The reality is that if we ever try to encode a Protocol Buffer and it
fails, it's likely that such an error is ultimately not a runtime error
and should be fixed forthwith. Thusly, we should rename
``Encoder.Encode`` to ``Encoder.MustEncode`` and drop the error return
value.
This commit simplifies the way that compactions across a database's
keyspace occur due to reading the LevelDB internals. Secondarily it
introduces the database size estimation mechanisms.
Include database health and help interfaces.
Add database statistics; remove status goroutines.
This commit kills the use of Go routines to expose status throughout
the web components of Prometheus. It also dumps raw LevelDB status
on a separate /databases endpoint.
This commit simplifies the way that compactions across a database's
keyspace occur due to reading the LevelDB internals. Secondarily it
introduces the database size estimation mechanisms.
This commit introduces to Prometheus a batch database sample curator,
which corroborates the high watermarks for sample series against the
curation watermark table to see whether a curator of a given type
needs to be run.
The curator is an abstract executor, which runs various curation
strategies across the database. It remarks the progress for each
type of curation processor that runs for a given sample series.
A curation procesor is responsible for effectuating the underlying
batch changes that are request. In this commit, we introduce the
CompactionProcessor, which takes several bits of runtime metadata and
combine sparse sample entries in the database together to form larger
groups. For instance, for a given series it would be possible to
have the curator effectuate the following grouping:
- Samples Older than Two Weeks: Grouped into Bunches of 10000
- Samples Older than One Week: Grouped into Bunches of 1000
- Samples Older than One Day: Grouped into Bunches of 100
- Samples Older than One Hour: Grouped into Bunches of 10
The benefits hereof of such a compaction are 1. a smaller search
space in the database keyspace, 2. better employment of compression
for repetious values, and 3. reduced seek times.
It is the case with the benchmark tool that we thought that we
generated multiple series and saved them to the disk as such, when
in reality, we overwrote the fields of the outgoing metrics via
Go map reference behavior. This was accidental. In the course of
diagnosing this, a few errors were found:
1. ``newSeriesFrontier`` should check to see if the candidate fingerprint is within the given domain of the ``diskFrontier``. If not, as the contract in the docstring stipulates, a ``nil`` ``seriesFrontier`` should be emitted.
2. In the interests of aiding debugging, the raw LevelDB ``levigoIterator`` type now includes a helpful forensics ``String()`` method.
This work produced additional cleanups:
1. ``Close() error`` with the storage stack is technically incorrect, since nowhere in the bowels of it does an error actually occur. The interface has been simplified to remove this for now.
The LevelDB storage types return an interface type now that wraps
around the underlying iterator. This both enhances testability but
improves upon, in my opinion, the interface design for the LevelDB
iterator.
Secondarily, the resource reaping behaviors for the LevelDB iterators
have been improved by dropping the externalized io.Closer object.
Finally, the iterator provisioning methods provide the option for
indicating whether one wants a snapshotted iterator or not.
EachFunc is deprecated.
Remove deprecated ``Pair`` and ``GetAll``.
These were originally used for forensic and the old gorest impl.
Nothing today in the user-facing path nor the tests uses them,
especially since the advent of the ForEach protocol in the
interface.
- Kill Close in Persistent and document interface.
- Extract batching behavior into interface.
- Kill IteratorManager, which was used for unknown reasons.
Snappy should have been explicitly included in the runtime, for I
erroneously thought that LevelDB bundled this into its runtime as-is.
It turns out that this assumption is wrong, and I thought we had
Snappy compression support all-along.
Presently our use of LevelDB and its operating modes are hardcoded
into the storage stack. This pull request decouples this and
re-exposes this through flags. We can now perform benchmarking
and remedial tuning.