Mostly, that means adding compliant doc strings to exported items.
Also, remove 'go vet' warnings where possible. (Some are unfortunately
not to avoid, arguably bugs in 'go vet'.)
Change-Id: I2827b6dd317492864c1383c3de1ea9eac5a219bb
MIN/MAX/SUM/AVG/COUNT aggregations will now by default drop all labels that are
not specifically part of a BY-clause, even if a label value is the same within
all timeseries of an aggregation group. The old behavior of keeping extra
labels may still be switched on by adding KEEPING_EXTRA to the end of an
aggregation statement:
sum(http_requests) by (job, method) keeping_extra
I'm open to better syntax/naming suggestions.
Change-Id: I21d3fe7af9e98552ce3dffa3ce7c0a4ba4c0b4a4
So far we've been using Go's native time.Time for anything related to sample
timestamps. Since the range of time.Time is much bigger than what we need, this
has created two problems:
- there could be time.Time values which were out of the range/precision of the
time type that we persist to disk, therefore causing incorrectly ordered keys.
One bug caused by this was:
https://github.com/prometheus/prometheus/issues/367
It would be good to use a timestamp type that's more closely aligned with
what the underlying storage supports.
- sizeof(time.Time) is 192, while Prometheus should be ok with a single 64-bit
Unix timestamp (possibly even a 32-bit one). Since we store samples in large
numbers, this seriously affects memory usage. Furthermore, copying/working
with the data will be faster if it's smaller.
*MEMORY USAGE RESULTS*
Initial memory usage comparisons for a running Prometheus with 1 timeseries and
100,000 samples show roughly a 13% decrease in total (VIRT) memory usage. In my
tests, this advantage for some reason decreased a bit the more samples the
timeseries had (to 5-7% for millions of samples). This I can't fully explain,
but perhaps garbage collection issues were involved.
*WHEN TO USE THE NEW TIMESTAMP TYPE*
The new clientmodel.Timestamp type should be used whenever time
calculations are either directly or indirectly related to sample
timestamps.
For example:
- the timestamp of a sample itself
- all kinds of watermarks
- anything that may become or is compared to a sample timestamp (like the timestamp
passed into Target.Scrape()).
When to still use time.Time:
- for measuring durations/times not related to sample timestamps, like duration
telemetry exporting, timers that indicate how frequently to execute some
action, etc.
*NOTE ON OPERATOR OPTIMIZATION TESTS*
We don't use operator optimization code anymore, but it still lives in
the code as dead code. It still has tests, but I couldn't get all of them to
pass with the new timestamp format. I commented out the failing cases for now,
but we should probably remove the dead code soon. I just didn't want to do that
in the same change as this.
Change-Id: I821787414b0debe85c9fffaeb57abd453727af0f
This adds timers around several query-relevant code blocks. For now, the
query timer stats are only logged for queries initiated through the UI.
In other cases (rule evaluations), the stats are simply thrown away.
My hope is that this helps us understand where queries spend time,
especially in cases where they sometimes hang for unusual amounts of
time.
This commit adds telemetry for the Prometheus expression rule
evaluator, which will enable meta-Prometheus monitoring of customers
to ensure that no instance is falling behind in answering routine
queries.
A few other sundry simplifications are introduced, too.
This also removes the now obsolete scalar count() function and corrects the
expressions test naming (broken in
2202cd71c9 (L6R59))
so that the expression tests will actually run.
``Target`` will be refactored down the road to support various
nuanced endpoint types. Thusly incorporating the scheduling
behavior within it will be problematic. To that end, the scheduling
behavior has been moved into a separate assistance type to improve
conciseness and testability.
``make format`` was also run.