Refactors textparser test to use a common test utility to create
protobuf representation from MetricFamily
Signed-off-by: György Krajcsovits <gyorgy.krajcsovits@grafana.com>
This reverts the removal of type casting due to an error in the
dragonfly integration. The change in the type casting introduced by the
commit causes a type mismatch, resulting in the following errors:
util/runtime/limits_default.go:42:57: cannot use rlimit.Cur (variable of type int64) as type uint64 in argument to limitToString
util/runtime/limits_default.go:42:90: cannot use rlimit.Max (variable of type int64) as type uint64 in argument to limitToString
Reverting this commit to resolve the type mismatch error and maintain compatibility with the dragonfly integration.
Signed-off-by: Julien Pivotto <roidelapluie@o11y.eu>
Ran `make update-go-deps` then hand-edited to remove any downgrades.
Then backed out changes to:
* Azure: still waiting someone to test this.
* Kubernetes: needs update elsewhere to klog.
* kube-openapi: it doesn't compile with previous Go version.
Signed-off-by: Bryan Boreham <bjboreham@gmail.com>
Wiser coders than myself have come to the conclusion that a `switch`
statement is almost always superior to a statement that includes any
`else if`.
The exceptions that I have found in our codebase are just these two:
* The `if else` is followed by an additional statement before the next
condition (separated by a `;`).
* The whole thing is within a `for` loop and `break` statements are
used. In this case, using `switch` would require tagging the `for`
loop, which probably tips the balance.
Why are `switch` statements more readable?
For one, fewer curly braces. But more importantly, the conditions all
have the same alignment, so the whole thing follows the natural flow
of going down a list of conditions. With `else if`, in contrast, all
conditions but the first are "hidden" behind `} else if `, harder to
spot and (for no good reason) presented differently from the first
condition.
I'm sure the aforemention wise coders can list even more reasons.
In any case, I like it so much that I have found myself recommending
it in code reviews. I would like to make it a habit in our code base,
without making it a hard requirement that we would test on the CI. But
for that, there has to be a role model, so this commit eliminates all
`if else` occurrences, unless it is autogenerated code or fits one of
the exceptions above.
Signed-off-by: beorn7 <beorn@grafana.com>
We haven't updated golint-ci in our CI yet, but this commit prepares
for that.
There are a lot of new warnings, and it is mostly because the "revive"
linter got updated. I agree with most of the new warnings, mostly
around not naming unused function parameters (although it is justified
in some cases for documentation purposes – while things like mocks are
a good example where not naming the parameter is clearer).
I'm pretty upset about the "empty block" warning to include `for`
loops. It's such a common pattern to do something in the head of the
`for` loop and then have an empty block. There is still an open issue
about this: https://github.com/mgechev/revive/issues/810 I have
disabled "revive" altogether in files where empty blocks are used
excessively, and I have made the effort to add individual
`// nolint:revive` where empty blocks are used just once or twice.
It's borderline noisy, though, but let's go with it for now.
I should mention that none of the "empty block" warnings for `for`
loop bodies were legitimate.
Signed-off-by: beorn7 <beorn@grafana.com>
Introduces support for a new query parameter in the `/rules` API endpoint that allows filtering by rule names.
If all the rules of a group are filtered, we skip the group entirely.
Signed-off-by: gotjosh <josue.abreu@gmail.com>
Add a fast path for the common case that a string is less than 127 bytes
long, to skip a shift and the loop.
Signed-off-by: Bryan Boreham <bjboreham@gmail.com>
Signed-off-by: Sebastian Rabenhorst <sebastian.rabenhorst@shopify.com>
Fixed sampleRingIterator for mixed histograms
Signed-off-by: Sebastian Rabenhorst <sebastian.rabenhorst@shopify.com>
Fixed lint
This commit is doing what I would have expected that Go generics do
for me. However, the PromQL benchmarks show a significant runtime and
allocation increase with `genericAdd`, so this replaces it with
hand-coded non-generic versions of it.
Signed-off-by: beorn7 <beorn@grafana.com>
In the past, every sample value was a float, so it was fine to call a
variable holding such a float "value" or "sample". With native
histograms, a sample might have a histogram value. And a histogram
value is still a value. Calling a float value just "value" or "sample"
or "V" is therefore misleading. Over the last few commits, I already
renamed many variables, but this cleans up a few more places where the
changes are more invasive.
Note that we do not to attempt naming in the JSON APIs or in the
protobufs. That would be quite a disruption. However, internally, we
can call variables as we want, and we should go with the option of
avoiding misunderstandings.
Signed-off-by: beorn7 <beorn@grafana.com>
This utilizes the fact that most sampleRings will only contain samples
of one type. In this case, the generic interface is circumvented, and
a bespoke buffer for the one actually occurring sample type is
used. Should a sampleRing receive a sample of a different kind later,
it will transparently switch to the generic behavior.
Signed-off-by: beorn7 <beorn@grafana.com>
Previously, we had one “polymorphous” `sample` type in the `storage`
package. This commit breaks it up into `fSample`, `hSample`, and
`fhSample`, each still implementing the `tsdbutil.Sample` interface.
This reduces allocations in `sampleRing.Add` but inflicts the penalty
of the interface wrapper, which makes things worse in total.
This commit therefore just demonstrates the step taken. The next
commit will tackle the interface overhead problem.
Signed-off-by: beorn7 <beorn@grafana.com>
In other words: Instead of having a “polymorphous” `Point` that can
either contain a float value or a histogram value, use an `FPoint` for
floats and an `HPoint` for histograms.
This seemingly small change has a _lot_ of repercussions throughout
the codebase.
The idea here is to avoid the increase in size of `Point` arrays that
happened after native histograms had been added.
The higher-level data structures (`Sample`, `Series`, etc.) are still
“polymorphous”. The same idea could be applied to them, but at each
step the trade-offs needed to be evaluated.
The idea with this change is to do the minimum necessary to get back
to pre-histogram performance for functions that do not touch
histograms. Here are comparisons for the `changes` function. The test
data doesn't include histograms yet. Ideally, there would be no change
in the benchmark result at all.
First runtime v2.39 compared to directly prior to this commit:
```
name old time/op new time/op delta
RangeQuery/expr=changes(a_one[1d]),steps=1-16 391µs ± 2% 542µs ± 1% +38.58% (p=0.000 n=9+8)
RangeQuery/expr=changes(a_one[1d]),steps=10-16 452µs ± 2% 617µs ± 2% +36.48% (p=0.000 n=10+10)
RangeQuery/expr=changes(a_one[1d]),steps=100-16 1.12ms ± 1% 1.36ms ± 2% +21.58% (p=0.000 n=8+10)
RangeQuery/expr=changes(a_one[1d]),steps=1000-16 7.83ms ± 1% 8.94ms ± 1% +14.21% (p=0.000 n=10+10)
RangeQuery/expr=changes(a_ten[1d]),steps=1-16 2.98ms ± 0% 3.30ms ± 1% +10.67% (p=0.000 n=9+10)
RangeQuery/expr=changes(a_ten[1d]),steps=10-16 3.66ms ± 1% 4.10ms ± 1% +11.82% (p=0.000 n=10+10)
RangeQuery/expr=changes(a_ten[1d]),steps=100-16 10.5ms ± 0% 11.8ms ± 1% +12.50% (p=0.000 n=8+10)
RangeQuery/expr=changes(a_ten[1d]),steps=1000-16 77.6ms ± 1% 87.4ms ± 1% +12.63% (p=0.000 n=9+9)
RangeQuery/expr=changes(a_hundred[1d]),steps=1-16 30.4ms ± 2% 32.8ms ± 1% +8.01% (p=0.000 n=10+10)
RangeQuery/expr=changes(a_hundred[1d]),steps=10-16 37.1ms ± 2% 40.6ms ± 2% +9.64% (p=0.000 n=10+10)
RangeQuery/expr=changes(a_hundred[1d]),steps=100-16 105ms ± 1% 117ms ± 1% +11.69% (p=0.000 n=10+10)
RangeQuery/expr=changes(a_hundred[1d]),steps=1000-16 783ms ± 3% 876ms ± 1% +11.83% (p=0.000 n=9+10)
```
And then runtime v2.39 compared to after this commit:
```
name old time/op new time/op delta
RangeQuery/expr=changes(a_one[1d]),steps=1-16 391µs ± 2% 547µs ± 1% +39.84% (p=0.000 n=9+8)
RangeQuery/expr=changes(a_one[1d]),steps=10-16 452µs ± 2% 616µs ± 2% +36.15% (p=0.000 n=10+10)
RangeQuery/expr=changes(a_one[1d]),steps=100-16 1.12ms ± 1% 1.26ms ± 1% +12.20% (p=0.000 n=8+10)
RangeQuery/expr=changes(a_one[1d]),steps=1000-16 7.83ms ± 1% 7.95ms ± 1% +1.59% (p=0.000 n=10+8)
RangeQuery/expr=changes(a_ten[1d]),steps=1-16 2.98ms ± 0% 3.38ms ± 2% +13.49% (p=0.000 n=9+10)
RangeQuery/expr=changes(a_ten[1d]),steps=10-16 3.66ms ± 1% 4.02ms ± 1% +9.80% (p=0.000 n=10+9)
RangeQuery/expr=changes(a_ten[1d]),steps=100-16 10.5ms ± 0% 10.8ms ± 1% +3.08% (p=0.000 n=8+10)
RangeQuery/expr=changes(a_ten[1d]),steps=1000-16 77.6ms ± 1% 78.1ms ± 1% +0.58% (p=0.035 n=9+10)
RangeQuery/expr=changes(a_hundred[1d]),steps=1-16 30.4ms ± 2% 33.5ms ± 4% +10.18% (p=0.000 n=10+10)
RangeQuery/expr=changes(a_hundred[1d]),steps=10-16 37.1ms ± 2% 40.0ms ± 1% +7.98% (p=0.000 n=10+10)
RangeQuery/expr=changes(a_hundred[1d]),steps=100-16 105ms ± 1% 107ms ± 1% +1.92% (p=0.000 n=10+10)
RangeQuery/expr=changes(a_hundred[1d]),steps=1000-16 783ms ± 3% 775ms ± 1% -1.02% (p=0.019 n=9+9)
```
In summary, the runtime doesn't really improve with this change for
queries with just a few steps. For queries with many steps, this
commit essentially reinstates the old performance. This is good
because the many-step queries are the one that matter most (longest
absolute runtime).
In terms of allocations, though, this commit doesn't make a dent at
all (numbers not shown). The reason is that most of the allocations
happen in the sampleRingIterator (in the storage package), which has
to be addressed in a separate commit.
Signed-off-by: beorn7 <beorn@grafana.com>
This is a method used by some downstream projects; it was created to
optimize the implementation in `labels_string.go` but we should have one
for both implementations so the same code works with either.
Signed-off-by: Bryan Boreham <bjboreham@gmail.com>
query_samples_total is a counter that tracks the total number of samples loaded by all queries.
The goal with this metric is to be able to see the amount of 'work' done by Prometheus to service queries.
At the moment we have metrics with the number of queries, plus more detailed metrics showing how much time each step of a query takes.
While those metrics do help they don't show us the whole picture.
Queries that do load more samples are (in general) more expensive than queries that do load fewer samples.
This means that looking only at the number of queries doesn't tell us how much 'work' Prometheus received.
Adding a counter that tracks the total number of samples loaded allows us to see if there was a spike in the cost of queries, not just the number of them.
Signed-off-by: Łukasz Mierzwa <l.mierzwa@gmail.com>