This extracts Querier as an instantiateable and closeable object
rather than just defining extending methods of the storage interface.
This improves composability and allows abstracting query transactions,
which can be useful for transaction-level caches, consistent data views,
and encapsulating teardown.
This is based on https://github.com/prometheus/prometheus/pull/1997.
This adds contexts to the relevant Storage methods and already passes
PromQL's new per-query context into the storage's query methods.
The immediate motivation supporting multi-tenancy in Frankenstein, but
this could also be used by Prometheus's normal local storage to support
cancellations and timeouts at some point.
See discussion in
https://groups.google.com/forum/#!topic/prometheus-developers/bkuGbVlvQ9g
The main idea is that the user of a storage shouldn't have to deal with
fingerprints anymore, and should not need to do an individual preload
call for each metric. The storage interface needs to be made more
high-level to not expose these details.
This also makes it easier to reuse the same storage interface for remote
storages later, as fewer roundtrips are required and the fingerprint
concept doesn't work well across the network.
NOTE: this deliberately gets rid of a small optimization in the old
query Analyzer, where we dedupe instants and ranges for the same series.
This should have a minor impact, as most queries do not have multiple
selectors loading the same series (and at the same offset).
tl;dr: This is not a fundamental solution to the indexing problem
(like tindex is) but it at least avoids utilizing the intersection
problem to the greatest possible amount.
In more detail:
Imagine the following query:
nicely:aggregating:rule{job="foo",env="prod"}
While it uses a nicely aggregating recording rule (which might have a
very low cardinality), Prometheus still intersects the low number of
fingerprints for `{__name__="nicely:aggregating:rule"}` with the many
thousands of fingerprints matching `{job="foo"}` and with the millions
of fingerprints matching `{env="prod"}`. This totally innocuous query
is dead slow if the Prometheus server has a lot of time series with
the `{env="prod"}` label. Ironically, if you make the query more
complicated, it becomes blazingly fast:
nicely:aggregating:rule{job=~"foo",env=~"prod"}
Why so? Because Prometheus only intersects with non-Equal matchers if
there are no Equal matchers. That's good in this case because it
retrieves the few fingerprints for
`{__name__="nicely:aggregating:rule"}` and then starts right ahead to
retrieve the metric for those FPs and checking individually if they
match the other matchers.
This change is generalizing the idea of when to stop intersecting FPs
and go into "retrieve metrics and check them individually against
remaining matchers" mode:
- First, sort all matchers by "expected cardinality". Matchers
matching the empty string are always worst (and never used for
intersections). Equal matchers are in general consider best, but by
using some crude heuristics, we declare some better than others
(instance labels or anything that looks like a recording rule).
- Then go through the matchers until we hit a threshold of remaining
FPs in the intersection. This threshold is higher if we are already
in the non-Equal matcher area as intersection is even more expensive
here.
- Once the threshold has been reached (or we have run out of matchers
that do not match the empty string), start with "retrieve metrics
and check them individually against remaining matchers".
A beefy server at SoundCloud was spending 67% of its CPU time in index
lookups (fingerprintsForLabelPairs), serving mostly a dashboard that
is exclusively built with recording rules. With this change, it spends
only 35% in fingerprintsForLabelPairs. The CPU usage dropped from 26
cores to 18 cores. The median latency for query_range dropped from 14s
to 50ms(!). As expected, higher percentile latency didn't improve that
much because the new approach is _occasionally_ running into the worst
case while the old one was _systematically_ doing so. The 99th
percentile latency is now about as high as the median before (14s)
while it was almost twice as high before (26s).
PromQL only requires a much narrower interface than local.Storage in
order to run queries. Narrower interfaces are easier to replace and
test, too.
We could also change the web interface to use local.Querier, except that
we'll probably use appending functions from there in the future.
WIP: This needs more tests.
It now gets a from and through value, which it may opportunistically
use to optimize the retrieval. With possible future range indices,
this could be used in a very efficient way. This change merely applies
some easy checks, which should nevertheless solve the use case of
heavy rule evaluations on servers with a lot of series churn.
Idea is the following:
- Only archive series that are at least as old as the headChunkTimeout
(which was already extremely unlikely to happen).
- Then maintain a high watermark for the last archival, i.e. no
archived series has a sample more recent than that watermark.
- Any query that doesn't reach to a time before that watermark doesn't
have to touch the archive index at all. (A production server at
Soundcloud with the aforementioned series churn and heavy rule
evaluations spends 50% of its CPU time in archive index
lookups. Since rule evaluations usually only touch very recent
values, most of those lookup should disappear with this change.)
- Federation with a very broad label matcher will profit from this,
too.
As a byproduct, the un-needed MetricForFingerprint method was removed
from the Storage interface.
This requires all the panic calls upon unexpected data to be converted
into errors returned. This pollute the function signatures quite
lot. Well, this is Go...
The ideas behind this are the following:
- panic only if it's a programming error. Data corruptions happen, and
they are not programming errors.
- If we detect a data corruption, we "quarantine" the series,
essentially removing it from the database and putting its data into
a separate directory for forensics.
- Failure during writing to a series file is not considered corruption
automatically. It will call setDirty, though, so that a
crashrecovery upon the next restart will commence and check for
that.
- Series quarantining and setDirty calls are logged and counted in
metrics, but are hidden from the user of the interfaces in
interface.go, whith the notable exception of Append(). The reasoning
is that we treat corruption by removing the corrupted series, i.e. a
query for it will return no results on its next call anyway, so
return no results right now. In the case of Append(), we want to
tell the user that no data has been appended, though.
Minor side effects:
- Now consistently using filepath.* instead of path.*.
- Introduced structured logging where I touched it. This makes things
less consistent, but a complete change to structured logging would
be out of scope for this PR.
Fixes https://github.com/prometheus/prometheus/issues/1401
This remove the last (and in fact bogus) use of BoundaryValues.
Thus, a whole lot of unused (and arguably sub-optimal / ugly) code can
be removed here, too.
In a way, our instants were also ranges, just with the staleness delta
as range length. They are no treated equally, just that in one case,
the range length is set as range, in the other the staleness
delta. However, there are "real" instants where start and and time of
a query is the same. In those cases, we only want to return a single
value (the one closest before or at the equal start and end time). If
that value is the last sample in the series, odds are we have it
already in the series object. In that case, there is no need to pin or
load any chunks. A special singleSampleSeriesIterator is created for
that. This should greatly speed up instant queries as they happen
frequently for rule evaluations.
Formalize ZeroSamplePair as return value for non-existing samples.
Change LastSamplePairForFingerprint to return a SamplePair (and not a
pointer to it), which saves allocations in a potentially extremely
frequent call.
This will fix issue #1035 and will also help to make issue #1264 less
bad.
The fundamental problem in the current code:
In the preload phase, we quite accurately determine which chunks will
be used for the query being executed. However, in the subsequent step
of creating series iterators, the created iterators are referencing
_all_ in-memory chunks in their series, even the un-pinned ones. In
iterator creation, we copy a pointer to each in-memory chunk of a
series into the iterator. While this creates a certain amount of
allocation churn, the worst thing about it is that copying the chunk
pointer out of the chunkDesc requires a mutex acquisition. (Remember
that the iterator will also reference un-pinned chunks, so we need to
acquire the mutex to protect against concurrent eviction.) The worst
case happens if a series doesn't even contain any relevant samples for
the query time range. We notice that during preloading but then we
will still create a series iterator for it. But even for series that
do contain relevant samples, the overhead is quite bad for instant
queries that retrieve a single sample from each series, but still go
through all the effort of series iterator creation. All of that is
particularly bad if a series has many in-memory chunks.
This commit addresses the problem from two sides:
First, it merges preloading and iterator creation into one step,
i.e. the preload call returns an iterator for exactly the preloaded
chunks.
Second, the required mutex acquisition in chunkDesc has been greatly
reduced. That was enabled by a side effect of the first step, which is
that the iterator is only referencing pinned chunks, so there is no
risk of concurrent eviction anymore, and chunks can be accessed
without mutex acquisition.
To simplify the code changes for the above, the long-planned change of
ValueAtTime to ValueAtOrBefore time was performed at the same
time. (It should have been done first, but it kind of accidentally
happened while I was in the middle of writing the series iterator
changes. Sorry for that.) So far, we actively filtered the up to two
values that were returned by ValueAtTime, i.e. we invested work to
retrieve up to two values, and then we invested more work to throw one
of them away.
The SeriesIterator.BoundaryValues method can be removed once #1401 is
fixed. But I really didn't want to load even more changes into this
PR.
Benchmarks:
The BenchmarkFuzz.* benchmarks run 83% faster (i.e. about six times
faster) and allocate 95% fewer bytes. The reason for that is that the
benchmark reads one sample after another from the time series and
creates a new series iterator for each sample read.
To find out how much these improvements matter in practice, I have
mirrored a beefy Prometheus server at SoundCloud that suffers from
both issues #1035 and #1264. To reach steady state that would be
comparable, the server needs to run for 15d. So far, it has run for
1d. The test server currently has only half as many memory time series
and 60% of the memory chunks the main server has. The 90th percentile
rule evaluation cycle time is ~11s on the main server and only ~3s on
the test server. However, these numbers might get much closer over
time.
In addition to performance improvements, this commit removes about 150
LOC.
This gives up on the idea to communicate throuh the Append() call (by
either not returning as it is now or returning an error as
suggested/explored elsewhere). Here I have added a Throttled() call,
which has the advantage that it can be called before a whole _batch_
of Append()'s. Scrapes will happen completely or not at all. Same for
rule group evaluations. That's a highly desired behavior (as discussed
elsewhere). The code is even simpler now as the whole ingestion buffer
could be removed.
Logging of throttled mode has been streamlined and will create at most
one message per minute.
The one central sample ingestion channel has caused a variety of
trouble. This commit removes it. Targets and rule evaluation call an
Append method directly now. To incorporate multiple storage backends
(like OpenTSDB), storage.Tee forks the Append into two different
appenders.
Note that the tsdb queue manager had its own queue anyway. It was a
queue after a queue... Much queue, so overhead...
Targets have their own little buffer (implemented as a channel) to
avoid stalling during an http scrape. But a new scrape will only be
started once the old one is fully ingested.
The contraption of three pipelined ingesters was removed. A Target is
an ingester itself now. Despite more logic in Target, things should be
less confusing now.
Also, remove lint and vet warnings in ast.go.
- Parallelize AppendSamples as much as possible without breaking the
contract about temporal order.
- Allocate more fingerprint locker slots.
- Do not run early checkpoints if we are behind on chunk persistence.
- Increase fpMinWaitDuration to give the disk more time for more
important things.
Also, switch math.MaxInt64 and math.MinInt64 to the new constants.
- Move CONTRIBUTORS.md to the more common AUTHORS.
- Added the required NOTICE file.
- Changed "Prometheus Team" to "The Prometheus Authors".
- Reverted the erroneous changes to the Apache License.
Usually, if you unarchive a series, it is to add something to it,
which will create a new head chunk. However, if a series in
unarchived, and before anything is added to it, it is handled by the
maintenance loop, it will be archived again. In that case, we have to
load the chunkDescs to know the lastTime of the series to be
archived. Usually, this case will happen only rarely (as a race, has
never happened so far, possibly because the locking around unarchiving
and the subsequent sample append is smart enough). However, during
crash recovery, we sometimes treat series as "freshly unarchived"
without directly appending a sample. We might add more cases of that
type later, so better deal with archiving properly and load chunkDescs
if required.
Checkpointing interval is now a command line flag.
Along the way, several things were refactored.
- Restructure the way the storage is started and stopped..
- Number of series in checkpoint is now a uint64, not a varint.
(Breaks old checkpoints, needs wipe!)
- More consistent naming and order of methods.
Change-Id: I883d9170c9a608ee716bb0ab3d0ded8ca03760d9
Add gauge for chunks and chunkdescs in memory (backed by a global
variable to be used later not only for instrumentation but also for
memory management).
Refactored instrumentation code once more (instrumentation.go is back :).
Change-Id: Ife39947e22a48cac4982db7369c231947f446e17
- Staleness delta is no a proper function parameter and not replicated
from package ast.
- Named type 'chunks' replaced by explicit '[]chunk' to avoid confusion.
- For the same reason, replaced 'chunkDescs' by '[]*chunkDescs'.
- Verified that math.Modf is not a speed enhancement over conversion
(actually 5x slower).
- Renamed firstTimeField, lastTimeField into chunkFirstTime and
chunkLastTime.
- Verified unpin() is sufficiently goroutine-safe.
- Decided not to update archivedFingerprintToTimeRange upon series
truncation and added a rationale why.
Change-Id: I863b8d785e5ad9f71eb63e229845eacf1bed8534