Previously, we had one “polymorphous” `sample` type in the `storage`
package. This commit breaks it up into `fSample`, `hSample`, and
`fhSample`, each still implementing the `tsdbutil.Sample` interface.
This reduces allocations in `sampleRing.Add` but inflicts the penalty
of the interface wrapper, which makes things worse in total.
This commit therefore just demonstrates the step taken. The next
commit will tackle the interface overhead problem.
Signed-off-by: beorn7 <beorn@grafana.com>
In other words: Instead of having a “polymorphous” `Point` that can
either contain a float value or a histogram value, use an `FPoint` for
floats and an `HPoint` for histograms.
This seemingly small change has a _lot_ of repercussions throughout
the codebase.
The idea here is to avoid the increase in size of `Point` arrays that
happened after native histograms had been added.
The higher-level data structures (`Sample`, `Series`, etc.) are still
“polymorphous”. The same idea could be applied to them, but at each
step the trade-offs needed to be evaluated.
The idea with this change is to do the minimum necessary to get back
to pre-histogram performance for functions that do not touch
histograms. Here are comparisons for the `changes` function. The test
data doesn't include histograms yet. Ideally, there would be no change
in the benchmark result at all.
First runtime v2.39 compared to directly prior to this commit:
```
name old time/op new time/op delta
RangeQuery/expr=changes(a_one[1d]),steps=1-16 391µs ± 2% 542µs ± 1% +38.58% (p=0.000 n=9+8)
RangeQuery/expr=changes(a_one[1d]),steps=10-16 452µs ± 2% 617µs ± 2% +36.48% (p=0.000 n=10+10)
RangeQuery/expr=changes(a_one[1d]),steps=100-16 1.12ms ± 1% 1.36ms ± 2% +21.58% (p=0.000 n=8+10)
RangeQuery/expr=changes(a_one[1d]),steps=1000-16 7.83ms ± 1% 8.94ms ± 1% +14.21% (p=0.000 n=10+10)
RangeQuery/expr=changes(a_ten[1d]),steps=1-16 2.98ms ± 0% 3.30ms ± 1% +10.67% (p=0.000 n=9+10)
RangeQuery/expr=changes(a_ten[1d]),steps=10-16 3.66ms ± 1% 4.10ms ± 1% +11.82% (p=0.000 n=10+10)
RangeQuery/expr=changes(a_ten[1d]),steps=100-16 10.5ms ± 0% 11.8ms ± 1% +12.50% (p=0.000 n=8+10)
RangeQuery/expr=changes(a_ten[1d]),steps=1000-16 77.6ms ± 1% 87.4ms ± 1% +12.63% (p=0.000 n=9+9)
RangeQuery/expr=changes(a_hundred[1d]),steps=1-16 30.4ms ± 2% 32.8ms ± 1% +8.01% (p=0.000 n=10+10)
RangeQuery/expr=changes(a_hundred[1d]),steps=10-16 37.1ms ± 2% 40.6ms ± 2% +9.64% (p=0.000 n=10+10)
RangeQuery/expr=changes(a_hundred[1d]),steps=100-16 105ms ± 1% 117ms ± 1% +11.69% (p=0.000 n=10+10)
RangeQuery/expr=changes(a_hundred[1d]),steps=1000-16 783ms ± 3% 876ms ± 1% +11.83% (p=0.000 n=9+10)
```
And then runtime v2.39 compared to after this commit:
```
name old time/op new time/op delta
RangeQuery/expr=changes(a_one[1d]),steps=1-16 391µs ± 2% 547µs ± 1% +39.84% (p=0.000 n=9+8)
RangeQuery/expr=changes(a_one[1d]),steps=10-16 452µs ± 2% 616µs ± 2% +36.15% (p=0.000 n=10+10)
RangeQuery/expr=changes(a_one[1d]),steps=100-16 1.12ms ± 1% 1.26ms ± 1% +12.20% (p=0.000 n=8+10)
RangeQuery/expr=changes(a_one[1d]),steps=1000-16 7.83ms ± 1% 7.95ms ± 1% +1.59% (p=0.000 n=10+8)
RangeQuery/expr=changes(a_ten[1d]),steps=1-16 2.98ms ± 0% 3.38ms ± 2% +13.49% (p=0.000 n=9+10)
RangeQuery/expr=changes(a_ten[1d]),steps=10-16 3.66ms ± 1% 4.02ms ± 1% +9.80% (p=0.000 n=10+9)
RangeQuery/expr=changes(a_ten[1d]),steps=100-16 10.5ms ± 0% 10.8ms ± 1% +3.08% (p=0.000 n=8+10)
RangeQuery/expr=changes(a_ten[1d]),steps=1000-16 77.6ms ± 1% 78.1ms ± 1% +0.58% (p=0.035 n=9+10)
RangeQuery/expr=changes(a_hundred[1d]),steps=1-16 30.4ms ± 2% 33.5ms ± 4% +10.18% (p=0.000 n=10+10)
RangeQuery/expr=changes(a_hundred[1d]),steps=10-16 37.1ms ± 2% 40.0ms ± 1% +7.98% (p=0.000 n=10+10)
RangeQuery/expr=changes(a_hundred[1d]),steps=100-16 105ms ± 1% 107ms ± 1% +1.92% (p=0.000 n=10+10)
RangeQuery/expr=changes(a_hundred[1d]),steps=1000-16 783ms ± 3% 775ms ± 1% -1.02% (p=0.019 n=9+9)
```
In summary, the runtime doesn't really improve with this change for
queries with just a few steps. For queries with many steps, this
commit essentially reinstates the old performance. This is good
because the many-step queries are the one that matter most (longest
absolute runtime).
In terms of allocations, though, this commit doesn't make a dent at
all (numbers not shown). The reason is that most of the allocations
happen in the sampleRingIterator (in the storage package), which has
to be addressed in a separate commit.
Signed-off-by: beorn7 <beorn@grafana.com>
This commit adds a new 'keep_firing_for' field to Prometheus alerting
rules. The 'resolve_delay' field specifies the minimum amount of time
that an alert should remain firing, even if the expression does not
return any results.
This feature was discussed at a previous dev summit, and it was
determined that a feature like this would be useful in order to allow
the expression time to stabilize and prevent confusing resolved messages
from being propagated through Alertmanager.
This approach is simpler than having two PromQL queries, as was
sometimes discussed, and it should be easy to implement.
This commit does not include tests for the 'resolve_delay' field. This
is intentional, as the purpose of this commit is to gather comments on
the proposed design of the 'resolve_delay' field before implementing
tests. Once the design of the 'resolve_delay' field has been finalized,
a follow-up commit will be submitted with tests."
See https://github.com/prometheus/prometheus/issues/11570
Signed-off-by: Julien Pivotto <roidelapluie@o11y.eu>
In most cases, there is no sample at `maxt`, so `PeekBack` has to be
used. So far, `PeekBack` did not return a float histogram, and we
disregarded even any returned normal histogram. This fixes both, and
also tweaks the unit test to discover the problem (by using an earlier
timestamp than "now" for the samples in the TSDB).
Signed-off-by: beorn7 <beorn@grafana.com>
* Add API endpoints for getting scrape pool names
This adds api/v1/scrape_pools endpoint that returns the list of *names* of all the scrape pools configured.
Having it allows to find out what scrape pools are defined without having to list and parse all targets.
The second change is adding scrapePool query parameter support in api/v1/targets endpoint, that allows to
filter returned targets by only finding ones for passed scrape pool name.
Both changes allow to query for a specific scrape pool data, rather than getting all the targets for all possible scrape pools.
The problem with api/v1/targets endpoint is that it returns huge amount of data if you configure a lot of scrape pools.
Signed-off-by: Łukasz Mierzwa <l.mierzwa@gmail.com>
* Add a scrape pool selector on /targets page
Current targets page lists all possible targets. This works great if you only have a few scrape pools configured,
but for systems with a lot of scrape pools and targets this slow things down a lot.
Not only does the /targets page load very slowly in such case (waiting for huge API response) but it also take
a long time to render, due to huge number of elements.
This change adds a dropdown selector so it's possible to select only intersting scrape pool to view.
There's also scrapePool query param that will open selected pool automatically.
Signed-off-by: Łukasz Mierzwa <l.mierzwa@gmail.com>
Signed-off-by: Łukasz Mierzwa <l.mierzwa@gmail.com>
Use `FromStrings` instead of assuming the data structure.
And don't sort individual labels, since `labels.Labels` are always sorted.
Signed-off-by: Bryan Boreham <bjboreham@gmail.com>
Patterned after `Chunk.Iterator()`: pass the old iterator in so it
can be re-used to avoid allocating a new object.
(This commit does not do any re-use; it is just changing all the method
signatures so re-use is possible in later commits.)
Signed-off-by: Bryan Boreham <bjboreham@gmail.com>
We have 2 bugfixes, one which is important for Windows users and
another one on native histograms. I think it is worth cutting another
bugfix release before 2.41 comes out.
Signed-off-by: Julien Pivotto <roidelapluie@o11y.eu>
* Switch from 'sanity' to more inclusive lanuage
"Removing ableist language in code is important; it helps to create and
maintain an environment that welcomes all developers of all backgrounds,
while emphasizing that we as developers select the most articulate,
precise, descriptive language we can rather than relying on metaphors.
The phrase sanity check is ableist, and unnecessarily references mental
health in our code bases. It denotes that people with mental illnesses
are inferior, wrong, or incorrect, and the phrase sanity continues to be
used by employers and other individuals to discriminate against these
people."
From https://gist.github.com/seanmhanson/fe370c2d8bd2b3228680e38899baf5cc
Signed-off-by: Bryan Boreham <bjboreham@gmail.com>