograms, which are an experimental
|
||||
|
|
|
@ -3699,7 +3699,7 @@ func TestNativeHistogram_HistogramQuantile(t *testing.T) {
|
|||
|
||||
require.Len(t, vector, 1)
|
||||
require.Nil(t, vector[0].H)
|
||||
require.True(t, almostEqual(sc.value, vector[0].F))
|
||||
require.True(t, almostEqual(sc.value, vector[0].F, defaultEpsilon))
|
||||
})
|
||||
}
|
||||
idx++
|
||||
|
|
|
@ -1163,7 +1163,7 @@ func funcHistogramQuantile(vals []parser.Value, args parser.Expressions, enh *Ev
|
|||
|
||||
for _, mb := range enh.signatureToMetricWithBuckets {
|
||||
if len(mb.buckets) > 0 {
|
||||
res, forcedMonotonicity := bucketQuantile(q, mb.buckets)
|
||||
res, forcedMonotonicity, _ := bucketQuantile(q, mb.buckets)
|
||||
enh.Out = append(enh.Out, Sample{
|
||||
Metric: mb.metric,
|
||||
F: res,
|
||||
|
|
|
@ -23,6 +23,25 @@ import (
|
|||
"github.com/prometheus/prometheus/model/labels"
|
||||
)
|
||||
|
||||
// smallDeltaTolerance is the threshold for relative deltas between classic
|
||||
// histogram buckets that will be ignored by the histogram_quantile function
|
||||
// because they are most likely artifacts of floating point precision issues.
|
||||
// Testing on 2 sets of real data with bugs arising from small deltas,
|
||||
// the safe ranges were from:
|
||||
// - 1e-05 to 1e-15
|
||||
// - 1e-06 to 1e-15
|
||||
// Anything to the left of that would cause non-query-sharded data to have
|
||||
// small deltas ignored (unnecessary and we should avoid this), and anything
|
||||
// to the right of that would cause query-sharded data to not have its small
|
||||
// deltas ignored (so the problem won't be fixed).
|
||||
// For context, query sharding triggers these float precision errors in Mimir.
|
||||
// To illustrate, with a relative deviation of 1e-12, we need to have 1e12
|
||||
// observations in the bucket so that the change of one observation is small
|
||||
// enough to get ignored. With the usual observation rate even of very busy
|
||||
// services, this will hardly be reached in timeframes that matters for
|
||||
// monitoring.
|
||||
const smallDeltaTolerance = 1e-12
|
||||
|
||||
// Helpers to calculate quantiles.
|
||||
|
||||
// excludedLabels are the labels to exclude from signature calculation for
|
||||
|
@ -72,16 +91,19 @@ type metricWithBuckets struct {
|
|||
//
|
||||
// If q>1, +Inf is returned.
|
||||
//
|
||||
// We also return a bool to indicate if monotonicity needed to be forced.
|
||||
func bucketQuantile(q float64, buckets buckets) (float64, bool) {
|
||||
// We also return a bool to indicate if monotonicity needed to be forced,
|
||||
// and another bool to indicate if small differences between buckets (that
|
||||
// are likely artifacts of floating point precision issues) have been
|
||||
// ignored.
|
||||
func bucketQuantile(q float64, buckets buckets) (float64, bool, bool) {
|
||||
if math.IsNaN(q) {
|
||||
return math.NaN(), false
|
||||
return math.NaN(), false, false
|
||||
}
|
||||
if q < 0 {
|
||||
return math.Inf(-1), false
|
||||
return math.Inf(-1), false, false
|
||||
}
|
||||
if q > 1 {
|
||||
return math.Inf(+1), false
|
||||
return math.Inf(+1), false, false
|
||||
}
|
||||
slices.SortFunc(buckets, func(a, b bucket) int {
|
||||
// We don't expect the bucket boundary to be a NaN.
|
||||
|
@ -94,27 +116,27 @@ func bucketQuantile(q float64, buckets buckets) (float64, bool) {
|
|||
return 0
|
||||
})
|
||||
if !math.IsInf(buckets[len(buckets)-1].upperBound, +1) {
|
||||
return math.NaN(), false
|
||||
return math.NaN(), false, false
|
||||
}
|
||||
|
||||
buckets = coalesceBuckets(buckets)
|
||||
forcedMonotonic := ensureMonotonic(buckets)
|
||||
forcedMonotonic, fixedPrecision := ensureMonotonicAndIgnoreSmallDeltas(buckets, smallDeltaTolerance)
|
||||
|
||||
if len(buckets) < 2 {
|
||||
return math.NaN(), false
|
||||
return math.NaN(), false, false
|
||||
}
|
||||
observations := buckets[len(buckets)-1].count
|
||||
if observations == 0 {
|
||||
return math.NaN(), false
|
||||
return math.NaN(), false, false
|
||||
}
|
||||
rank := q * observations
|
||||
b := sort.Search(len(buckets)-1, func(i int) bool { return buckets[i].count >= rank })
|
||||
|
||||
if b == len(buckets)-1 {
|
||||
return buckets[len(buckets)-2].upperBound, forcedMonotonic
|
||||
return buckets[len(buckets)-2].upperBound, forcedMonotonic, fixedPrecision
|
||||
}
|
||||
if b == 0 && buckets[0].upperBound <= 0 {
|
||||
return buckets[0].upperBound, forcedMonotonic
|
||||
return buckets[0].upperBound, forcedMonotonic, fixedPrecision
|
||||
}
|
||||
var (
|
||||
bucketStart float64
|
||||
|
@ -126,7 +148,7 @@ func bucketQuantile(q float64, buckets buckets) (float64, bool) {
|
|||
count -= buckets[b-1].count
|
||||
rank -= buckets[b-1].count
|
||||
}
|
||||
return bucketStart + (bucketEnd-bucketStart)*(rank/count), forcedMonotonic
|
||||
return bucketStart + (bucketEnd-bucketStart)*(rank/count), forcedMonotonic, fixedPrecision
|
||||
}
|
||||
|
||||
// histogramQuantile calculates the quantile 'q' based on the given histogram.
|
||||
|
@ -348,6 +370,7 @@ func coalesceBuckets(buckets buckets) buckets {
|
|||
// - Ingestion via the remote write receiver that Prometheus implements.
|
||||
// - Optimisation of query execution where precision is sacrificed for other
|
||||
// benefits, not by Prometheus but by systems built on top of it.
|
||||
// - Circumstances where floating point precision errors accumulate.
|
||||
//
|
||||
// Monotonicity is usually guaranteed because if a bucket with upper bound
|
||||
// u1 has count c1, then any bucket with a higher upper bound u > u1 must
|
||||
|
@ -357,22 +380,42 @@ func coalesceBuckets(buckets buckets) buckets {
|
|||
// bucket with the φ-quantile count, so breaking the monotonicity
|
||||
// guarantee causes bucketQuantile() to return undefined (nonsense) results.
|
||||
//
|
||||
// As a somewhat hacky solution, we calculate the "envelope" of the histogram
|
||||
// buckets, essentially removing any decreases in the count between successive
|
||||
// buckets. We return a bool to indicate if this monotonicity was forced or not.
|
||||
func ensureMonotonic(buckets buckets) bool {
|
||||
forced := false
|
||||
max := buckets[0].count
|
||||
// As a somewhat hacky solution, we first silently ignore any numerically
|
||||
// insignificant (relative delta below the requested tolerance and likely to
|
||||
// be from floating point precision errors) differences between successive
|
||||
// buckets regardless of the direction. Then we calculate the "envelope" of
|
||||
// the histogram buckets, essentially removing any decreases in the count
|
||||
// between successive buckets.
|
||||
//
|
||||
// We return a bool to indicate if this monotonicity was forced or not, and
|
||||
// another bool to indicate if small deltas were ignored or not.
|
||||
func ensureMonotonicAndIgnoreSmallDeltas(buckets buckets, tolerance float64) (bool, bool) {
|
||||
var forcedMonotonic, fixedPrecision bool
|
||||
prev := buckets[0].count
|
||||
for i := 1; i < len(buckets); i++ {
|
||||
switch {
|
||||
case buckets[i].count > max:
|
||||
max = buckets[i].count
|
||||
case buckets[i].count < max:
|
||||
buckets[i].count = max
|
||||
forced = true
|
||||
curr := buckets[i].count // Assumed always positive.
|
||||
if curr == prev {
|
||||
// No correction needed if the counts are identical between buckets.
|
||||
continue
|
||||
}
|
||||
if almostEqual(prev, curr, tolerance) {
|
||||
// Silently correct numerically insignificant differences from floating
|
||||
// point precision errors, regardless of direction.
|
||||
// Do not update the 'prev' value as we are ignoring the difference.
|
||||
buckets[i].count = prev
|
||||
fixedPrecision = true
|
||||
continue
|
||||
}
|
||||
if curr < prev {
|
||||
// Force monotonicity by removing any decreases regardless of magnitude.
|
||||
// Do not update the 'prev' value as we are ignoring the decrease.
|
||||
buckets[i].count = prev
|
||||
forcedMonotonic = true
|
||||
continue
|
||||
}
|
||||
prev = curr
|
||||
}
|
||||
return forced
|
||||
return forcedMonotonic, fixedPrecision
|
||||
}
|
||||
|
||||
// quantile calculates the given quantile of a vector of samples.
|
||||
|
|
318
promql/quantile_test.go
Normal file
318
promql/quantile_test.go
Normal file
|
@ -0,0 +1,318 @@
|
|||
// Copyright 2023 The Prometheus Authors
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
package promql
|
||||
|
||||
import (
|
||||
"math"
|
||||
"testing"
|
||||
|
||||
"github.com/stretchr/testify/require"
|
||||
)
|
||||
|
||||
func TestBucketQuantile_ForcedMonotonicity(t *testing.T) {
|
||||
eps := 1e-12
|
||||
|
||||
for name, tc := range map[string]struct {
|
||||
getInput func() buckets // The buckets can be modified in-place so return a new one each time.
|
||||
expectedForced bool
|
||||
expectedFixed bool
|
||||
expectedValues map[float64]float64
|
||||
}{
|
||||
"simple - monotonic": {
|
||||
getInput: func() buckets {
|
||||
return buckets{
|
||||
{
|
||||
upperBound: 10,
|
||||
count: 10,
|
||||
}, {
|
||||
upperBound: 15,
|
||||
count: 15,
|
||||
}, {
|
||||
upperBound: 20,
|
||||
count: 15,
|
||||
}, {
|
||||
upperBound: 30,
|
||||
count: 15,
|
||||
}, {
|
||||
upperBound: math.Inf(1),
|
||||
count: 15,
|
||||
},
|
||||
}
|
||||
},
|
||||
expectedForced: false,
|
||||
expectedFixed: false,
|
||||
expectedValues: map[float64]float64{
|
||||
1: 15.,
|
||||
0.99: 14.85,
|
||||
0.9: 13.5,
|
||||
0.5: 7.5,
|
||||
},
|
||||
},
|
||||
"simple - non-monotonic middle": {
|
||||
getInput: func() buckets {
|
||||
return buckets{
|
||||
{
|
||||
upperBound: 10,
|
||||
count: 10,
|
||||
}, {
|
||||
upperBound: 15,
|
||||
count: 15,
|
||||
}, {
|
||||
upperBound: 20,
|
||||
count: 15.00000000001, // Simulate the case there's a small imprecision in float64.
|
||||
}, {
|
||||
upperBound: 30,
|
||||
count: 15,
|
||||
}, {
|
||||
upperBound: math.Inf(1),
|
||||
count: 15,
|
||||
},
|
||||
}
|
||||
},
|
||||
expectedForced: false,
|
||||
expectedFixed: true,
|
||||
expectedValues: map[float64]float64{
|
||||
1: 15.,
|
||||
0.99: 14.85,
|
||||
0.9: 13.5,
|
||||
0.5: 7.5,
|
||||
},
|
||||
},
|
||||
"real example - monotonic": {
|
||||
getInput: func() buckets {
|
||||
return buckets{
|
||||
{
|
||||
upperBound: 1,
|
||||
count: 6454661.3014166197,
|
||||
}, {
|
||||
upperBound: 5,
|
||||
count: 8339611.2001912938,
|
||||
}, {
|
||||
upperBound: 10,
|
||||
count: 14118319.2444762159,
|
||||
}, {
|
||||
upperBound: 25,
|
||||
count: 14130031.5272856522,
|
||||
}, {
|
||||
upperBound: 50,
|
||||
count: 46001270.3030008152,
|
||||
}, {
|
||||
upperBound: 64,
|
||||
count: 46008473.8585563600,
|
||||
}, {
|
||||
upperBound: 80,
|
||||
count: 46008473.8585563600,
|
||||
}, {
|
||||
upperBound: 100,
|
||||
count: 46008473.8585563600,
|
||||
}, {
|
||||
upperBound: 250,
|
||||
count: 46008473.8585563600,
|
||||
}, {
|
||||
upperBound: 1000,
|
||||
count: 46008473.8585563600,
|
||||
}, {
|
||||
upperBound: math.Inf(1),
|
||||
count: 46008473.8585563600,
|
||||
},
|
||||
}
|
||||
},
|
||||
expectedForced: false,
|
||||
expectedFixed: false,
|
||||
expectedValues: map[float64]float64{
|
||||
1: 64.,
|
||||
0.99: 49.64475715376406,
|
||||
0.9: 46.39671690938454,
|
||||
0.5: 31.96098248992002,
|
||||
},
|
||||
},
|
||||
"real example - non-monotonic": {
|
||||
getInput: func() buckets {
|
||||
return buckets{
|
||||
{
|
||||
upperBound: 1,
|
||||
count: 6454661.3014166225,
|
||||
}, {
|
||||
upperBound: 5,
|
||||
count: 8339611.2001912957,
|
||||
}, {
|
||||
upperBound: 10,
|
||||
count: 14118319.2444762159,
|
||||
}, {
|
||||
upperBound: 25,
|
||||
count: 14130031.5272856504,
|
||||
}, {
|
||||
upperBound: 50,
|
||||
count: 46001270.3030008227,
|
||||
}, {
|
||||
upperBound: 64,
|
||||
count: 46008473.8585563824,
|
||||
}, {
|
||||
upperBound: 80,
|
||||
count: 46008473.8585563898,
|
||||
}, {
|
||||
upperBound: 100,
|
||||
count: 46008473.8585563824,
|
||||
}, {
|
||||
upperBound: 250,
|
||||
count: 46008473.8585563824,
|
||||
}, {
|
||||
upperBound: 1000,
|
||||
count: 46008473.8585563898,
|
||||
}, {
|
||||
upperBound: math.Inf(1),
|
||||
count: 46008473.8585563824,
|
||||
},
|
||||
}
|
||||
},
|
||||
expectedForced: false,
|
||||
expectedFixed: true,
|
||||
expectedValues: map[float64]float64{
|
||||
1: 64.,
|
||||
0.99: 49.64475715376406,
|
||||
0.9: 46.39671690938454,
|
||||
0.5: 31.96098248992002,
|
||||
},
|
||||
},
|
||||
"real example 2 - monotonic": {
|
||||
getInput: func() buckets {
|
||||
return buckets{
|
||||
{
|
||||
upperBound: 0.005,
|
||||
count: 9.6,
|
||||
}, {
|
||||
upperBound: 0.01,
|
||||
count: 9.688888889,
|
||||
}, {
|
||||
upperBound: 0.025,
|
||||
count: 9.755555556,
|
||||
}, {
|
||||
upperBound: 0.05,
|
||||
count: 9.844444444,
|
||||
}, {
|
||||
upperBound: 0.1,
|
||||
count: 9.888888889,
|
||||
}, {
|
||||
upperBound: 0.25,
|
||||
count: 9.888888889,
|
||||
}, {
|
||||
upperBound: 0.5,
|
||||
count: 9.888888889,
|
||||
}, {
|
||||
upperBound: 1,
|
||||
count: 9.888888889,
|
||||
}, {
|
||||
upperBound: 2.5,
|
||||
count: 9.888888889,
|
||||
}, {
|
||||
upperBound: 5,
|
||||
count: 9.888888889,
|
||||
}, {
|
||||
upperBound: 10,
|
||||
count: 9.888888889,
|
||||
}, {
|
||||
upperBound: 25,
|
||||
count: 9.888888889,
|
||||
}, {
|
||||
upperBound: 50,
|
||||
count: 9.888888889,
|
||||
}, {
|
||||
upperBound: 100,
|
||||
count: 9.888888889,
|
||||
}, {
|
||||
upperBound: math.Inf(1),
|
||||
count: 9.888888889,
|
||||
},
|
||||
}
|
||||
},
|
||||
expectedForced: false,
|
||||
expectedFixed: false,
|
||||
expectedValues: map[float64]float64{
|
||||
1: 0.1,
|
||||
0.99: 0.03468750000281261,
|
||||
0.9: 0.00463541666671875,
|
||||
0.5: 0.0025752314815104174,
|
||||
},
|
||||
},
|
||||
"real example 2 - non-monotonic": {
|
||||
getInput: func() buckets {
|
||||
return buckets{
|
||||
{
|
||||
upperBound: 0.005,
|
||||
count: 9.6,
|
||||
}, {
|
||||
upperBound: 0.01,
|
||||
count: 9.688888889,
|
||||
}, {
|
||||
upperBound: 0.025,
|
||||
count: 9.755555556,
|
||||
}, {
|
||||
upperBound: 0.05,
|
||||
count: 9.844444444,
|
||||
}, {
|
||||
upperBound: 0.1,
|
||||
count: 9.888888889,
|
||||
}, {
|
||||
upperBound: 0.25,
|
||||
count: 9.888888889,
|
||||
}, {
|
||||
upperBound: 0.5,
|
||||
count: 9.888888889,
|
||||
}, {
|
||||
upperBound: 1,
|
||||
count: 9.888888889,
|
||||
}, {
|
||||
upperBound: 2.5,
|
||||
count: 9.888888889,
|
||||
}, {
|
||||
upperBound: 5,
|
||||
count: 9.888888889,
|
||||
}, {
|
||||
upperBound: 10,
|
||||
count: 9.888888889001, // Simulate the case there's a small imprecision in float64.
|
||||
}, {
|
||||
upperBound: 25,
|
||||
count: 9.888888889,
|
||||
}, {
|
||||
upperBound: 50,
|
||||
count: 9.888888888999, // Simulate the case there's a small imprecision in float64.
|
||||
}, {
|
||||
upperBound: 100,
|
||||
count: 9.888888889,
|
||||
}, {
|
||||
upperBound: math.Inf(1),
|
||||
count: 9.888888889,
|
||||
},
|
||||
}
|
||||
},
|
||||
expectedForced: false,
|
||||
expectedFixed: true,
|
||||
expectedValues: map[float64]float64{
|
||||
1: 0.1,
|
||||
0.99: 0.03468750000281261,
|
||||
0.9: 0.00463541666671875,
|
||||
0.5: 0.0025752314815104174,
|
||||
},
|
||||
},
|
||||
} {
|
||||
t.Run(name, func(t *testing.T) {
|
||||
for q, v := range tc.expectedValues {
|
||||
res, forced, fixed := bucketQuantile(q, tc.getInput())
|
||||
require.Equal(t, tc.expectedForced, forced)
|
||||
require.Equal(t, tc.expectedFixed, fixed)
|
||||
require.InEpsilon(t, v, res, eps)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
|
@ -49,7 +49,7 @@ var (
|
|||
)
|
||||
|
||||
const (
|
||||
epsilon = 0.000001 // Relative error allowed for sample values.
|
||||
defaultEpsilon = 0.000001 // Relative error allowed for sample values.
|
||||
)
|
||||
|
||||
var testStartTime = time.Unix(0, 0).UTC()
|
||||
|
@ -440,7 +440,7 @@ func (ev *evalCmd) compareResult(result parser.Value) error {
|
|||
if (expH == nil) != (v.H == nil) || (expH != nil && !expH.Equals(v.H)) {
|
||||
return fmt.Errorf("expected %v for %s but got %s", HistogramTestExpression(expH), v.Metric, HistogramTestExpression(v.H))
|
||||
}
|
||||
if !almostEqual(exp0.Value, v.F) {
|
||||
if !almostEqual(exp0.Value, v.F, defaultEpsilon) {
|
||||
return fmt.Errorf("expected %v for %s but got %v", exp0.Value, v.Metric, v.F)
|
||||
}
|
||||
|
||||
|
@ -464,7 +464,7 @@ func (ev *evalCmd) compareResult(result parser.Value) error {
|
|||
if exp0.Histogram != nil {
|
||||
return fmt.Errorf("expected Histogram %v but got scalar %s", exp0.Histogram.TestExpression(), val.String())
|
||||
}
|
||||
if !almostEqual(exp0.Value, val.V) {
|
||||
if !almostEqual(exp0.Value, val.V, defaultEpsilon) {
|
||||
return fmt.Errorf("expected Scalar %v but got %v", val.V, exp0.Value)
|
||||
}
|
||||
|
||||
|
@ -663,9 +663,9 @@ func (t *test) clear() {
|
|||
t.context, t.cancelCtx = context.WithCancel(context.Background())
|
||||
}
|
||||
|
||||
// samplesAlmostEqual returns true if the two sample lines only differ by a
|
||||
// small relative error in their sample value.
|
||||
func almostEqual(a, b float64) bool {
|
||||
// almostEqual returns true if a and b differ by less than their sum
|
||||
// multiplied by epsilon.
|
||||
func almostEqual(a, b, epsilon float64) bool {
|
||||
// NaN has no equality but for testing we still want to know whether both values
|
||||
// are NaN.
|
||||
if math.IsNaN(a) && math.IsNaN(b) {
|
||||
|
@ -677,12 +677,13 @@ func almostEqual(a, b float64) bool {
|
|||
return true
|
||||
}
|
||||
|
||||
absSum := math.Abs(a) + math.Abs(b)
|
||||
diff := math.Abs(a - b)
|
||||
|
||||
if a == 0 || b == 0 || diff < minNormal {
|
||||
if a == 0 || b == 0 || absSum < minNormal {
|
||||
return diff < epsilon*minNormal
|
||||
}
|
||||
return diff/(math.Abs(a)+math.Abs(b)) < epsilon
|
||||
return diff/math.Min(absSum, math.MaxFloat64) < epsilon
|
||||
}
|
||||
|
||||
func parseNumber(s string) (float64, error) {
|
||||
|
|
|
@ -108,7 +108,7 @@ var (
|
|||
MixedClassicNativeHistogramsWarning = fmt.Errorf("%w: vector contains a mix of classic and native histograms for metric name", PromQLWarning)
|
||||
|
||||
PossibleNonCounterInfo = fmt.Errorf("%w: metric might not be a counter, name does not end in _total/_sum/_count/_bucket:", PromQLInfo)
|
||||
HistogramQuantileForcedMonotonicityInfo = fmt.Errorf("%w: input to histogram_quantile needed to be fixed for monotonicity (and may give inaccurate results) for metric name", PromQLInfo)
|
||||
HistogramQuantileForcedMonotonicityInfo = fmt.Errorf("%w: input to histogram_quantile needed to be fixed for monotonicity (see https://prometheus.io/docs/prometheus/latest/querying/functions/#histogram_quantile) for metric name", PromQLInfo)
|
||||
)
|
||||
|
||||
type annoErr struct {
|
||||
|
|
Loading…
Reference in a new issue