mirror of
https://github.com/prometheus/prometheus.git
synced 2025-01-26 13:11:11 -08:00
Merge pull request #10886 from prometheus/beorn7/sparsehistogram
Add histogram_fraction function
This commit is contained in:
commit
f9f2e2855d
|
@ -152,8 +152,14 @@ Special cases are:
|
|||
`floor(v instant-vector)` rounds the sample values of all elements in `v` down
|
||||
to the nearest integer.
|
||||
|
||||
## `histogram_fraction()`
|
||||
|
||||
TODO(beorn7): Add documentation.
|
||||
|
||||
## `histogram_quantile()`
|
||||
|
||||
TODO(beorn7): This needs a lot of updates for Histograms as sample value types.
|
||||
|
||||
`histogram_quantile(φ scalar, b instant-vector)` calculates the φ-quantile (0 ≤ φ
|
||||
≤ 1) from the buckets `b` of a
|
||||
[histogram](https://prometheus.io/docs/concepts/metric_types/#histogram). (See
|
||||
|
|
|
@ -3244,15 +3244,15 @@ func TestSparseHistogram_HistogramQuantile(t *testing.T) {
|
|||
},
|
||||
{ // Zero bucket.
|
||||
quantile: "1",
|
||||
value: 0.001,
|
||||
value: 0,
|
||||
},
|
||||
{ // Zero bucket.
|
||||
quantile: "0.99",
|
||||
value: 0.0008799999999999991,
|
||||
value: -6.000000000000048e-05,
|
||||
},
|
||||
{ // Zero bucket.
|
||||
quantile: "0.9",
|
||||
value: -0.00019999999999999933,
|
||||
value: -0.0005999999999999996,
|
||||
},
|
||||
{
|
||||
quantile: "0.5",
|
||||
|
@ -3394,6 +3394,434 @@ func TestSparseHistogram_HistogramQuantile(t *testing.T) {
|
|||
}
|
||||
}
|
||||
|
||||
func TestSparseHistogram_HistogramFraction(t *testing.T) {
|
||||
// TODO(codesome): Integrate histograms into the PromQL testing framework
|
||||
// and write more tests there.
|
||||
type subCase struct {
|
||||
lower, upper string
|
||||
value float64
|
||||
}
|
||||
|
||||
invariantCases := []subCase{
|
||||
{
|
||||
lower: "42",
|
||||
upper: "3.1415",
|
||||
value: 0,
|
||||
},
|
||||
{
|
||||
lower: "0",
|
||||
upper: "0",
|
||||
value: 0,
|
||||
},
|
||||
{
|
||||
lower: "0.000001",
|
||||
upper: "0.000001",
|
||||
value: 0,
|
||||
},
|
||||
{
|
||||
lower: "42",
|
||||
upper: "42",
|
||||
value: 0,
|
||||
},
|
||||
{
|
||||
lower: "-3.1",
|
||||
upper: "-3.1",
|
||||
value: 0,
|
||||
},
|
||||
{
|
||||
lower: "3.1415",
|
||||
upper: "NaN",
|
||||
value: math.NaN(),
|
||||
},
|
||||
{
|
||||
lower: "NaN",
|
||||
upper: "42",
|
||||
value: math.NaN(),
|
||||
},
|
||||
{
|
||||
lower: "NaN",
|
||||
upper: "NaN",
|
||||
value: math.NaN(),
|
||||
},
|
||||
{
|
||||
lower: "-Inf",
|
||||
upper: "+Inf",
|
||||
value: 1,
|
||||
},
|
||||
}
|
||||
|
||||
cases := []struct {
|
||||
text string
|
||||
// Histogram to test.
|
||||
h *histogram.Histogram
|
||||
// Different ranges to test for this histogram.
|
||||
subCases []subCase
|
||||
}{
|
||||
{
|
||||
text: "empty histogram",
|
||||
h: &histogram.Histogram{},
|
||||
subCases: []subCase{
|
||||
{
|
||||
lower: "3.1415",
|
||||
upper: "42",
|
||||
value: math.NaN(),
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
text: "all positive buckets with zero bucket",
|
||||
h: &histogram.Histogram{
|
||||
Count: 12,
|
||||
ZeroCount: 2,
|
||||
ZeroThreshold: 0.001,
|
||||
Sum: 100, // Does not matter.
|
||||
Schema: 0,
|
||||
PositiveSpans: []histogram.Span{
|
||||
{Offset: 0, Length: 2},
|
||||
{Offset: 1, Length: 2},
|
||||
},
|
||||
PositiveBuckets: []int64{2, 1, -2, 3}, // Abs: 2, 3, 1, 4
|
||||
},
|
||||
subCases: append([]subCase{
|
||||
{
|
||||
lower: "0",
|
||||
upper: "+Inf",
|
||||
value: 1,
|
||||
},
|
||||
{
|
||||
lower: "-Inf",
|
||||
upper: "0",
|
||||
value: 0,
|
||||
},
|
||||
{
|
||||
lower: "-0.001",
|
||||
upper: "0",
|
||||
value: 0,
|
||||
},
|
||||
{
|
||||
lower: "0",
|
||||
upper: "0.001",
|
||||
value: 2. / 12.,
|
||||
},
|
||||
{
|
||||
lower: "0",
|
||||
upper: "0.0005",
|
||||
value: 1. / 12.,
|
||||
},
|
||||
{
|
||||
lower: "0.001",
|
||||
upper: "inf",
|
||||
value: 10. / 12.,
|
||||
},
|
||||
{
|
||||
lower: "-inf",
|
||||
upper: "-0.001",
|
||||
value: 0,
|
||||
},
|
||||
{
|
||||
lower: "1",
|
||||
upper: "2",
|
||||
value: 3. / 12.,
|
||||
},
|
||||
{
|
||||
lower: "1.5",
|
||||
upper: "2",
|
||||
value: 1.5 / 12.,
|
||||
},
|
||||
{
|
||||
lower: "1",
|
||||
upper: "8",
|
||||
value: 4. / 12.,
|
||||
},
|
||||
{
|
||||
lower: "1",
|
||||
upper: "6",
|
||||
value: 3.5 / 12.,
|
||||
},
|
||||
{
|
||||
lower: "1.5",
|
||||
upper: "6",
|
||||
value: 2. / 12.,
|
||||
},
|
||||
{
|
||||
lower: "-2",
|
||||
upper: "-1",
|
||||
value: 0,
|
||||
},
|
||||
{
|
||||
lower: "-2",
|
||||
upper: "-1.5",
|
||||
value: 0,
|
||||
},
|
||||
{
|
||||
lower: "-8",
|
||||
upper: "-1",
|
||||
value: 0,
|
||||
},
|
||||
{
|
||||
lower: "-6",
|
||||
upper: "-1",
|
||||
value: 0,
|
||||
},
|
||||
{
|
||||
lower: "-6",
|
||||
upper: "-1.5",
|
||||
value: 0,
|
||||
},
|
||||
}, invariantCases...),
|
||||
},
|
||||
{
|
||||
text: "all negative buckets with zero bucket",
|
||||
h: &histogram.Histogram{
|
||||
Count: 12,
|
||||
ZeroCount: 2,
|
||||
ZeroThreshold: 0.001,
|
||||
Sum: 100, // Does not matter.
|
||||
Schema: 0,
|
||||
NegativeSpans: []histogram.Span{
|
||||
{Offset: 0, Length: 2},
|
||||
{Offset: 1, Length: 2},
|
||||
},
|
||||
NegativeBuckets: []int64{2, 1, -2, 3},
|
||||
},
|
||||
subCases: append([]subCase{
|
||||
{
|
||||
lower: "0",
|
||||
upper: "+Inf",
|
||||
value: 0,
|
||||
},
|
||||
{
|
||||
lower: "-Inf",
|
||||
upper: "0",
|
||||
value: 1,
|
||||
},
|
||||
{
|
||||
lower: "-0.001",
|
||||
upper: "0",
|
||||
value: 2. / 12.,
|
||||
},
|
||||
{
|
||||
lower: "0",
|
||||
upper: "0.001",
|
||||
value: 0,
|
||||
},
|
||||
{
|
||||
lower: "-0.0005",
|
||||
upper: "0",
|
||||
value: 1. / 12.,
|
||||
},
|
||||
{
|
||||
lower: "0.001",
|
||||
upper: "inf",
|
||||
value: 0,
|
||||
},
|
||||
{
|
||||
lower: "-inf",
|
||||
upper: "-0.001",
|
||||
value: 10. / 12.,
|
||||
},
|
||||
{
|
||||
lower: "1",
|
||||
upper: "2",
|
||||
value: 0,
|
||||
},
|
||||
{
|
||||
lower: "1.5",
|
||||
upper: "2",
|
||||
value: 0,
|
||||
},
|
||||
{
|
||||
lower: "1",
|
||||
upper: "8",
|
||||
value: 0,
|
||||
},
|
||||
{
|
||||
lower: "1",
|
||||
upper: "6",
|
||||
value: 0,
|
||||
},
|
||||
{
|
||||
lower: "1.5",
|
||||
upper: "6",
|
||||
value: 0,
|
||||
},
|
||||
{
|
||||
lower: "-2",
|
||||
upper: "-1",
|
||||
value: 3. / 12.,
|
||||
},
|
||||
{
|
||||
lower: "-2",
|
||||
upper: "-1.5",
|
||||
value: 1.5 / 12.,
|
||||
},
|
||||
{
|
||||
lower: "-8",
|
||||
upper: "-1",
|
||||
value: 4. / 12.,
|
||||
},
|
||||
{
|
||||
lower: "-6",
|
||||
upper: "-1",
|
||||
value: 3.5 / 12.,
|
||||
},
|
||||
{
|
||||
lower: "-6",
|
||||
upper: "-1.5",
|
||||
value: 2. / 12.,
|
||||
},
|
||||
}, invariantCases...),
|
||||
},
|
||||
{
|
||||
text: "both positive and negative buckets with zero bucket",
|
||||
h: &histogram.Histogram{
|
||||
Count: 24,
|
||||
ZeroCount: 4,
|
||||
ZeroThreshold: 0.001,
|
||||
Sum: 100, // Does not matter.
|
||||
Schema: 0,
|
||||
PositiveSpans: []histogram.Span{
|
||||
{Offset: 0, Length: 2},
|
||||
{Offset: 1, Length: 2},
|
||||
},
|
||||
PositiveBuckets: []int64{2, 1, -2, 3},
|
||||
NegativeSpans: []histogram.Span{
|
||||
{Offset: 0, Length: 2},
|
||||
{Offset: 1, Length: 2},
|
||||
},
|
||||
NegativeBuckets: []int64{2, 1, -2, 3},
|
||||
},
|
||||
subCases: append([]subCase{
|
||||
{
|
||||
lower: "0",
|
||||
upper: "+Inf",
|
||||
value: 0.5,
|
||||
},
|
||||
{
|
||||
lower: "-Inf",
|
||||
upper: "0",
|
||||
value: 0.5,
|
||||
},
|
||||
{
|
||||
lower: "-0.001",
|
||||
upper: "0",
|
||||
value: 2. / 24,
|
||||
},
|
||||
{
|
||||
lower: "0",
|
||||
upper: "0.001",
|
||||
value: 2. / 24.,
|
||||
},
|
||||
{
|
||||
lower: "-0.0005",
|
||||
upper: "0.0005",
|
||||
value: 2. / 24.,
|
||||
},
|
||||
{
|
||||
lower: "0.001",
|
||||
upper: "inf",
|
||||
value: 10. / 24.,
|
||||
},
|
||||
{
|
||||
lower: "-inf",
|
||||
upper: "-0.001",
|
||||
value: 10. / 24.,
|
||||
},
|
||||
{
|
||||
lower: "1",
|
||||
upper: "2",
|
||||
value: 3. / 24.,
|
||||
},
|
||||
{
|
||||
lower: "1.5",
|
||||
upper: "2",
|
||||
value: 1.5 / 24.,
|
||||
},
|
||||
{
|
||||
lower: "1",
|
||||
upper: "8",
|
||||
value: 4. / 24.,
|
||||
},
|
||||
{
|
||||
lower: "1",
|
||||
upper: "6",
|
||||
value: 3.5 / 24.,
|
||||
},
|
||||
{
|
||||
lower: "1.5",
|
||||
upper: "6",
|
||||
value: 2. / 24.,
|
||||
},
|
||||
{
|
||||
lower: "-2",
|
||||
upper: "-1",
|
||||
value: 3. / 24.,
|
||||
},
|
||||
{
|
||||
lower: "-2",
|
||||
upper: "-1.5",
|
||||
value: 1.5 / 24.,
|
||||
},
|
||||
{
|
||||
lower: "-8",
|
||||
upper: "-1",
|
||||
value: 4. / 24.,
|
||||
},
|
||||
{
|
||||
lower: "-6",
|
||||
upper: "-1",
|
||||
value: 3.5 / 24.,
|
||||
},
|
||||
{
|
||||
lower: "-6",
|
||||
upper: "-1.5",
|
||||
value: 2. / 24.,
|
||||
},
|
||||
}, invariantCases...),
|
||||
},
|
||||
}
|
||||
|
||||
for i, c := range cases {
|
||||
t.Run(c.text, func(t *testing.T) {
|
||||
test, err := NewTest(t, "")
|
||||
require.NoError(t, err)
|
||||
t.Cleanup(test.Close)
|
||||
|
||||
seriesName := "sparse_histogram_series"
|
||||
lbls := labels.FromStrings("__name__", seriesName)
|
||||
engine := test.QueryEngine()
|
||||
|
||||
ts := int64(i+1) * int64(10*time.Minute/time.Millisecond)
|
||||
app := test.Storage().Appender(context.TODO())
|
||||
_, err = app.AppendHistogram(0, lbls, ts, c.h)
|
||||
require.NoError(t, err)
|
||||
require.NoError(t, app.Commit())
|
||||
|
||||
for j, sc := range c.subCases {
|
||||
t.Run(fmt.Sprintf("%d %s %s", j, sc.lower, sc.upper), func(t *testing.T) {
|
||||
queryString := fmt.Sprintf("histogram_fraction(%s, %s, %s)", sc.lower, sc.upper, seriesName)
|
||||
qry, err := engine.NewInstantQuery(test.Queryable(), nil, queryString, timestamp.Time(ts))
|
||||
require.NoError(t, err)
|
||||
|
||||
res := qry.Exec(test.Context())
|
||||
require.NoError(t, res.Err)
|
||||
|
||||
vector, err := res.Vector()
|
||||
require.NoError(t, err)
|
||||
|
||||
require.Len(t, vector, 1)
|
||||
require.Nil(t, vector[0].H)
|
||||
if math.IsNaN(sc.value) {
|
||||
require.True(t, math.IsNaN(vector[0].V))
|
||||
return
|
||||
}
|
||||
require.Equal(t, sc.value, vector[0].V)
|
||||
})
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestSparseHistogram_Sum_AddOperator(t *testing.T) {
|
||||
// TODO(codesome): Integrate histograms into the PromQL testing framework
|
||||
// and write more tests there.
|
||||
|
|
|
@ -864,6 +864,25 @@ func funcPredictLinear(vals []parser.Value, args parser.Expressions, enh *EvalNo
|
|||
})
|
||||
}
|
||||
|
||||
// === histogram_fraction(lower, upper parser.ValueTypeScalar, Vector parser.ValueTypeVector) Vector ===
|
||||
func funcHistogramFraction(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) Vector {
|
||||
lower := vals[0].(Vector)[0].V
|
||||
upper := vals[1].(Vector)[0].V
|
||||
inVec := vals[2].(Vector)
|
||||
|
||||
for _, sample := range inVec {
|
||||
// Skip non-histogram samples.
|
||||
if sample.H == nil {
|
||||
continue
|
||||
}
|
||||
enh.Out = append(enh.Out, Sample{
|
||||
Metric: enh.DropMetricName(sample.Metric),
|
||||
Point: Point{V: histogramFraction(lower, upper, sample.H)},
|
||||
})
|
||||
}
|
||||
return enh.Out
|
||||
}
|
||||
|
||||
// === histogram_quantile(k parser.ValueTypeScalar, Vector parser.ValueTypeVector) Vector ===
|
||||
func funcHistogramQuantile(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) Vector {
|
||||
q := vals[0].(Vector)[0].V
|
||||
|
@ -1205,6 +1224,7 @@ var FunctionCalls = map[string]FunctionCall{
|
|||
"deriv": funcDeriv,
|
||||
"exp": funcExp,
|
||||
"floor": funcFloor,
|
||||
"histogram_fraction": funcHistogramFraction,
|
||||
"histogram_quantile": funcHistogramQuantile,
|
||||
"holt_winters": funcHoltWinters,
|
||||
"hour": funcHour,
|
||||
|
|
|
@ -163,6 +163,11 @@ var Functions = map[string]*Function{
|
|||
ArgTypes: []ValueType{ValueTypeVector},
|
||||
ReturnType: ValueTypeVector,
|
||||
},
|
||||
"histogram_fraction": {
|
||||
Name: "histogram_fraction",
|
||||
ArgTypes: []ValueType{ValueTypeScalar, ValueTypeScalar, ValueTypeVector},
|
||||
ReturnType: ValueTypeVector,
|
||||
},
|
||||
"histogram_quantile": {
|
||||
Name: "histogram_quantile",
|
||||
ArgTypes: []ValueType{ValueTypeScalar, ValueTypeVector},
|
||||
|
|
|
@ -127,7 +127,10 @@ func bucketQuantile(q float64, buckets buckets) float64 {
|
|||
// TODO(beorn7): Find an interpolation method that is a better fit for
|
||||
// exponential buckets (and think about configurable interpolation).
|
||||
//
|
||||
// A natural lower bound of 0 is assumed if the histogram has no negative buckets.
|
||||
// A natural lower bound of 0 is assumed if the histogram has only positive
|
||||
// buckets. Likewise, a natural upper bound of 0 is assumed if the histogram has
|
||||
// only negative buckets.
|
||||
// TODO(beorn7): Come to terms if we want that.
|
||||
//
|
||||
// There are a number of special cases (once we have a way to report errors
|
||||
// happening during evaluations of AST functions, we should report those
|
||||
|
@ -138,6 +141,8 @@ func bucketQuantile(q float64, buckets buckets) float64 {
|
|||
// If q<0, -Inf is returned.
|
||||
//
|
||||
// If q>1, +Inf is returned.
|
||||
//
|
||||
// If q is NaN, NaN is returned.
|
||||
func histogramQuantile(q float64, h *histogram.FloatHistogram) float64 {
|
||||
if q < 0 {
|
||||
return math.Inf(-1)
|
||||
|
@ -146,7 +151,7 @@ func histogramQuantile(q float64, h *histogram.FloatHistogram) float64 {
|
|||
return math.Inf(+1)
|
||||
}
|
||||
|
||||
if h.Count == 0 {
|
||||
if h.Count == 0 || math.IsNaN(q) {
|
||||
return math.NaN()
|
||||
}
|
||||
|
||||
|
@ -163,10 +168,16 @@ func histogramQuantile(q float64, h *histogram.FloatHistogram) float64 {
|
|||
break
|
||||
}
|
||||
}
|
||||
if bucket.Lower < 0 && bucket.Upper > 0 && len(h.NegativeBuckets) == 0 {
|
||||
// The result is in the zero bucket and the histogram has no
|
||||
// negative buckets. So we consider 0 to be the lower bound.
|
||||
bucket.Lower = 0
|
||||
if bucket.Lower < 0 && bucket.Upper > 0 {
|
||||
if len(h.NegativeBuckets) == 0 && len(h.PositiveBuckets) > 0 {
|
||||
// The result is in the zero bucket and the histogram has only
|
||||
// positive buckets. So we consider 0 to be the lower bound.
|
||||
bucket.Lower = 0
|
||||
} else if len(h.PositiveBuckets) == 0 && len(h.NegativeBuckets) > 0 {
|
||||
// The result is in the zero bucket and the histogram has only
|
||||
// negative buckets. So we consider 0 to be the upper bound.
|
||||
bucket.Upper = 0
|
||||
}
|
||||
}
|
||||
// Due to numerical inaccuracies, we could end up with a higher count
|
||||
// than h.Count. Thus, make sure count is never higher than h.Count.
|
||||
|
@ -186,6 +197,99 @@ func histogramQuantile(q float64, h *histogram.FloatHistogram) float64 {
|
|||
return bucket.Lower + (bucket.Upper-bucket.Lower)*(rank/bucket.Count)
|
||||
}
|
||||
|
||||
// histogramFraction calculates the fraction of observations between the
|
||||
// provided lower and upper bounds, based on the provided histogram.
|
||||
//
|
||||
// histogramFraction is in a certain way the inverse of histogramQuantile. If
|
||||
// histogramQuantile(0.9, h) returns 123.4, then histogramFraction(-Inf, 123.4, h)
|
||||
// returns 0.9.
|
||||
//
|
||||
// The same notes (and TODOs) with regard to interpolation and assumptions about
|
||||
// the zero bucket boundaries apply as for histogramQuantile.
|
||||
//
|
||||
// Whether either boundary is inclusive or exclusive doesn’t actually matter as
|
||||
// long as interpolation has to be performed anyway. In the case of a boundary
|
||||
// coinciding with a bucket boundary, the inclusive or exclusive nature of the
|
||||
// boundary determines the exact behavior of the threshold. With the current
|
||||
// implementation, that means that lower is exclusive for positive values and
|
||||
// inclusive for negative values, while upper is inclusive for positive values
|
||||
// and exclusive for negative values.
|
||||
//
|
||||
// Special cases:
|
||||
//
|
||||
// If the histogram has 0 observations, NaN is returned.
|
||||
//
|
||||
// Use a lower bound of -Inf to get the fraction of all observations below the
|
||||
// upper bound.
|
||||
//
|
||||
// Use an upper bound of +Inf to get the fraction of all observations above the
|
||||
// lower bound.
|
||||
//
|
||||
// If lower or upper is NaN, NaN is returned.
|
||||
//
|
||||
// If lower >= upper and the histogram has at least 1 observation, zero is returned.
|
||||
func histogramFraction(lower, upper float64, h *histogram.FloatHistogram) float64 {
|
||||
if h.Count == 0 || math.IsNaN(lower) || math.IsNaN(upper) {
|
||||
return math.NaN()
|
||||
}
|
||||
if lower >= upper {
|
||||
return 0
|
||||
}
|
||||
|
||||
var (
|
||||
rank, lowerRank, upperRank float64
|
||||
lowerSet, upperSet bool
|
||||
it = h.AllBucketIterator()
|
||||
)
|
||||
for it.Next() {
|
||||
b := it.At()
|
||||
if b.Lower < 0 && b.Upper > 0 {
|
||||
if len(h.NegativeBuckets) == 0 && len(h.PositiveBuckets) > 0 {
|
||||
// This is the zero bucket and the histogram has only
|
||||
// positive buckets. So we consider 0 to be the lower
|
||||
// bound.
|
||||
b.Lower = 0
|
||||
} else if len(h.PositiveBuckets) == 0 && len(h.NegativeBuckets) > 0 {
|
||||
// This is in the zero bucket and the histogram has only
|
||||
// negative buckets. So we consider 0 to be the upper
|
||||
// bound.
|
||||
b.Upper = 0
|
||||
}
|
||||
}
|
||||
if !lowerSet && b.Lower >= lower {
|
||||
lowerRank = rank
|
||||
lowerSet = true
|
||||
}
|
||||
if !upperSet && b.Lower >= upper {
|
||||
upperRank = rank
|
||||
upperSet = true
|
||||
}
|
||||
if lowerSet && upperSet {
|
||||
break
|
||||
}
|
||||
if !lowerSet && b.Lower < lower && b.Upper > lower {
|
||||
lowerRank = rank + b.Count*(lower-b.Lower)/(b.Upper-b.Lower)
|
||||
lowerSet = true
|
||||
}
|
||||
if !upperSet && b.Lower < upper && b.Upper > upper {
|
||||
upperRank = rank + b.Count*(upper-b.Lower)/(b.Upper-b.Lower)
|
||||
upperSet = true
|
||||
}
|
||||
if lowerSet && upperSet {
|
||||
break
|
||||
}
|
||||
rank += b.Count
|
||||
}
|
||||
if !lowerSet || lowerRank > h.Count {
|
||||
lowerRank = h.Count
|
||||
}
|
||||
if !upperSet || upperRank > h.Count {
|
||||
upperRank = h.Count
|
||||
}
|
||||
|
||||
return (upperRank - lowerRank) / h.Count
|
||||
}
|
||||
|
||||
// coalesceBuckets merges buckets with the same upper bound.
|
||||
//
|
||||
// The input buckets must be sorted.
|
||||
|
|
|
@ -215,10 +215,16 @@ export const functionIdentifierTerms = [
|
|||
info: 'Round down values of input series to nearest integer',
|
||||
type: 'function',
|
||||
},
|
||||
{
|
||||
label: 'histogram_fraction',
|
||||
detail: 'function',
|
||||
info: 'Calculate fractions of observations within an interval from a native histogram',
|
||||
type: 'function',
|
||||
},
|
||||
{
|
||||
label: 'histogram_quantile',
|
||||
detail: 'function',
|
||||
info: 'Calculate quantiles from histogram buckets',
|
||||
info: 'Calculate quantiles from native histograms and from legacy histogram buckets',
|
||||
type: 'function',
|
||||
},
|
||||
{
|
||||
|
|
|
@ -714,6 +714,20 @@ describe('promql operations', () => {
|
|||
expectedValueType: ValueType.vector,
|
||||
expectedDiag: [],
|
||||
},
|
||||
{
|
||||
expr:
|
||||
'histogram_fraction( # Root of the query, final result, approximates a fraction of observations within an interval.\n' +
|
||||
' -Inf, # 1st argument to histogram_fraction(), start of the interval.\n' +
|
||||
' 123.4, # 2nd argument to histogram_fraction(), end of the interval.\n' +
|
||||
' sum by(method, path) ( # 3rd argument to histogram_fraction(), an aggregated histogram.\n' +
|
||||
' rate( # Argument to sum(), the per-second increase of a histogram over 5m.\n' +
|
||||
' demo_api_request_duration_seconds{job="demo"}[5m] # Argument to rate(), a vector of sparse histogram series over the last 5m.\n' +
|
||||
' )\n' +
|
||||
' )\n' +
|
||||
')',
|
||||
expectedValueType: ValueType.vector,
|
||||
expectedDiag: [],
|
||||
},
|
||||
{
|
||||
expr: '1 @ start()',
|
||||
expectedValueType: ValueType.scalar,
|
||||
|
|
|
@ -39,6 +39,7 @@ import {
|
|||
Deriv,
|
||||
Exp,
|
||||
Floor,
|
||||
HistogramFraction,
|
||||
HistogramQuantile,
|
||||
HoltWinters,
|
||||
Hour,
|
||||
|
@ -261,6 +262,12 @@ const promqlFunctions: { [key: number]: PromQLFunction } = {
|
|||
variadic: 0,
|
||||
returnType: ValueType.vector,
|
||||
},
|
||||
[HistogramFraction]: {
|
||||
name: 'histogram_fraction',
|
||||
argTypes: [ValueType.scalar, ValueType.scalar, ValueType.vector],
|
||||
variadic: 0,
|
||||
returnType: ValueType.vector,
|
||||
},
|
||||
[HistogramQuantile]: {
|
||||
name: 'histogram_quantile',
|
||||
argTypes: [ValueType.scalar, ValueType.vector],
|
||||
|
|
|
@ -146,6 +146,7 @@ FunctionIdentifier {
|
|||
Deriv |
|
||||
Exp |
|
||||
Floor |
|
||||
HistogramFraction |
|
||||
HistogramQuantile |
|
||||
HoltWinters |
|
||||
Hour |
|
||||
|
@ -387,6 +388,7 @@ NumberLiteral {
|
|||
Deriv { condFn<"deriv"> }
|
||||
Exp { condFn<"exp"> }
|
||||
Floor { condFn<"floor"> }
|
||||
HistogramFraction { condFn<"histogram_fraction"> }
|
||||
HistogramQuantile { condFn<"histogram_quantile"> }
|
||||
HoltWinters { condFn<"holt_winters"> }
|
||||
Hour { condFn<"hour"> }
|
||||
|
|
Loading…
Reference in a new issue