When samples get flushed to disk, they lose sub-second precision anyways. By
already dropping sub-second precision, data fetched from memory vs. disk will
behave the same. Later, we should consider also storing a more compact
representation than time.Time in memory if we're not going to use its full
precision.
The current behavior only adds those samples to the view that are extracted by
the last pass of the last processed op and throws other ones away. This is a
bug. We need to append all samples that are extracted by each op pass.
This also makes view.appendSamples() take an array of samples.
The one-off keys have been replaced with ``model.LabelPair``, which is
indexable. The performance impact is negligible, but it represents
a cognitive simplification.
Some users of GetMetricForFingerprint() end up modifying the returned metric
labelset. Since the memory storage's implementation of
GetMetricForFingerprint() returned a pointer to the metric (and maps are
reference types anyways), the external mutation propagated back into the memory
storage.
The fix is to make a copy of the metric before returning it.
This makes the memory persistence the backing store for views and
adjusts the MetricPersistence interface accordingly. It also removes
unused Get* method implementations from the LevelDB persistence so they
don't need to be adapted to the new interface. In the future, we should
rethink these interfaces.
All staleness and interpolation handling is now removed from the storage
layer and will be handled only by the query layer in the future.
It is the case with the benchmark tool that we thought that we
generated multiple series and saved them to the disk as such, when
in reality, we overwrote the fields of the outgoing metrics via
Go map reference behavior. This was accidental. In the course of
diagnosing this, a few errors were found:
1. ``newSeriesFrontier`` should check to see if the candidate fingerprint is within the given domain of the ``diskFrontier``. If not, as the contract in the docstring stipulates, a ``nil`` ``seriesFrontier`` should be emitted.
2. In the interests of aiding debugging, the raw LevelDB ``levigoIterator`` type now includes a helpful forensics ``String()`` method.
This work produced additional cleanups:
1. ``Close() error`` with the storage stack is technically incorrect, since nowhere in the bowels of it does an error actually occur. The interface has been simplified to remove this for now.