This adds a per-target cache of scraped metadata. The metadata is only
available for the lifecycle of the attached target. An API endpoint allows
to select metadata by metric name and a label selection of targets.
Signed-off-by: Fabian Reinartz <freinartz@google.com>
* Move range logic to 'eval'
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Make aggregegate range aware
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* PromQL is statically typed, so don't eval to find the type.
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Extend rangewrapper to multiple exprs
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Start making function evaluation ranged
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Make instant queries a special case of range queries
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Eliminate evalString
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Evaluate range vector functions one series at a time
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Make unary operators range aware
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Make binops range aware
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Pass time to range-aware functions.
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Make simple _over_time functions range aware
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Reduce allocs when working with matrix selectors
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Add basic benchmark for range evaluation
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Reuse objects for function arguments
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Do dropmetricname and allocating output vector only once.
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Add range-aware support for range vector functions with params
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Optimise holt_winters, cut cpu and allocs by ~25%
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Make rate&friends range aware
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Make more functions range aware. Document calling convention.
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Make date functions range aware
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Make simple math functions range aware
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Convert more functions to be range aware
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Make more functions range aware
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Specialcase timestamp() with vector selector arg for range awareness
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Remove transition code for functions
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Remove the rest of the engine transition code
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Remove more obselete code
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Remove the last uses of the eval* functions
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Remove engine finalizers to prevent corruption
The finalizers set by matrixSelector were being called
just before the value they were retruning to the pool
was then being provided to the caller. Thus a concurrent query
could corrupt the data that the user has just been returned.
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Add new benchmark suite for range functinos
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Migrate existing benchmarks to new system
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Expand promql benchmarks
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Simply test by removing unused range code
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* When testing instant queries, check range queries too.
To protect against subsequent steps in a range query being
affected by the previous steps, add a test that evaluates
an instant query that we know works again as a range query
with the tiimestamp we care about not being the first step.
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Reuse ring for matrix iters. Put query results back in pool.
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Reuse buffer when iterating over matrix selectors
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Unary minus should remove metric name
Cut down benchmarks for faster runs.
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Reduce repetition in benchmark test cases
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Work series by series when doing normal vectorSelectors
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Optimise benchmark setup, cuts time by 60%
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Have rangeWrapper use an evalNodeHelper to cache across steps
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Use evalNodeHelper with functions
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Cache dropMetricName within a node evaluation.
This saves both the calculations and allocs done by dropMetricName
across steps.
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Reuse input vectors in rangewrapper
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Reuse the point slices in the matrixes input/output by rangeWrapper
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Make benchmark setup faster using AddFast
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Simplify benchmark code.
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Add caching in VectorBinop
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Use xor to have one-level resultMetric hash key
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Add more benchmarks
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Call Query.Close in apiv1
This allows point slices allocated for the response data
to be reused by later queries, saving allocations.
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Optimise histogram_quantile
It's now 5-10% faster with 97% less garbage generated for 1k steps
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Make the input collection in rangeVector linear rather than quadratic
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Optimise label_replace, for 1k steps 15x fewer allocs and 3x faster
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Optimise label_join, 1.8x faster and 11x less memory for 1k steps
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Expand benchmarks, cleanup comments, simplify numSteps logic.
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Address Fabian's comments
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Comments from Alin.
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Address jrv's comments
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Remove dead code
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Address Simon's comments.
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Rename populateIterators, pre-init some sizes
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Handle case where function has non-matrix args first
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Split rangeWrapper out to rangeEval function, improve comments
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Cleanup and make things more consistent
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Make EvalNodeHelper public
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
* Fabian's comments.
Signed-off-by: Brian Brazil <brian.brazil@robustperception.io>
Fix race by properly locking access to scrape pools. Use separate mutex for information needed by UI so that UI isn't blocked when targets are being updated.
* web: replace deprecated InstrumentHandler()
This change replaces the deprecated InstrumentHandler function by the
equivalent functions from the promhttp package.
The following metrics are removed:
* http_request_duration_microseconds (Summary).
* http_request_size_bytes (Summary).
* http_requests_total (Counter).
And the following metrics are added instead:
* prometheus_http_request_duration_seconds (Histogram).
* prometheus_http_response_size_bytes (Histogram).
* promhttp_metric_handler_requests_in_flight (Gauge).
* promhttp_metric_handler_requests_total (Counter).
* Update github.com/prometheus/common/route package
* web: refactor using the new prometheus/common/route package
This adds a parameter to the storage selection interface which allows
query engine(s) to pass information about the operations surrounding a
data selection.
This can for example be used by remote storage backends to infer the
correct downsampling aggregates that need to be provided.
Federation makes use of dedupedSeriesSet to merge SeriesSets for every
query into one output stream. If many match[] arguments are provided,
many dedupedSeriesSet objects will get chained. This has the downside of
causing a potential O(n*k) running time, where n is the number of series
and k the number of match[] arguments.
In the mean time, the storage package provides a mergeSeriesSet that
accomplishes the same with an O(n*log(k)) running time by making use of
a binary heap. Let's just get rid of dedupedSeriesSet and change all
existing callers to use mergeSeriesSet.
API consumers should be able to get insight into the query run times.
The UI currently measures total roundtrip times. This PR allows for more
fine grained metrics to be exposed.
* adds new timer for total execution time (queue + eval)
* expose new timer, queue timer, and eval timer in stats field of the
range query response:
```json
{
"status": "success",
"data": {
"resultType": "matrix",
"result": [],
"stats": {
"execQueueTimeNs": 4683,
"execTotalTimeNs": 2086587,
"totalEvalTimeNs": 2077851
}
}
}
```
* stats field is optional, only set when query parameter `stats` is not
empty
Try it via
```sh
curl 'http://localhost:9090/api/v1/query_range?query=up&start=1486480279&end=1486483879&step=14000&stats=true'
```
Review feedback
* moved query stats json generation to query_stats.go
* use seconds for all query timers
* expose all timers available
* Changed ExecTotalTime string representation from Exec queue total time to Exec total time
This PR fixes#3072 by providing POST endpoints for `query` and `query_range`.
POST request must be made with `Content-Type: application/x-www-form-urlencoded` header.
* Re-add contexts to storage.Storage.Querier()
These are needed when replacing the storage by a multi-tenant
implementation where the tenant is stored in the context.
The 1.x query interfaces already had contexts, but they got lost in 2.x.
* Convert promql.Engine to use native contexts
This PR adds the `/status/config` endpoint which exposes the currently
loaded Prometheus config. This is the same config that is displayed on
`/config` in the UI in YAML format. The response payload looks like
such:
```
{
"status": "success",
"data": {
"yaml": <CONFIG>
}
}
```
* Use request.Context() instead of a global map of contexts.
* Add some basic opentracing instrumentation on the query path.
* Remove tracehandler endpoint.
* Fixed int64 overflow for timestamp in v1/api parseDuration and parseTime
This led to unexpected results on wrong query with "(...)&start=148966367200.372&end=1489667272.372"
That query is wrong because of `start > end` but actually internal int64 overflow caused start to be something around MinInt64 (huge negative value) and was passing validation.
BTW: Not sure if negative timestamp makes sense even.. But model.Earliest is actually MinInt64, can someone explain me why?
Signed-off-by: Bartek Plotka <bwplotka@gmail.com>
* Added missing trailing periods on comments.
Signed-off-by: Bartek Plotka <bwplotka@gmail.com>
* MOved to only `<` and `>`. Removed equal.
Signed-off-by: Bartek Plotka <bwplotka@gmail.com>
retreival.Target contains a mutex. It was copied in the Targets()
call. This potentially can wreak a lot of havoc.
It might even have caused the issues reported as #2266 and #2262 .
This extracts Querier as an instantiateable and closeable object
rather than just defining extending methods of the storage interface.
This improves composability and allows abstracting query transactions,
which can be useful for transaction-level caches, consistent data views,
and encapsulating teardown.
This is based on https://github.com/prometheus/prometheus/pull/1997.
This adds contexts to the relevant Storage methods and already passes
PromQL's new per-query context into the storage's query methods.
The immediate motivation supporting multi-tenancy in Frankenstein, but
this could also be used by Prometheus's normal local storage to support
cancellations and timeouts at some point.
For Weaveworks' Frankenstein, we need to support multitenancy. In
Frankenstein, we initially solved this without modifying the promql
package at all: we constructed a new promql.Engine for every
query and injected a storage implementation into that engine which would
be primed to only collect data for a given user.
This is problematic to upstream, however. Prometheus assumes that there
is only one engine: the query concurrency gate is part of the engine,
and the engine contains one central cancellable context to shut down all
queries. Also, creating a new engine for every query seems like overkill.
Thus, we want to be able to pass per-query contexts into a single engine.
This change gets rid of the promql.Engine's built-in base context and
allows passing in a per-query context instead. Central cancellation of
all queries is still possible by deriving all passed-in contexts from
one central one, but this is now the responsibility of the caller. The
central query context is now created in main() and passed into the
relevant components (web handler / API, rule manager).
In a next step, the per-query context would have to be passed to the
storage implementation, so that the storage can implement multi-tenancy
or other features based on the contextual information.
See discussion in
https://groups.google.com/forum/#!topic/prometheus-developers/bkuGbVlvQ9g
The main idea is that the user of a storage shouldn't have to deal with
fingerprints anymore, and should not need to do an individual preload
call for each metric. The storage interface needs to be made more
high-level to not expose these details.
This also makes it easier to reuse the same storage interface for remote
storages later, as fewer roundtrips are required and the fingerprint
concept doesn't work well across the network.
NOTE: this deliberately gets rid of a small optimization in the old
query Analyzer, where we dedupe instants and ranges for the same series.
This should have a minor impact, as most queries do not have multiple
selectors loading the same series (and at the same offset).
I got feedback from different sources about rules and targets being
too heavy in the status tab if their are lots of them.
This change also allows for more fine-granular locking.
Prometheus is Apache 2 licensed, and most source files have the
appropriate copyright license header, but some were missing it without
apparent reason. Correct that by adding it.
The chunk encoding was hardcoded there because it mostly doesn't
matter what encoding is chosen in that test. Since type 1 is
battle-hardened enough, I'm switching to type 2 here so that we can
catch unexpected problems as a byproduct. My expectation is that the
chunk encoding doesn't matter anyway, as said, but then "unexpected
problems" contains the word "unexpected".
WIP: This needs more tests.
It now gets a from and through value, which it may opportunistically
use to optimize the retrieval. With possible future range indices,
this could be used in a very efficient way. This change merely applies
some easy checks, which should nevertheless solve the use case of
heavy rule evaluations on servers with a lot of series churn.
Idea is the following:
- Only archive series that are at least as old as the headChunkTimeout
(which was already extremely unlikely to happen).
- Then maintain a high watermark for the last archival, i.e. no
archived series has a sample more recent than that watermark.
- Any query that doesn't reach to a time before that watermark doesn't
have to touch the archive index at all. (A production server at
Soundcloud with the aforementioned series churn and heavy rule
evaluations spends 50% of its CPU time in archive index
lookups. Since rule evaluations usually only touch very recent
values, most of those lookup should disappear with this change.)
- Federation with a very broad label matcher will profit from this,
too.
As a byproduct, the un-needed MetricForFingerprint method was removed
from the Storage interface.
It's actually happening in several places (and for flags, we use the
standard Go time.Duration...). This at least reduces all our
home-grown parsing to one place (in model).
This adapts some functionality from the Go standard library for string
literal lexing and unquoting/unescaping.
The following string types are now supported:
Double- or single-quoted strings:
These support all escape sequences that Go supports in double-quoted
string literals. The difference is that Prometheus also has
single-quoted strings (instead of single-quoted runes in Go). Raw
newlines are not allowed.
Backtick-quoted raw strings:
Strings quoted in backticks are treated as raw strings just like in Go
and may contain raw newlines and other special characters directly.
Fixes https://github.com/prometheus/prometheus/issues/1122
Fixes https://github.com/prometheus/prometheus/issues/1121
This is with `golint -min_confidence=0.5`.
I left several lint warnings untouched because they were either
incorrect or I felt it was better not to change them at the moment.
This change is conceptually very simple, although the diff is large. It
switches logging from "github.com/golang/glog" to
"github.com/prometheus/log", while not actually changing any log
messages. V(1)-style logging has been changed to be log.Debug*().
Don't handle `0` as a special timestamp value for "now" anymore, except
in the `QueryRange()` case, where existing API consumers still expect
`0` to mean "now".
Also, properly return errors now for malformed timestamp/duration
float values.
/api/targets was undocumented and never used and also broken.
Showing instance and job labels on the status page (next to targets)
does not make sense as those labels are set in an obvious way.
Also add a doc comment to TargetStateToClass.
This is related to #454. Queries now timeout after a duration set by
the -query.timeout flag. The TotalEvalTimer is now started/stopped
inside any of the ast.Eval* functions.
- Move CONTRIBUTORS.md to the more common AUTHORS.
- Added the required NOTICE file.
- Changed "Prometheus Team" to "The Prometheus Authors".
- Reverted the erroneous changes to the Apache License.
This doesn't make the import order consistend everywhere, just where
it was touched by the previous commit.
Change-Id: I82fc75f8691da9901c7ceb808e6f6fe8e5d62c0e
Essentially:
- Remove unused code.
- Make it 'go vet' clean. The only remaining warnings are in generated code.
- Make it 'golint' clean. The only remaining warnings are in gerenated code.
- Smoothed out same minor things.
Change-Id: I3fe5c1fbead27b0e7a9c247fee2f5a45bc2d42c6
Gracefully handle decimal values, by truncating them.
Limit amount of steps, to avoid accidentally pulling too much data.
This limit returns up to ~500kB per timeseries, and allows
for 60s granularity for a week and 1h granularity for a year.
Change-Id: Ie549fc24deb2eecbc6c5d1b6088a548a6b02e849
This fixes the problem where samples become temporarily unavailable for
queries while they are being flushed to disk. Although the entire
flushing code could use some major refactoring, I'm explicitly trying to
do the minimal change to fix the problem since there's a whole new
storage implementation in the pipeline.
Change-Id: I0f5393a30b88654c73567456aeaea62f8b3756d9
This was initially motivated by wanting to distribute the rule checker
tool under `tools/rule_checker`. However, this was not possible without
also distributing the LevelDB dynamic libraries because the tool
transitively depended on Levigo:
rule checker -> query layer -> tiered storage layer -> leveldb
This change separates external storage interfaces from the
implementation (tiered storage, leveldb storage, memory storage) by
putting them into separate packages:
- storage/metric: public, implementation-agnostic interfaces
- storage/metric/tiered: tiered storage implementation, including memory
and LevelDB storage.
I initially also considered splitting up the implementation into
separate packages for tiered storage, memory storage, and LevelDB
storage, but these are currently so intertwined that it would be another
major project in itself.
The query layers and most other parts of Prometheus now have notion of
the storage implementation anymore and just use whatever implementation
they get passed in via interfaces.
The rule_checker is now a static binary :)
Change-Id: I793bbf631a8648ca31790e7e772ecf9c2b92f7a0
So far we've been using Go's native time.Time for anything related to sample
timestamps. Since the range of time.Time is much bigger than what we need, this
has created two problems:
- there could be time.Time values which were out of the range/precision of the
time type that we persist to disk, therefore causing incorrectly ordered keys.
One bug caused by this was:
https://github.com/prometheus/prometheus/issues/367
It would be good to use a timestamp type that's more closely aligned with
what the underlying storage supports.
- sizeof(time.Time) is 192, while Prometheus should be ok with a single 64-bit
Unix timestamp (possibly even a 32-bit one). Since we store samples in large
numbers, this seriously affects memory usage. Furthermore, copying/working
with the data will be faster if it's smaller.
*MEMORY USAGE RESULTS*
Initial memory usage comparisons for a running Prometheus with 1 timeseries and
100,000 samples show roughly a 13% decrease in total (VIRT) memory usage. In my
tests, this advantage for some reason decreased a bit the more samples the
timeseries had (to 5-7% for millions of samples). This I can't fully explain,
but perhaps garbage collection issues were involved.
*WHEN TO USE THE NEW TIMESTAMP TYPE*
The new clientmodel.Timestamp type should be used whenever time
calculations are either directly or indirectly related to sample
timestamps.
For example:
- the timestamp of a sample itself
- all kinds of watermarks
- anything that may become or is compared to a sample timestamp (like the timestamp
passed into Target.Scrape()).
When to still use time.Time:
- for measuring durations/times not related to sample timestamps, like duration
telemetry exporting, timers that indicate how frequently to execute some
action, etc.
*NOTE ON OPERATOR OPTIMIZATION TESTS*
We don't use operator optimization code anymore, but it still lives in
the code as dead code. It still has tests, but I couldn't get all of them to
pass with the new timestamp format. I commented out the failing cases for now,
but we should probably remove the dead code soon. I just didn't want to do that
in the same change as this.
Change-Id: I821787414b0debe85c9fffaeb57abd453727af0f
Due to on going issues, we've decided to remove gorest. It started with gorest
not being thread-safe (it does introspection to create a new handler which is
an easy process to mess up with multiple threads of execution):
https://code.google.com/p/gorest/issues/detail?id=15
While the issue has been marked fixed, it looks like the patch has introduced
more problems than the original issue and simply doesn't work properly.
I'm not sure the behaviour was thought through properly. If a new instance is
needed every request then a handler-factory is needed or the library needs to
set expectations about how the new objects should interact with their
constructor state.
While it was tempting to try out another routing library, I think for now
it's better to use dumb vanilla Go routing. At least until we decide which
URL format we intend to standardize on.
Change-Id: Ica3da135d05f8ab8fc206f51eeca4f684f8efa0e
This adds timers around several query-relevant code blocks. For now, the
query timer stats are only logged for queries initiated through the UI.
In other cases (rule evaluations), the stats are simply thrown away.
My hope is that this helps us understand where queries spend time,
especially in cases where they sometimes hang for unusual amounts of
time.
Go's time.Time represents time as UTC in its fundamental data type.
That said, when using ``time.Unix(...)``, it sets the zone for the
time representation to the local. Unfortunately with diagnosis and
our tests, it is a PITA to jump between various zones, even though
the serialized version remains the same.
To keep things easy, all places where times are generated or read
are converted into UTC. These conversions are cheap, for
``Time.In`` merely changes a pointer reference in the struct,
nothing more. This enables me to diagnose test failures with fixture
data very easily.
By setting Access-Control headers, the Prometheus metrics API can be
accessed by cross-origin javascript applications (e.g., an external
dashboard pulling Prometheus metrics).
This roughly comprises the following changes:
- index target pools by job instead of scrape interval
- make targets within a pool exchangable while preserving existing
health state for targets
- allow exchanging targets via HTTP API (PUT)
- show target lists in /status (experimental, for own debug use)