* parser test cleanup
- Test against the exported package functions instead of the private functions.
* Improves readability of TestParseSeries
- Moves package function closer to parser function
For instant vectors, if "stale" is the newest sample
ignore the timeseries.
For range vectors, filter out "stale" samples.
Make it possible to inject "stale" samples in promql tests.
The current separation between lexer and parser is a bit fuzzy when it
comes to operators, aggregators and other keywords. The lexer already
tries to determine the type of a token, even though that type might
change depending on the context.
This led to the problematic behavior that no tokens known to the lexer
could be used as label names, including operators (and, by, ...),
aggregators (count, quantile, ...) or other keywords (for, offset, ...).
This change additionally checks whether an identifier is one of these
types. We might want to check whether the specific item identification
should be moved from the lexer to the parser.
tl;dr: This is not a fundamental solution to the indexing problem
(like tindex is) but it at least avoids utilizing the intersection
problem to the greatest possible amount.
In more detail:
Imagine the following query:
nicely:aggregating:rule{job="foo",env="prod"}
While it uses a nicely aggregating recording rule (which might have a
very low cardinality), Prometheus still intersects the low number of
fingerprints for `{__name__="nicely:aggregating:rule"}` with the many
thousands of fingerprints matching `{job="foo"}` and with the millions
of fingerprints matching `{env="prod"}`. This totally innocuous query
is dead slow if the Prometheus server has a lot of time series with
the `{env="prod"}` label. Ironically, if you make the query more
complicated, it becomes blazingly fast:
nicely:aggregating:rule{job=~"foo",env=~"prod"}
Why so? Because Prometheus only intersects with non-Equal matchers if
there are no Equal matchers. That's good in this case because it
retrieves the few fingerprints for
`{__name__="nicely:aggregating:rule"}` and then starts right ahead to
retrieve the metric for those FPs and checking individually if they
match the other matchers.
This change is generalizing the idea of when to stop intersecting FPs
and go into "retrieve metrics and check them individually against
remaining matchers" mode:
- First, sort all matchers by "expected cardinality". Matchers
matching the empty string are always worst (and never used for
intersections). Equal matchers are in general consider best, but by
using some crude heuristics, we declare some better than others
(instance labels or anything that looks like a recording rule).
- Then go through the matchers until we hit a threshold of remaining
FPs in the intersection. This threshold is higher if we are already
in the non-Equal matcher area as intersection is even more expensive
here.
- Once the threshold has been reached (or we have run out of matchers
that do not match the empty string), start with "retrieve metrics
and check them individually against remaining matchers".
A beefy server at SoundCloud was spending 67% of its CPU time in index
lookups (fingerprintsForLabelPairs), serving mostly a dashboard that
is exclusively built with recording rules. With this change, it spends
only 35% in fingerprintsForLabelPairs. The CPU usage dropped from 26
cores to 18 cores. The median latency for query_range dropped from 14s
to 50ms(!). As expected, higher percentile latency didn't improve that
much because the new approach is _occasionally_ running into the worst
case while the old one was _systematically_ doing so. The 99th
percentile latency is now about as high as the median before (14s)
while it was almost twice as high before (26s).
This offers new semantics in allowing on() for matching
two single-element vectors with no known common labels.
Previosuly this was often done using on(dummy).
This also allows making it explict that you meant
to do an aggregation without labels via by().
Fixes#1597.
The labels listed in the group_ modifier will be copied from the one
side to the many side. It will be valid to specify no labels.
This is intended to replace the existing ON/GROUP_* support.,
The `unless` set operator can be used to return all vector elements from
the LHS which do not match the elements on the RHS. A use case is to
return all metrics for nodes which do not have a specific role:
node_load1 unless on(instance) chef_role{role="app"}
This has the advantage that the user doesn't need
to list all labels they want to keep (as with "by")
but without having to worry about inconsistent labels
as when there's only one time series (as with "keeping_common").
Almost all aggregation should use this rather than the existing
two options as it's much less error prone and easier to maintain
due to not having to always add in "job" plus whatever other common
job-level labels you have like "region".
It's actually happening in several places (and for flags, we use the
standard Go time.Duration...). This at least reduces all our
home-grown parsing to one place (in model).
The documentation speaks about range vectors and range vector selectors.
This change does not fix all issues, we might still expose the term
"Matrix" in error messages using %T.