This decreases checkpoint size by not checkpointing things
that don't actually need checkpointing.
This is fully compatible with the v2 checkpoint format,
as it makes series appear as though the only chunksdescs
in memory are those that need persisting.
Add metrics around checkpointing and persistence
* Add a metric to say if checkpointing is happening,
and another to track total checkpoint time and count.
This breaks the existing prometheus_local_storage_checkpoint_duration_seconds
by renaming it to prometheus_local_storage_checkpoint_last_duration_seconds
as the former name is more appropriate for a summary.
* Add metric for last checkpoint size.
* Add metric for series/chunks processed by checkpoints.
For long checkpoints it'd be useful to see how they're progressing.
* Add metric for dirty series
* Add metric for number of chunks persisted per series.
You can get the number of chunks from chunk_ops,
but not the matching number of series. This helps determine
the size of the writes being made.
* Add metric for chunks queued for persistence
Chunks created includes both chunks that'll need persistence
and chunks read in for queries. This only includes chunks created
for persistence.
* Code review comments on new persistence metrics.
When a large Prometheus starts up fresh it can take many minutes
to warmup and clear out the index queue. A larger queue means less
blocking, bigger batches and cuts down startup time by ~50%.
Keeping these around has two problems:
1) Each desc takes 64 bytes, 10 of them is 640B. This is a lot of
overhead on a 1024 byte chunk.
2) It can take well over a week to reach a point where this and thus
Prometheus memory usage as a whole enters steady state. This makes RAM
estimation very hard for users, and makes it difficult to investigate
things like memory fragmentation.
Instead we'll wipe them during each memory series maintenance cycle, and
if a query pulls them in they'll hang around as cache until the next
cycle.
Two cases:
- An unarchived metric must have at least one chunk desc loaded upon
unarchival. Otherwise, the file is gone or has size 0, which is an
inconsistency (because the series is still indexed in the archive
index). Hence, quarantining is triggered.
- If loading the chunk descs of a series with a known chunkDescsOffset
(i.e. != -1), the number of chunks loaded must be equal to
chunkDescsOffset. If not, there is a data corruption. An error is
returned, which leads to qurantining.
In any case, there is a guard added to not access the 1st element of
an empty chunkDescs slice. (That's what triggered the crashes in issue
2249.) A time series with unknown chunkDescsOffset and no chunks in
memory and no chunks on disk either could trigger that case. I would
assume such a "null series" doesn't exist, but it's not entirely
unthinkable and unreasonable to happen (perhaps in future uses of the
storage). (Create a series, and then something tries to preload chunks
before the first sample is added.)
This extracts Querier as an instantiateable and closeable object
rather than just defining extending methods of the storage interface.
This improves composability and allows abstracting query transactions,
which can be useful for transaction-level caches, consistent data views,
and encapsulating teardown.
When using the chunking code in other projects (both Weave Prism and
ChronixDB ingester), you sometimes want to know how well you are
utilizing your chunks when closing/storing them.
These more specific methods have replaced `metricForLabelMatchers`
in cases where its `map[fingerprint]metric` result type was
not necessary or was used as an intermediate step
Avoids duplicated calls to `seriesForRange` from
`QueryRange` and `QueryInstant` methods.
This is a followup to https://github.com/prometheus/prometheus/pull/2011.
This publishes more of the methods and other names of the chunk code and
moves the chunk code to its own package. There's some unavoidable
ugliness: the chunk and chunkDesc metrics are used by both packages, so
I had to move them to the chunk package. That isn't great, but I don't
see how to do it better without a larger redesign of everything. Same
for the evict requests and some other types.
* Add config, HTTP Basic Auth and TLS support to the generic write path.
- Move generic write path configuration to the config file
- Factor out config.TLSConfig -> tlf.Config translation
- Support TLSConfig for generic remote storage
- Rename Run to Start, and make it non-blocking.
- Dedupe code in httputil for TLS config.
- Make remote queue metrics global.
This is based on https://github.com/prometheus/prometheus/pull/1997.
This adds contexts to the relevant Storage methods and already passes
PromQL's new per-query context into the storage's query methods.
The immediate motivation supporting multi-tenancy in Frankenstein, but
this could also be used by Prometheus's normal local storage to support
cancellations and timeouts at some point.
CPUs have to serialise write access to a single cache line
effectively reducing level of possible parallelism. Placing
mutexes on different cache lines avoids this problem.
Most gains will be seen on NUMA servers where CPU interconnect
traffic is especially expensive
Before:
go test . -run none -bench BenchmarkFingerprintLocker
BenchmarkFingerprintLockerParallel-4 2000000 932 ns/op
BenchmarkFingerprintLockerSerial-4 30000000 49.6 ns/op
After:
go test . -run none -bench BenchmarkFingerprintLocker
BenchmarkFingerprintLockerParallel-4 3000000 569 ns/op
BenchmarkFingerprintLockerSerial-4 30000000 51.0 ns/op