MIN/MAX/SUM/AVG/COUNT aggregations will now by default drop all labels that are
not specifically part of a BY-clause, even if a label value is the same within
all timeseries of an aggregation group. The old behavior of keeping extra
labels may still be switched on by adding KEEPING_EXTRA to the end of an
aggregation statement:
sum(http_requests) by (job, method) keeping_extra
I'm open to better syntax/naming suggestions.
Change-Id: I21d3fe7af9e98552ce3dffa3ce7c0a4ba4c0b4a4
So far we've been using Go's native time.Time for anything related to sample
timestamps. Since the range of time.Time is much bigger than what we need, this
has created two problems:
- there could be time.Time values which were out of the range/precision of the
time type that we persist to disk, therefore causing incorrectly ordered keys.
One bug caused by this was:
https://github.com/prometheus/prometheus/issues/367
It would be good to use a timestamp type that's more closely aligned with
what the underlying storage supports.
- sizeof(time.Time) is 192, while Prometheus should be ok with a single 64-bit
Unix timestamp (possibly even a 32-bit one). Since we store samples in large
numbers, this seriously affects memory usage. Furthermore, copying/working
with the data will be faster if it's smaller.
*MEMORY USAGE RESULTS*
Initial memory usage comparisons for a running Prometheus with 1 timeseries and
100,000 samples show roughly a 13% decrease in total (VIRT) memory usage. In my
tests, this advantage for some reason decreased a bit the more samples the
timeseries had (to 5-7% for millions of samples). This I can't fully explain,
but perhaps garbage collection issues were involved.
*WHEN TO USE THE NEW TIMESTAMP TYPE*
The new clientmodel.Timestamp type should be used whenever time
calculations are either directly or indirectly related to sample
timestamps.
For example:
- the timestamp of a sample itself
- all kinds of watermarks
- anything that may become or is compared to a sample timestamp (like the timestamp
passed into Target.Scrape()).
When to still use time.Time:
- for measuring durations/times not related to sample timestamps, like duration
telemetry exporting, timers that indicate how frequently to execute some
action, etc.
*NOTE ON OPERATOR OPTIMIZATION TESTS*
We don't use operator optimization code anymore, but it still lives in
the code as dead code. It still has tests, but I couldn't get all of them to
pass with the new timestamp format. I commented out the failing cases for now,
but we should probably remove the dead code soon. I just didn't want to do that
in the same change as this.
Change-Id: I821787414b0debe85c9fffaeb57abd453727af0f
The ConsoleLinkForExpression() function now escapes console URLs in such a way
that works both in emails and in HTML.
Change-Id: I917bae0b526cbbac28ccd2a4ec3c5ac03ee4c647
This includes required refactorings to enable replacing the http client (for
testing) and moving the NotificationReq type definitions to the "notifications"
package, so that this package doesn't need to depend on "rules" anymore and
that it can instead use a representation of the required data which only
includes the necessary fields.
This swaps github.com/kivikakk/golex for github.com/cznic/golex.
The old lexer would have taken 3.5 years to load a set of 5000 test rules
(quadratic time complexity for input length), whereas this one takes only 32ms.
Furthermore, since the new lexer is embedded differently, this gets rid of the
global parser variables and makes the rule loader fully reentrant without a
lock.
This also short-circuits optimize() for now, since it is complex to implement
for the new operator, and ops generated by the query layer already fulfill the
needed invariants. We should still investigate later whether to completely
delete operator optimization code or extend it to support
getValueRangeAtIntervalOp operators.
This adds timers around several query-relevant code blocks. For now, the
query timer stats are only logged for queries initiated through the UI.
In other cases (rule evaluations), the stats are simply thrown away.
My hope is that this helps us understand where queries spend time,
especially in cases where they sometimes hang for unusual amounts of
time.
This commit adds telemetry for the Prometheus expression rule
evaluator, which will enable meta-Prometheus monitoring of customers
to ensure that no instance is falling behind in answering routine
queries.
A few other sundry simplifications are introduced, too.
Some users of GetMetricForFingerprint() end up modifying the returned metric
labelset. Since the memory storage's implementation of
GetMetricForFingerprint() returned a pointer to the metric (and maps are
reference types anyways), the external mutation propagated back into the memory
storage.
The fix is to make a copy of the metric before returning it.
This commit updates the documentation, Makefiles, formatting, and
code semantics to support the 1.1. runtime, which includes ...
1. ``make advice``,
2. ``make format``, and
3. ``go fix`` on various targets.
This commit extracts the model.Values truncation behavior into the actual
tiered storage, which uses it and behaves in a peculiar way—notably the
retention of previous elements if the chunk were to ever go empty. This is
done to enable interpolation between sparse sample values in the evaluation
cycle. Nothing necessarily new here—just an extraction.
Now, the model.Values TruncateBefore functionality would do what a user
would expect without any surprises, which is required for the
DeletionProcessor, which may decide to split a large chunk in two if it
determines that the chunk contains the cut-off time.
This also removes the now obsolete scalar count() function and corrects the
expressions test naming (broken in
2202cd71c9 (L6R59))
so that the expression tests will actually run.
This commit drops the Storage interface and just replaces it with a
publicized TieredStorage type. Storage had been anticipated to be
used as a wrapper for testability but just was not used due to
practicality. Merely overengineered. My bad. Anyway, we will
eventually instantiate the TieredStorage dependencies in main.go and
pass them in for more intelligent lifecycle management.
These changes will pave the way for managing the curators without
Law of Demeter violations.
This commit introduces to Prometheus a batch database sample curator,
which corroborates the high watermarks for sample series against the
curation watermark table to see whether a curator of a given type
needs to be run.
The curator is an abstract executor, which runs various curation
strategies across the database. It remarks the progress for each
type of curation processor that runs for a given sample series.
A curation procesor is responsible for effectuating the underlying
batch changes that are request. In this commit, we introduce the
CompactionProcessor, which takes several bits of runtime metadata and
combine sparse sample entries in the database together to form larger
groups. For instance, for a given series it would be possible to
have the curator effectuate the following grouping:
- Samples Older than Two Weeks: Grouped into Bunches of 10000
- Samples Older than One Week: Grouped into Bunches of 1000
- Samples Older than One Day: Grouped into Bunches of 100
- Samples Older than One Hour: Grouped into Bunches of 10
The benefits hereof of such a compaction are 1. a smaller search
space in the database keyspace, 2. better employment of compression
for repetious values, and 3. reduced seek times.
This makes the memory persistence the backing store for views and
adjusts the MetricPersistence interface accordingly. It also removes
unused Get* method implementations from the LevelDB persistence so they
don't need to be adapted to the new interface. In the future, we should
rethink these interfaces.
All staleness and interpolation handling is now removed from the storage
layer and will be handled only by the query layer in the future.