When using the chunking code in other projects (both Weave Prism and
ChronixDB ingester), you sometimes want to know how well you are
utilizing your chunks when closing/storing them.
These more specific methods have replaced `metricForLabelMatchers`
in cases where its `map[fingerprint]metric` result type was
not necessary or was used as an intermediate step
Avoids duplicated calls to `seriesForRange` from
`QueryRange` and `QueryInstant` methods.
This is a followup to https://github.com/prometheus/prometheus/pull/2011.
This publishes more of the methods and other names of the chunk code and
moves the chunk code to its own package. There's some unavoidable
ugliness: the chunk and chunkDesc metrics are used by both packages, so
I had to move them to the chunk package. That isn't great, but I don't
see how to do it better without a larger redesign of everything. Same
for the evict requests and some other types.
This is based on https://github.com/prometheus/prometheus/pull/1997.
This adds contexts to the relevant Storage methods and already passes
PromQL's new per-query context into the storage's query methods.
The immediate motivation supporting multi-tenancy in Frankenstein, but
this could also be used by Prometheus's normal local storage to support
cancellations and timeouts at some point.
CPUs have to serialise write access to a single cache line
effectively reducing level of possible parallelism. Placing
mutexes on different cache lines avoids this problem.
Most gains will be seen on NUMA servers where CPU interconnect
traffic is especially expensive
Before:
go test . -run none -bench BenchmarkFingerprintLocker
BenchmarkFingerprintLockerParallel-4 2000000 932 ns/op
BenchmarkFingerprintLockerSerial-4 30000000 49.6 ns/op
After:
go test . -run none -bench BenchmarkFingerprintLocker
BenchmarkFingerprintLockerParallel-4 3000000 569 ns/op
BenchmarkFingerprintLockerSerial-4 30000000 51.0 ns/op
This adds a flag -storage.local.engine which allows turning off local
storage in Prometheus. Instead of adding if-conditions and nil checks to
all parts of Prometheus that deal with Prometheus's local storage
(including the web interface), disabling local storage simply means
replacing the normal local storage with a noop version that throws
samples away and returns empty query results. We also don't add the noop
storage to the fanout appender to decrease internal overhead.
Instead of returning empty results, an alternate behavior could be to
return errors on any query that point out that the local storage is
disabled. Not sure which one is more preferable, so I went with the
empty result option for now.
Turns out its valid to have an overall chunk which is smaller than the
full doubleDeltaHeaderBytes size -- if it has a single sample, it
doesn't fill the whole header. Updated unmarshalling check to respect
this.
This is (hopefully) a fix for #1653
Specifically, this makes it so that if the length for the stored
delta/doubleDelta is somehow corrupted to be too small, the attempt to
unmarshal will return an error.
The current (broken) behavior is to return a malformed chunk, which can
then lead to a panic when there is an attempt to read header values.
The referenced issue proposed creating chunks with a minimum length -- I
instead opted to just error on the attempt to unmarshal, since I'm not
clear on how it could be safe to proceed when the length is
incorrect/unknown.
The issue also talked about possibly "quarantining series", but I don't
know the surrounding code well enough to understand how to make that
happen.
See discussion in
https://groups.google.com/forum/#!topic/prometheus-developers/bkuGbVlvQ9g
The main idea is that the user of a storage shouldn't have to deal with
fingerprints anymore, and should not need to do an individual preload
call for each metric. The storage interface needs to be made more
high-level to not expose these details.
This also makes it easier to reuse the same storage interface for remote
storages later, as fewer roundtrips are required and the fingerprint
concept doesn't work well across the network.
NOTE: this deliberately gets rid of a small optimization in the old
query Analyzer, where we dedupe instants and ranges for the same series.
This should have a minor impact, as most queries do not have multiple
selectors loading the same series (and at the same offset).
tl;dr: This is not a fundamental solution to the indexing problem
(like tindex is) but it at least avoids utilizing the intersection
problem to the greatest possible amount.
In more detail:
Imagine the following query:
nicely:aggregating:rule{job="foo",env="prod"}
While it uses a nicely aggregating recording rule (which might have a
very low cardinality), Prometheus still intersects the low number of
fingerprints for `{__name__="nicely:aggregating:rule"}` with the many
thousands of fingerprints matching `{job="foo"}` and with the millions
of fingerprints matching `{env="prod"}`. This totally innocuous query
is dead slow if the Prometheus server has a lot of time series with
the `{env="prod"}` label. Ironically, if you make the query more
complicated, it becomes blazingly fast:
nicely:aggregating:rule{job=~"foo",env=~"prod"}
Why so? Because Prometheus only intersects with non-Equal matchers if
there are no Equal matchers. That's good in this case because it
retrieves the few fingerprints for
`{__name__="nicely:aggregating:rule"}` and then starts right ahead to
retrieve the metric for those FPs and checking individually if they
match the other matchers.
This change is generalizing the idea of when to stop intersecting FPs
and go into "retrieve metrics and check them individually against
remaining matchers" mode:
- First, sort all matchers by "expected cardinality". Matchers
matching the empty string are always worst (and never used for
intersections). Equal matchers are in general consider best, but by
using some crude heuristics, we declare some better than others
(instance labels or anything that looks like a recording rule).
- Then go through the matchers until we hit a threshold of remaining
FPs in the intersection. This threshold is higher if we are already
in the non-Equal matcher area as intersection is even more expensive
here.
- Once the threshold has been reached (or we have run out of matchers
that do not match the empty string), start with "retrieve metrics
and check them individually against remaining matchers".
A beefy server at SoundCloud was spending 67% of its CPU time in index
lookups (fingerprintsForLabelPairs), serving mostly a dashboard that
is exclusively built with recording rules. With this change, it spends
only 35% in fingerprintsForLabelPairs. The CPU usage dropped from 26
cores to 18 cores. The median latency for query_range dropped from 14s
to 50ms(!). As expected, higher percentile latency didn't improve that
much because the new approach is _occasionally_ running into the worst
case while the old one was _systematically_ doing so. The 99th
percentile latency is now about as high as the median before (14s)
while it was almost twice as high before (26s).
If the chunks of a series in the checkpoint are all older then the
latest chunk on disk, the head chunk is persisted and therefore has to
be declared closed.
It would be great to have a test for this, but that would require more
plumbing, subject of #447.
PromQL only requires a much narrower interface than local.Storage in
order to run queries. Narrower interfaces are easier to replace and
test, too.
We could also change the web interface to use local.Querier, except that
we'll probably use appending functions from there in the future.
On Windows, it is not possible to rename or delete a file that is
currerntly open. This change closes the file in dropAndPersistChunks
before it tries to delete it, or rename the temporary file to it.
With a lot of series accessed in a short timeframe (by a query, a
large scrape, checkpointing, ...), there is actually quite a
significant amount of lock contention if something similar is running
at the same time.
In those cases, the number of locks needs to be increased.
On the same front, as our fingerprints don't have a lot of entropy, I
introduced some additional shuffling. With the current state, anly
changes in the least singificant bits of a FP would matter.
But only on DEBUG level.
Also, count and report the two cases of out-of-order timestamps on the
one hand and same timestamp but different value on the other hand
separately.
Before, we checkpointed after every newly detected fingerprint
collision, which is not a problem as long as collisions are
rare. However, with a sufficient number of metrics or particular
nature of the data set, there might be a lot of collisions, all to be
detected upon the first set of scrapes, and then the checkpointing
after each detection will take a quite long time (it's O(n²),
essentially).
Since we are rebuilding the fingerprint mapping during crash recovery,
the previous, very conservative approach didn't even buy us
anything. We only ever read from the checkpoint file after a clean
shutdown, so the only time we need to write the checkpoint file is
during a clean shutdown.