- Most of this is the actual regression test in tiered_test.go.
- Working on that regression tests uncovered problems in
tiered_test.go that are fixed in this commit.
- The 'op.consumed = false' line added to freelist.go was actually not
fixing a bug. Instead, there was no bug at all. So this commit
removes that line again, but adds a regression test to make sure
that the assumed bug is indeed not there (cf. freelist_test.go).
- Removed more code duplication in operation.go (following the same
approach as before, i.e. embedding op type A into op type B if
everything in A is the same as in B with the exception of String()
and ExtractSample()). (This change make struct literals for ops more
clunky, but that only affects tests. No code change whatsoever was
necessary in the actual code after this refactoring.)
- Fix another op leak in tiered.go.
Change-Id: Ia165c52e33290ad4f6aba9c83d92318d4f583517
The initial impetus for this was that it made unmarshalling sample
values much faster.
Other relevant benchmark changes in ns/op:
Benchmark old new speedup
==================================================================
BenchmarkMarshal 179170 127996 1.4x
BenchmarkUnmarshal 404984 132186 3.1x
BenchmarkMemoryGetValueAtTime 57801 50050 1.2x
BenchmarkMemoryGetBoundaryValues 64496 53194 1.2x
BenchmarkMemoryGetRangeValues 66585 54065 1.2x
BenchmarkStreamAdd 45.0 75.3 0.6x
BenchmarkAppendSample1 1157 1587 0.7x
BenchmarkAppendSample10 4090 4284 0.95x
BenchmarkAppendSample100 45660 44066 1.0x
BenchmarkAppendSample1000 579084 582380 1.0x
BenchmarkMemoryAppendRepeatingValues 22796594 22005502 1.0x
Overall, this gives us good speedups in the areas where they matter
most: decoding values from disk and accessing the memory storage (which
is also used for views).
Some of the smaller append examples take minimally longer, but the cost
seems to get amortized over larger appends, so I'm not worried about
these. Also, we're currently not bottlenecked on the write path and have
plenty of other optimizations available in that area if it becomes
necessary.
Memory allocations during appends don't change measurably at all.
Change-Id: I7dc7394edea09506976765551f35b138518db9e8
Currently, rendering a view is capable of handling multiple ops for
the same fingerprint efficiently. However, this capability requires a
lot of complexity in the code, which we are not using at all because
the way we assemble a viewRequest will never have more than one
operation per fingerprint.
This commit weeds out the said capability, along with all the code
needed for it. It is still possible to have more than one operation
for the same fingerprint, it will just be handled in a less efficient
way (as proven by the unit tests).
As a result, scanjob.go could be removed entirely.
This commit also contains a few related refactorings and removals of
dead code in operation.go, view,go, and freelist.go. Also, the
docstrings received some love.
Change-Id: I032b976e0880151c3f3fdb3234fb65e484f0e2e5
So far we've been using Go's native time.Time for anything related to sample
timestamps. Since the range of time.Time is much bigger than what we need, this
has created two problems:
- there could be time.Time values which were out of the range/precision of the
time type that we persist to disk, therefore causing incorrectly ordered keys.
One bug caused by this was:
https://github.com/prometheus/prometheus/issues/367
It would be good to use a timestamp type that's more closely aligned with
what the underlying storage supports.
- sizeof(time.Time) is 192, while Prometheus should be ok with a single 64-bit
Unix timestamp (possibly even a 32-bit one). Since we store samples in large
numbers, this seriously affects memory usage. Furthermore, copying/working
with the data will be faster if it's smaller.
*MEMORY USAGE RESULTS*
Initial memory usage comparisons for a running Prometheus with 1 timeseries and
100,000 samples show roughly a 13% decrease in total (VIRT) memory usage. In my
tests, this advantage for some reason decreased a bit the more samples the
timeseries had (to 5-7% for millions of samples). This I can't fully explain,
but perhaps garbage collection issues were involved.
*WHEN TO USE THE NEW TIMESTAMP TYPE*
The new clientmodel.Timestamp type should be used whenever time
calculations are either directly or indirectly related to sample
timestamps.
For example:
- the timestamp of a sample itself
- all kinds of watermarks
- anything that may become or is compared to a sample timestamp (like the timestamp
passed into Target.Scrape()).
When to still use time.Time:
- for measuring durations/times not related to sample timestamps, like duration
telemetry exporting, timers that indicate how frequently to execute some
action, etc.
*NOTE ON OPERATOR OPTIMIZATION TESTS*
We don't use operator optimization code anymore, but it still lives in
the code as dead code. It still has tests, but I couldn't get all of them to
pass with the new timestamp format. I commented out the failing cases for now,
but we should probably remove the dead code soon. I just didn't want to do that
in the same change as this.
Change-Id: I821787414b0debe85c9fffaeb57abd453727af0f
There are too many parameters to constructing a LevelDB storage
instance for a construction method, so I've opted to take an
idiomatic approach of embedding them in a struct for easier
mediation and versioning.
This also short-circuits optimize() for now, since it is complex to implement
for the new operator, and ops generated by the query layer already fulfill the
needed invariants. We should still investigate later whether to completely
delete operator optimization code or extend it to support
getValueRangeAtIntervalOp operators.
This is mainly a small performance improvement, since we skip past the last
extracted time immediately if it was also the last sample in the chunk, instead
of trying to extract non-existent values before the chunk end again and again
and only gradually approaching the end of the chunk.
- only the data extracted in the last loop iteration of ExtractSamples() was
emitted as output
- if e.g. op interval < sample interval, there were situations where the same
sample was added multiple times to the output