// Copyright 2015 The Prometheus Authors // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package promql_test import ( "context" "fmt" "strconv" "strings" "testing" "time" "github.com/stretchr/testify/require" "github.com/prometheus/prometheus/model/histogram" "github.com/prometheus/prometheus/model/labels" "github.com/prometheus/prometheus/promql" "github.com/prometheus/prometheus/promql/parser" "github.com/prometheus/prometheus/promql/promqltest" "github.com/prometheus/prometheus/storage" "github.com/prometheus/prometheus/tsdb/tsdbutil" "github.com/prometheus/prometheus/util/teststorage" ) func setupRangeQueryTestData(stor *teststorage.TestStorage, _ *promql.Engine, interval, numIntervals int) error { ctx := context.Background() metrics := []labels.Labels{} // Generating test series: a_X, b_X, and h_X, where X can take values of one, ten, or hundred, // representing the number of series each metric name contains. // Metric a_X and b_X are simple metrics where h_X is a histogram. // These metrics will have data for all test time range metrics = append(metrics, labels.FromStrings("__name__", "a_one")) metrics = append(metrics, labels.FromStrings("__name__", "b_one")) for j := 0; j < 10; j++ { metrics = append(metrics, labels.FromStrings("__name__", "h_one", "le", strconv.Itoa(j))) } metrics = append(metrics, labels.FromStrings("__name__", "h_one", "le", "+Inf")) for i := 0; i < 10; i++ { metrics = append(metrics, labels.FromStrings("__name__", "a_ten", "l", strconv.Itoa(i))) metrics = append(metrics, labels.FromStrings("__name__", "b_ten", "l", strconv.Itoa(i))) for j := 0; j < 10; j++ { metrics = append(metrics, labels.FromStrings("__name__", "h_ten", "l", strconv.Itoa(i), "le", strconv.Itoa(j))) } metrics = append(metrics, labels.FromStrings("__name__", "h_ten", "l", strconv.Itoa(i), "le", "+Inf")) } for i := 0; i < 100; i++ { metrics = append(metrics, labels.FromStrings("__name__", "a_hundred", "l", strconv.Itoa(i))) metrics = append(metrics, labels.FromStrings("__name__", "b_hundred", "l", strconv.Itoa(i))) for j := 0; j < 10; j++ { metrics = append(metrics, labels.FromStrings("__name__", "h_hundred", "l", strconv.Itoa(i), "le", strconv.Itoa(j))) } metrics = append(metrics, labels.FromStrings("__name__", "h_hundred", "l", strconv.Itoa(i), "le", "+Inf")) } refs := make([]storage.SeriesRef, len(metrics)) // Number points for each different label value of "l" for the sparse series pointsPerSparseSeries := numIntervals / 50 for s := 0; s < numIntervals; s++ { a := stor.Appender(context.Background()) ts := int64(s * interval) for i, metric := range metrics { ref, _ := a.Append(refs[i], metric, ts, float64(s)+float64(i)/float64(len(metrics))) refs[i] = ref } // Generating a sparse time series: each label value of "l" will contain data only for // pointsPerSparseSeries points metric := labels.FromStrings("__name__", "sparse", "l", strconv.Itoa(s/pointsPerSparseSeries)) _, err := a.Append(0, metric, ts, float64(s)/float64(len(metrics))) if err != nil { return err } if err := a.Commit(); err != nil { return err } } stor.DB.ForceHeadMMap() // Ensure we have at most one head chunk for every series. stor.DB.Compact(ctx) return nil } type benchCase struct { expr string steps int } func rangeQueryCases() []benchCase { cases := []benchCase{ // Plain retrieval. { expr: "a_X", }, // Simple rate. { expr: "rate(a_X[1m])", }, { expr: "rate(a_X[1m])", steps: 10000, }, { expr: "rate(sparse[1m])", steps: 10000, }, // Holt-Winters and long ranges. { expr: "double_exponential_smoothing(a_X[1d], 0.3, 0.3)", }, { expr: "changes(a_X[1d])", }, { expr: "rate(a_X[1d])", }, { expr: "absent_over_time(a_X[1d])", }, // Unary operators. { expr: "-a_X", }, // Binary operators. { expr: "a_X - b_X", }, { expr: "a_X - b_X", steps: 10000, }, { expr: "a_X and b_X{l=~'.*[0-4]$'}", }, { expr: "a_X or b_X{l=~'.*[0-4]$'}", }, { expr: "a_X unless b_X{l=~'.*[0-4]$'}", }, { expr: "a_X and b_X{l='notfound'}", }, // Simple functions. { expr: "abs(a_X)", }, { expr: "label_replace(a_X, 'l2', '$1', 'l', '(.*)')", }, { expr: "label_join(a_X, 'l2', '-', 'l', 'l')", }, // Simple aggregations. { expr: "sum(a_X)", }, { expr: "avg(a_X)", }, { expr: "sum without (l)(h_X)", }, { expr: "sum without (le)(h_X)", }, { expr: "sum by (l)(h_X)", }, { expr: "sum by (le)(h_X)", }, { expr: "count_values('value', h_X)", steps: 100, }, { expr: "topk(1, a_X)", }, { expr: "topk(5, a_X)", }, { expr: "limitk(1, a_X)", }, { expr: "limitk(5, a_X)", }, { expr: "limit_ratio(0.1, a_X)", }, { expr: "limit_ratio(0.5, a_X)", }, { expr: "limit_ratio(-0.5, a_X)", }, // Combinations. { expr: "rate(a_X[1m]) + rate(b_X[1m])", }, { expr: "sum without (l)(rate(a_X[1m]))", }, { expr: "sum without (l)(rate(a_X[1m])) / sum without (l)(rate(b_X[1m]))", }, { expr: "histogram_quantile(0.9, rate(h_X[5m]))", }, // Many-to-one join. { expr: "a_X + on(l) group_right a_one", }, // Label compared to blank string. { expr: "count({__name__!=\"\"})", steps: 1, }, { expr: "count({__name__!=\"\",l=\"\"})", steps: 1, }, // Functions which have special handling inside eval() { expr: "timestamp(a_X)", }, } // X in an expr will be replaced by different metric sizes. tmp := []benchCase{} for _, c := range cases { if !strings.Contains(c.expr, "X") { tmp = append(tmp, c) } else { tmp = append(tmp, benchCase{expr: strings.ReplaceAll(c.expr, "X", "one"), steps: c.steps}) tmp = append(tmp, benchCase{expr: strings.ReplaceAll(c.expr, "X", "ten"), steps: c.steps}) tmp = append(tmp, benchCase{expr: strings.ReplaceAll(c.expr, "X", "hundred"), steps: c.steps}) } } cases = tmp // No step will be replaced by cases with the standard step. tmp = []benchCase{} for _, c := range cases { if c.steps != 0 { tmp = append(tmp, c) } else { tmp = append(tmp, benchCase{expr: c.expr, steps: 1}) tmp = append(tmp, benchCase{expr: c.expr, steps: 100}) tmp = append(tmp, benchCase{expr: c.expr, steps: 1000}) } } return tmp } func BenchmarkRangeQuery(b *testing.B) { stor := teststorage.New(b) stor.DB.DisableCompactions() // Don't want auto-compaction disrupting timings. defer stor.Close() opts := promql.EngineOpts{ Logger: nil, Reg: nil, MaxSamples: 50000000, Timeout: 100 * time.Second, } engine := promqltest.NewTestEngineWithOpts(b, opts) const interval = 10000 // 10s interval. // A day of data plus 10k steps. numIntervals := 8640 + 10000 err := setupRangeQueryTestData(stor, engine, interval, numIntervals) if err != nil { b.Fatal(err) } cases := rangeQueryCases() for _, c := range cases { name := fmt.Sprintf("expr=%s,steps=%d", c.expr, c.steps) b.Run(name, func(b *testing.B) { ctx := context.Background() b.ReportAllocs() for i := 0; i < b.N; i++ { qry, err := engine.NewRangeQuery( ctx, stor, nil, c.expr, time.Unix(int64((numIntervals-c.steps)*10), 0), time.Unix(int64(numIntervals*10), 0), time.Second*10) if err != nil { b.Fatal(err) } res := qry.Exec(ctx) if res.Err != nil { b.Fatal(res.Err) } qry.Close() } }) } } func BenchmarkNativeHistograms(b *testing.B) { testStorage := teststorage.New(b) defer testStorage.Close() app := testStorage.Appender(context.TODO()) if err := generateNativeHistogramSeries(app, 3000); err != nil { b.Fatal(err) } if err := app.Commit(); err != nil { b.Fatal(err) } start := time.Unix(0, 0) end := start.Add(2 * time.Hour) step := time.Second * 30 cases := []struct { name string query string }{ { name: "sum", query: "sum(native_histogram_series)", }, { name: "sum rate with short rate interval", query: "sum(rate(native_histogram_series[2m]))", }, { name: "sum rate with long rate interval", query: "sum(rate(native_histogram_series[20m]))", }, { name: "histogram_count with short rate interval", query: "histogram_count(sum(rate(native_histogram_series[2m])))", }, { name: "histogram_count with long rate interval", query: "histogram_count(sum(rate(native_histogram_series[20m])))", }, } opts := promql.EngineOpts{ Logger: nil, Reg: nil, MaxSamples: 50000000, Timeout: 100 * time.Second, EnableAtModifier: true, EnableNegativeOffset: true, } b.ResetTimer() b.ReportAllocs() for _, tc := range cases { b.Run(tc.name, func(b *testing.B) { ng := promqltest.NewTestEngineWithOpts(b, opts) for i := 0; i < b.N; i++ { qry, err := ng.NewRangeQuery(context.Background(), testStorage, nil, tc.query, start, end, step) if err != nil { b.Fatal(err) } if result := qry.Exec(context.Background()); result.Err != nil { b.Fatal(result.Err) } } }) } } func BenchmarkInfoFunction(b *testing.B) { // Initialize test storage and generate test series data. testStorage := teststorage.New(b) defer testStorage.Close() start := time.Unix(0, 0) end := start.Add(2 * time.Hour) step := 30 * time.Second // Generate time series data for the benchmark. generateInfoFunctionTestSeries(b, testStorage, 100, 2000, 3600) // Define test cases with queries to benchmark. cases := []struct { name string query string }{ { name: "Joining info metrics with other metrics with group_left example 1", query: "rate(http_server_request_duration_seconds_count[2m]) * on (job, instance) group_left (k8s_cluster_name) target_info{k8s_cluster_name=\"us-east\"}", }, { name: "Joining info metrics with other metrics with info() example 1", query: `info(rate(http_server_request_duration_seconds_count[2m]), {k8s_cluster_name="us-east"})`, }, { name: "Joining info metrics with other metrics with group_left example 2", query: "sum by (k8s_cluster_name, http_status_code) (rate(http_server_request_duration_seconds_count[2m]) * on (job, instance) group_left (k8s_cluster_name) target_info)", }, { name: "Joining info metrics with other metrics with info() example 2", query: `sum by (k8s_cluster_name, http_status_code) (info(rate(http_server_request_duration_seconds_count[2m]), {k8s_cluster_name=~".+"}))`, }, } // Benchmark each query type. for _, tc := range cases { // Initialize the PromQL engine once for all benchmarks. opts := promql.EngineOpts{ Logger: nil, Reg: nil, MaxSamples: 50000000, Timeout: 100 * time.Second, EnableAtModifier: true, EnableNegativeOffset: true, } engine := promql.NewEngine(opts) b.Run(tc.name, func(b *testing.B) { b.ResetTimer() for i := 0; i < b.N; i++ { b.StopTimer() // Stop the timer to exclude setup time. qry, err := engine.NewRangeQuery(context.Background(), testStorage, nil, tc.query, start, end, step) require.NoError(b, err) b.StartTimer() result := qry.Exec(context.Background()) require.NoError(b, result.Err) } }) } // Report allocations. b.ReportAllocs() } // Helper function to generate target_info and http_server_request_duration_seconds_count series for info function benchmarking. func generateInfoFunctionTestSeries(tb testing.TB, stor *teststorage.TestStorage, infoSeriesNum, interval, numIntervals int) { tb.Helper() ctx := context.Background() statusCodes := []string{"200", "400", "500"} // Generate target_info metrics with instance and job labels, and k8s_cluster_name label. // Generate http_server_request_duration_seconds_count metrics with instance and job labels, and http_status_code label. // the classic target_info metrics is gauge type. metrics := make([]labels.Labels, 0, infoSeriesNum+len(statusCodes)) for i := 0; i < infoSeriesNum; i++ { clusterName := "us-east" if i >= infoSeriesNum/2 { clusterName = "eu-south" } metrics = append(metrics, labels.FromStrings( "__name__", "target_info", "instance", "instance"+strconv.Itoa(i), "job", "job"+strconv.Itoa(i), "k8s_cluster_name", clusterName, )) } for _, statusCode := range statusCodes { metrics = append(metrics, labels.FromStrings( "__name__", "http_server_request_duration_seconds_count", "instance", "instance0", "job", "job0", "http_status_code", statusCode, )) } // Append the generated metrics and samples to the storage. refs := make([]storage.SeriesRef, len(metrics)) for i := 0; i < numIntervals; i++ { a := stor.Appender(context.Background()) ts := int64(i * interval) for j, metric := range metrics[:infoSeriesNum] { ref, _ := a.Append(refs[j], metric, ts, 1) refs[j] = ref } for j, metric := range metrics[infoSeriesNum:] { ref, _ := a.Append(refs[j+infoSeriesNum], metric, ts, float64(i)) refs[j+infoSeriesNum] = ref } require.NoError(tb, a.Commit()) } stor.DB.ForceHeadMMap() // Ensure we have at most one head chunk for every series. stor.DB.Compact(ctx) } func generateNativeHistogramSeries(app storage.Appender, numSeries int) error { commonLabels := []string{labels.MetricName, "native_histogram_series", "foo", "bar"} series := make([][]*histogram.Histogram, numSeries) for i := range series { series[i] = tsdbutil.GenerateTestHistograms(2000) } higherSchemaHist := &histogram.Histogram{ Schema: 3, PositiveSpans: []histogram.Span{ {Offset: -5, Length: 2}, // -5 -4 {Offset: 2, Length: 3}, // -1 0 1 {Offset: 2, Length: 2}, // 4 5 }, PositiveBuckets: []int64{1, 2, -2, 1, -1, 0, 3}, Count: 13, } for sid, histograms := range series { seriesLabels := labels.FromStrings(append(commonLabels, "h", strconv.Itoa(sid))...) for i := range histograms { ts := time.Unix(int64(i*15), 0).UnixMilli() if i == 0 { // Inject a histogram with a higher schema. if _, err := app.AppendHistogram(0, seriesLabels, ts, higherSchemaHist, nil); err != nil { return err } } if _, err := app.AppendHistogram(0, seriesLabels, ts, histograms[i], nil); err != nil { return err } } } return nil } func BenchmarkParser(b *testing.B) { cases := []string{ "a", "metric", "1", "1 >= bool 1", "1 + 2/(3*1)", "foo or bar", "foo and bar unless baz or qux", "bar + on(foo) bla / on(baz, buz) group_right(test) blub", "foo / ignoring(test,blub) group_left(blub) bar", "foo - ignoring(test,blub) group_right(bar,foo) bar", `foo{a="b", foo!="bar", test=~"test", bar!~"baz"}`, `min_over_time(rate(foo{bar="baz"}[2s])[5m:])[4m:3s]`, "sum without(and, by, avg, count, alert, annotations)(some_metric) [30m:10s]", } errCases := []string{ "(", "}", "1 or 1", "1 or on(bar) foo", "foo unless on(bar) group_left(baz) bar", "test[5d] OFFSET 10s [10m:5s]", } for _, c := range cases { b.Run(c, func(b *testing.B) { b.ReportAllocs() for i := 0; i < b.N; i++ { parser.ParseExpr(c) } }) } for _, c := range errCases { name := fmt.Sprintf("%s (should fail)", c) b.Run(name, func(b *testing.B) { b.ReportAllocs() for i := 0; i < b.N; i++ { parser.ParseExpr(c) } }) } }