The chunk encoding was hardcoded there because it mostly doesn't
matter what encoding is chosen in that test. Since type 1 is
battle-hardened enough, I'm switching to type 2 here so that we can
catch unexpected problems as a byproduct. My expectation is that the
chunk encoding doesn't matter anyway, as said, but then "unexpected
problems" contains the word "unexpected".
WIP: This needs more tests.
It now gets a from and through value, which it may opportunistically
use to optimize the retrieval. With possible future range indices,
this could be used in a very efficient way. This change merely applies
some easy checks, which should nevertheless solve the use case of
heavy rule evaluations on servers with a lot of series churn.
Idea is the following:
- Only archive series that are at least as old as the headChunkTimeout
(which was already extremely unlikely to happen).
- Then maintain a high watermark for the last archival, i.e. no
archived series has a sample more recent than that watermark.
- Any query that doesn't reach to a time before that watermark doesn't
have to touch the archive index at all. (A production server at
Soundcloud with the aforementioned series churn and heavy rule
evaluations spends 50% of its CPU time in archive index
lookups. Since rule evaluations usually only touch very recent
values, most of those lookup should disappear with this change.)
- Federation with a very broad label matcher will profit from this,
too.
As a byproduct, the un-needed MetricForFingerprint method was removed
from the Storage interface.
This commit simplifies the TargetHealth type and moves the target
status into the target itself. This also removes a race where error
and last scrape time could have been out of sync.
Formalize ZeroSamplePair as return value for non-existing samples.
Change LastSamplePairForFingerprint to return a SamplePair (and not a
pointer to it), which saves allocations in a potentially extremely
frequent call.
It's actually happening in several places (and for flags, we use the
standard Go time.Duration...). This at least reduces all our
home-grown parsing to one place (in model).
This enables metric name autocompletion for every word in an expression,
not just the very first one. It would be great to also support all
language keywords during autocompletion in the future.
This adapts some functionality from the Go standard library for string
literal lexing and unquoting/unescaping.
The following string types are now supported:
Double- or single-quoted strings:
These support all escape sequences that Go supports in double-quoted
string literals. The difference is that Prometheus also has
single-quoted strings (instead of single-quoted runes in Go). Raw
newlines are not allowed.
Backtick-quoted raw strings:
Strings quoted in backticks are treated as raw strings just like in Go
and may contain raw newlines and other special characters directly.
Fixes https://github.com/prometheus/prometheus/issues/1122
Fixes https://github.com/prometheus/prometheus/issues/1121