The problem reported in #2799 was that in the event that all records for a
name were removed, the target group was never updated to be the "empty" set.
Essentially, whatever Prometheus last saw as a non-empty list of targets
would stay that way forever (or at least until Prometheus restarted...). This
came about because of a fairly naive interpretation of what a valid-looking
DNS response actually looked like -- essentially, the only valid DNS responses
were ones that had a non-empty record list. That's fine as long as your
config always lists only target names which have non-empty record sets; if
your environment happens to legitimately have empty record sets sometimes,
all hell breaks loose (otherwise-cleanly shutdown systems trigger up==0 alerts,
for instance).
This patch is a refactoring of the DNS lookup behaviour that maintains
existing behaviour with regard to search paths, but correctly handles empty
and non-existent record sets.
RFC1034 s4.3.1 says there's three ways a recursive DNS server can respond:
1. Here is your answer (possibly an empty answer, because of the way DNS
considers all records for a name, regardless of type, when deciding
whether the name exists).
2. There is no spoon (the name you asked for definitely does not exist).
3. I am a teapot (something has gone terribly wrong).
Situations 1 and 2 are fine and dandy; whatever the answer is (empty or
otherwise) is the list of targets. If something has gone wrong, then we
shouldn't go updating the target list because we don't really *know* what
the target list should be.
Multiple DNS servers to query is a straightforward augmentation; if you get
an error, then try the next server in the list, until you get an answer or
run out servers to ask. Only if *all* the servers return errors should you
return an error to the calling code.
Where things get complicated is the search path. In order to be able to
confidently say, "this name does not exist anywhere, you can remove all the
targets for this name because it's definitely GORN", at least one server for
*all* the possible names need to return either successful-but-empty
responses, or NXDOMAIN. If any name errors out, then -- since that one
might have been the one where the records came from -- you need to say
"maintain the status quo until we get a known-good response".
It is possible, though unlikely, that a poorly-configured DNS setup (say,
one which had a domain in its search path for which all configured recursive
resolvers respond with REFUSED) could result in the same "stuck" records
problem we're solving here, but the DNS configuration should be fixed in
that case, and there's nothing we can do in Prometheus itself to fix the
problem.
I've tested this patch on a local scratch instance in all the various ways I
can think of:
1. Adding records (targets get scraped)
2. Adding records of a different type
3. Remove records of the requested type, leaving other type records intact
(targets don't get scraped)
4. Remove all records for the name (targets don't get scraped)
5. Shutdown the resolver (targets still get scraped)
There's no automated test suite additions, because there isn't a test suite
for DNS discovery, and I was stretching my Go skills to the limit to make
this happen; mock objects are beyond me.
The changes [1][] to Marathon service discovery to support multiple
ports mean that Prometheus now attempts to scrape all ports belonging to
a Marathon service.
You can use port definition or port mapping labels to filter out which
ports to scrape but that requires service owners to update their
Marathon configuration.
To allow for a smoother migration path, add a
`__meta_marathon_port_index` label, whose value is set to the port's
sequential index integer. For example, PORT0 has the value `0`, PORT1
has the value `1`, and so on.
This allows you to support scraping both the first available port (the
previous behaviour) in addition to ports with a `metrics` label.
For example, here's the relabel configuration we might use with
this patch:
- action: keep
source_labels: ['__meta_marathon_port_definition_label_metrics', '__meta_marathon_port_mapping_label_metrics', '__meta_marathon_port_index']
# Keep if port mapping or definition has a 'metrics' label with any
# non-empty value, or if no 'metrics' port label exists but this is the
# service's first available port
regex: ([^;]+;;[^;]+|;[^;]+;[^;]+|;;0)
This assumes that the Marathon API returns the ports in sorted order
(matching PORT0, PORT1, etc), which it appears that it does.
[1]: https://github.com/prometheus/prometheus/pull/2506
* k8s: Support discovery of ingresses
* Move additional labels below allocation
This makes it more obvious why the additional elements are allocated.
Also fix allocation for node where we only set a single label.
* k8s: Remove port from ingress discovery
* k8s: Add comment to ingress discovery example
Fixing the config/config_test, the discovery/file/file_test and the
promql/promql_test tests for Windows. For most of the tests, the fix involved
correct handling of path separators. In the case of the promql tests, the
issue was related to the removal of the temporal directories used by the
storage. The issue is that the RemoveAll() call returns an error when it
tries to remove a directory which is not empty, which seems to be true due to
some kind of process that is still running after closing the storage. To fix
it I added some retries to the remove of the temporal directories.
Adding tags file from Universal Ctags to .gitignore
The changes [1][] to Marathon service discovery to support multiple
ports mean that Prometheus now attempts to scrape all ports belonging to
a Marathon service.
You can use port definition or port mapping labels to filter out which
ports to scrape but that requires service owners to update their
Marathon configuration.
To allow for a smoother migration path, add a
`__meta_marathon_port_index` label, whose value is set to the port's
sequential index integer. For example, PORT0 has the value `0`, PORT1
has the value `1`, and so on.
This allows you to support scraping both the first available port (the
previous behaviour) in addition to ports with a `metrics` label.
For example, here's the relabel configuration we might use with
this patch:
- action: keep
source_labels: ['__meta_marathon_port_definition_label_metrics', '__meta_marathon_port_mapping_label_metrics', '__meta_marathon_port_index']
# Keep if port mapping or definition has a 'metrics' label with any
# non-empty value, or if no 'metrics' port label exists but this is the
# service's first available port
regex: ([^;]+;;[^;]+|;[^;]+;[^;]+|;;0)
This assumes that the Marathon API returns the ports in sorted order
(matching PORT0, PORT1, etc), which it appears that it does.
[1]: https://github.com/prometheus/prometheus/pull/2506
* Add openstack service discovery.
* Add gophercloud code for openstack service discovery.
* first changes for juliusv comments.
* add gophercloud code for floatingip.
* Add tests to openstack sd.
* Add testify suite vendor files.
* add copyright and make changes for code climate.
* Fixed typos in provider openstack.
* Renamed tenant to project in openstack sd.
* Change type of password to Secret in openstack sd.
Rational:
* When the config is reloaded and the provider context is canceled, we need to
exit the current ZK `TargetProvider.Run` method as a new provider will be
instantiated.
* In case `Stop` is called on the `ZookeeperTreeCache`, the update/events
channel may not be closed as it is shared by multiple caches and would
thus be double closed.
* Stopping all `zookeeperTreeCacheNode`s on teardown ensures all associated
watcher go-routines will be closed eagerly rather than implicityly on
connection close events.
Allow namespace discovery to be more easily extended in the future by using a struct rather than just a list.
Rename fields for kubernetes namespace discovery
The staticcheck warns about testing.T usage in goroutines. Moving the
t.Fatal* calls to the main thread showed immediately that this is a good
practice, as one of the test setups didn't work.