// Copyright 2020 The Prometheus Authors // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package storage import ( "bytes" "container/heap" "context" "fmt" "math" "slices" "sync" "github.com/prometheus/prometheus/model/histogram" "github.com/prometheus/prometheus/model/labels" "github.com/prometheus/prometheus/tsdb/chunkenc" "github.com/prometheus/prometheus/tsdb/chunks" tsdb_errors "github.com/prometheus/prometheus/tsdb/errors" "github.com/prometheus/prometheus/util/annotations" ) type mergeGenericQuerier struct { queriers []genericQuerier // mergeFn is used when we see series from different queriers Selects with the same labels. mergeFn genericSeriesMergeFunc // TODO(bwplotka): Remove once remote queries are asynchronous. False by default. concurrentSelect bool } // NewMergeQuerier returns a new Querier that merges results of given primary and secondary queriers. // See NewFanout commentary to learn more about primary vs secondary differences. // // In case of overlaps between the data given by primaries' and secondaries' Selects, merge function will be used. func NewMergeQuerier(primaries, secondaries []Querier, mergeFn VerticalSeriesMergeFunc) Querier { primaries = filterQueriers(primaries) secondaries = filterQueriers(secondaries) switch { case len(primaries) == 0 && len(secondaries) == 0: return noopQuerier{} case len(primaries) == 1 && len(secondaries) == 0: return primaries[0] case len(primaries) == 0 && len(secondaries) == 1: return &querierAdapter{newSecondaryQuerierFrom(secondaries[0])} } queriers := make([]genericQuerier, 0, len(primaries)+len(secondaries)) for _, q := range primaries { queriers = append(queriers, newGenericQuerierFrom(q)) } for _, q := range secondaries { queriers = append(queriers, newSecondaryQuerierFrom(q)) } concurrentSelect := false if len(secondaries) > 0 { concurrentSelect = true } return &querierAdapter{&mergeGenericQuerier{ mergeFn: (&seriesMergerAdapter{VerticalSeriesMergeFunc: mergeFn}).Merge, queriers: queriers, concurrentSelect: concurrentSelect, }} } func filterQueriers(qs []Querier) []Querier { ret := make([]Querier, 0, len(qs)) for _, q := range qs { if _, ok := q.(noopQuerier); !ok && q != nil { ret = append(ret, q) } } return ret } // NewMergeChunkQuerier returns a new Chunk Querier that merges results of given primary and secondary chunk queriers. // See NewFanout commentary to learn more about primary vs secondary differences. // // In case of overlaps between the data given by primaries' and secondaries' Selects, merge function will be used. // TODO(bwplotka): Currently merge will compact overlapping chunks with bigger chunk, without limit. Split it: https://github.com/prometheus/tsdb/issues/670 func NewMergeChunkQuerier(primaries, secondaries []ChunkQuerier, mergeFn VerticalChunkSeriesMergeFunc) ChunkQuerier { primaries = filterChunkQueriers(primaries) secondaries = filterChunkQueriers(secondaries) switch { case len(primaries) == 0 && len(secondaries) == 0: return noopChunkQuerier{} case len(primaries) == 1 && len(secondaries) == 0: return primaries[0] case len(primaries) == 0 && len(secondaries) == 1: return &chunkQuerierAdapter{newSecondaryQuerierFromChunk(secondaries[0])} } queriers := make([]genericQuerier, 0, len(primaries)+len(secondaries)) for _, q := range primaries { queriers = append(queriers, newGenericQuerierFromChunk(q)) } for _, q := range secondaries { queriers = append(queriers, newSecondaryQuerierFromChunk(q)) } concurrentSelect := false if len(secondaries) > 0 { concurrentSelect = true } return &chunkQuerierAdapter{&mergeGenericQuerier{ mergeFn: (&chunkSeriesMergerAdapter{VerticalChunkSeriesMergeFunc: mergeFn}).Merge, queriers: queriers, concurrentSelect: concurrentSelect, }} } func filterChunkQueriers(qs []ChunkQuerier) []ChunkQuerier { ret := make([]ChunkQuerier, 0, len(qs)) for _, q := range qs { if _, ok := q.(noopChunkQuerier); !ok && q != nil { ret = append(ret, q) } } return ret } // Select returns a set of series that matches the given label matchers. func (q *mergeGenericQuerier) Select(ctx context.Context, sortSeries bool, hints *SelectHints, matchers ...*labels.Matcher) genericSeriesSet { seriesSets := make([]genericSeriesSet, 0, len(q.queriers)) if !q.concurrentSelect { for _, querier := range q.queriers { // We need to sort for merge to work. seriesSets = append(seriesSets, querier.Select(ctx, true, hints, matchers...)) } return &lazyGenericSeriesSet{init: func() (genericSeriesSet, bool) { s := newGenericMergeSeriesSet(seriesSets, q.mergeFn) return s, s.Next() }} } var ( wg sync.WaitGroup seriesSetChan = make(chan genericSeriesSet) ) // Schedule all Selects for all queriers we know about. for _, querier := range q.queriers { // copy the matchers as some queriers may alter the slice. // See https://github.com/prometheus/prometheus/issues/14723 matchersCopy := make([]*labels.Matcher, len(matchers)) copy(matchersCopy, matchers) wg.Add(1) go func(qr genericQuerier, m []*labels.Matcher) { defer wg.Done() // We need to sort for NewMergeSeriesSet to work. seriesSetChan <- qr.Select(ctx, true, hints, m...) }(querier, matchersCopy) } go func() { wg.Wait() close(seriesSetChan) }() for r := range seriesSetChan { seriesSets = append(seriesSets, r) } return &lazyGenericSeriesSet{init: func() (genericSeriesSet, bool) { s := newGenericMergeSeriesSet(seriesSets, q.mergeFn) return s, s.Next() }} } type labelGenericQueriers []genericQuerier func (l labelGenericQueriers) Len() int { return len(l) } func (l labelGenericQueriers) Get(i int) LabelQuerier { return l[i] } func (l labelGenericQueriers) SplitByHalf() (labelGenericQueriers, labelGenericQueriers) { i := len(l) / 2 return l[:i], l[i:] } // LabelValues returns all potential values for a label name. // If matchers are specified the returned result set is reduced // to label values of metrics matching the matchers. func (q *mergeGenericQuerier) LabelValues(ctx context.Context, name string, hints *LabelHints, matchers ...*labels.Matcher) ([]string, annotations.Annotations, error) { res, ws, err := q.lvals(ctx, q.queriers, name, hints, matchers...) if err != nil { return nil, nil, fmt.Errorf("LabelValues() from merge generic querier for label %s: %w", name, err) } return res, ws, nil } // lvals performs merge sort for LabelValues from multiple queriers. func (q *mergeGenericQuerier) lvals(ctx context.Context, lq labelGenericQueriers, n string, hints *LabelHints, matchers ...*labels.Matcher) ([]string, annotations.Annotations, error) { if lq.Len() == 0 { return nil, nil, nil } if lq.Len() == 1 { return lq.Get(0).LabelValues(ctx, n, hints, matchers...) } a, b := lq.SplitByHalf() var ws annotations.Annotations s1, w, err := q.lvals(ctx, a, n, hints, matchers...) ws.Merge(w) if err != nil { return nil, ws, err } s2, ws, err := q.lvals(ctx, b, n, hints, matchers...) ws.Merge(w) if err != nil { return nil, ws, err } return mergeStrings(s1, s2), ws, nil } func mergeStrings(a, b []string) []string { maxl := len(a) if len(b) > len(a) { maxl = len(b) } res := make([]string, 0, maxl*10/9) for len(a) > 0 && len(b) > 0 { switch { case a[0] == b[0]: res = append(res, a[0]) a, b = a[1:], b[1:] case a[0] < b[0]: res = append(res, a[0]) a = a[1:] default: res = append(res, b[0]) b = b[1:] } } // Append all remaining elements. res = append(res, a...) res = append(res, b...) return res } // LabelNames returns all the unique label names present in all queriers in sorted order. func (q *mergeGenericQuerier) LabelNames(ctx context.Context, hints *LabelHints, matchers ...*labels.Matcher) ([]string, annotations.Annotations, error) { var ( labelNamesMap = make(map[string]struct{}) warnings annotations.Annotations ) for _, querier := range q.queriers { names, wrn, err := querier.LabelNames(ctx, hints, matchers...) if wrn != nil { // TODO(bwplotka): We could potentially wrap warnings. warnings.Merge(wrn) } if err != nil { return nil, nil, fmt.Errorf("LabelNames() from merge generic querier: %w", err) } for _, name := range names { labelNamesMap[name] = struct{}{} } } if len(labelNamesMap) == 0 { return nil, warnings, nil } labelNames := make([]string, 0, len(labelNamesMap)) for name := range labelNamesMap { labelNames = append(labelNames, name) } slices.Sort(labelNames) return labelNames, warnings, nil } // Close releases the resources of the generic querier. func (q *mergeGenericQuerier) Close() error { errs := tsdb_errors.NewMulti() for _, querier := range q.queriers { if err := querier.Close(); err != nil { errs.Add(err) } } return errs.Err() } // VerticalSeriesMergeFunc returns merged series implementation that merges series with same labels together. // It has to handle time-overlapped series as well. type VerticalSeriesMergeFunc func(...Series) Series // NewMergeSeriesSet returns a new SeriesSet that merges many SeriesSets together. func NewMergeSeriesSet(sets []SeriesSet, mergeFunc VerticalSeriesMergeFunc) SeriesSet { genericSets := make([]genericSeriesSet, 0, len(sets)) for _, s := range sets { genericSets = append(genericSets, &genericSeriesSetAdapter{s}) } return &seriesSetAdapter{newGenericMergeSeriesSet(genericSets, (&seriesMergerAdapter{VerticalSeriesMergeFunc: mergeFunc}).Merge)} } // VerticalChunkSeriesMergeFunc returns merged chunk series implementation that merges potentially time-overlapping // chunk series with the same labels into single ChunkSeries. // // NOTE: It's up to implementation how series are vertically merged (if chunks are sorted, re-encoded etc). type VerticalChunkSeriesMergeFunc func(...ChunkSeries) ChunkSeries // NewMergeChunkSeriesSet returns a new ChunkSeriesSet that merges many SeriesSet together. func NewMergeChunkSeriesSet(sets []ChunkSeriesSet, mergeFunc VerticalChunkSeriesMergeFunc) ChunkSeriesSet { genericSets := make([]genericSeriesSet, 0, len(sets)) for _, s := range sets { genericSets = append(genericSets, &genericChunkSeriesSetAdapter{s}) } return &chunkSeriesSetAdapter{newGenericMergeSeriesSet(genericSets, (&chunkSeriesMergerAdapter{VerticalChunkSeriesMergeFunc: mergeFunc}).Merge)} } // genericMergeSeriesSet implements genericSeriesSet. type genericMergeSeriesSet struct { currentLabels labels.Labels mergeFunc genericSeriesMergeFunc heap genericSeriesSetHeap sets []genericSeriesSet currentSets []genericSeriesSet } // newGenericMergeSeriesSet returns a new genericSeriesSet that merges (and deduplicates) // series returned by the series sets when iterating. // Each series set must return its series in labels order, otherwise // merged series set will be incorrect. // Overlapped situations are merged using provided mergeFunc. func newGenericMergeSeriesSet(sets []genericSeriesSet, mergeFunc genericSeriesMergeFunc) genericSeriesSet { if len(sets) == 1 { return sets[0] } // We are pre-advancing sets, so we can introspect the label of the // series under the cursor. var h genericSeriesSetHeap for _, set := range sets { if set == nil { continue } if set.Next() { heap.Push(&h, set) } if err := set.Err(); err != nil { return errorOnlySeriesSet{err} } } return &genericMergeSeriesSet{ mergeFunc: mergeFunc, sets: sets, heap: h, } } func (c *genericMergeSeriesSet) Next() bool { // Run in a loop because the "next" series sets may not be valid anymore. // If, for the current label set, all the next series sets come from // failed remote storage sources, we want to keep trying with the next label set. for { // Firstly advance all the current series sets. If any of them have run out, // we can drop them, otherwise they should be inserted back into the heap. for _, set := range c.currentSets { if set.Next() { heap.Push(&c.heap, set) } } if len(c.heap) == 0 { return false } // Now, pop items of the heap that have equal label sets. c.currentSets = c.currentSets[:0] c.currentLabels = c.heap[0].At().Labels() for len(c.heap) > 0 && labels.Equal(c.currentLabels, c.heap[0].At().Labels()) { set := heap.Pop(&c.heap).(genericSeriesSet) c.currentSets = append(c.currentSets, set) } // As long as the current set contains at least 1 set, // then it should return true. if len(c.currentSets) != 0 { break } } return true } func (c *genericMergeSeriesSet) At() Labels { if len(c.currentSets) == 1 { return c.currentSets[0].At() } series := make([]Labels, 0, len(c.currentSets)) for _, seriesSet := range c.currentSets { series = append(series, seriesSet.At()) } return c.mergeFunc(series...) } func (c *genericMergeSeriesSet) Err() error { for _, set := range c.sets { if err := set.Err(); err != nil { return err } } return nil } func (c *genericMergeSeriesSet) Warnings() annotations.Annotations { var ws annotations.Annotations for _, set := range c.sets { ws.Merge(set.Warnings()) } return ws } type genericSeriesSetHeap []genericSeriesSet func (h genericSeriesSetHeap) Len() int { return len(h) } func (h genericSeriesSetHeap) Swap(i, j int) { h[i], h[j] = h[j], h[i] } func (h genericSeriesSetHeap) Less(i, j int) bool { a, b := h[i].At().Labels(), h[j].At().Labels() return labels.Compare(a, b) < 0 } func (h *genericSeriesSetHeap) Push(x interface{}) { *h = append(*h, x.(genericSeriesSet)) } func (h *genericSeriesSetHeap) Pop() interface{} { old := *h n := len(old) x := old[n-1] *h = old[0 : n-1] return x } // ChainedSeriesMerge returns single series from many same, potentially overlapping series by chaining samples together. // If one or more samples overlap, one sample from random overlapped ones is kept and all others with the same // timestamp are dropped. // // This works the best with replicated series, where data from two series are exactly the same. This does not work well // with "almost" the same data, e.g. from 2 Prometheus HA replicas. This is fine, since from the Prometheus perspective // this never happens. // // It's optimized for non-overlap cases as well. func ChainedSeriesMerge(series ...Series) Series { if len(series) == 0 { return nil } return &SeriesEntry{ Lset: series[0].Labels(), SampleIteratorFn: func(it chunkenc.Iterator) chunkenc.Iterator { return ChainSampleIteratorFromSeries(it, series) }, } } // chainSampleIterator is responsible to iterate over samples from different iterators of the same time series in timestamps // order. If one or more samples overlap, one sample from random overlapped ones is kept and all others with the same // timestamp are dropped. It's optimized for non-overlap cases as well. type chainSampleIterator struct { iterators []chunkenc.Iterator h samplesIteratorHeap curr chunkenc.Iterator lastT int64 // Whether the previous and the current sample are direct neighbors // within the same base iterator. consecutive bool } // Return a chainSampleIterator initialized for length entries, re-using the memory from it if possible. func getChainSampleIterator(it chunkenc.Iterator, length int) *chainSampleIterator { csi, ok := it.(*chainSampleIterator) if !ok { csi = &chainSampleIterator{} } if cap(csi.iterators) < length { csi.iterators = make([]chunkenc.Iterator, length) } else { csi.iterators = csi.iterators[:length] } csi.h = nil csi.lastT = math.MinInt64 return csi } func ChainSampleIteratorFromSeries(it chunkenc.Iterator, series []Series) chunkenc.Iterator { csi := getChainSampleIterator(it, len(series)) for i, s := range series { csi.iterators[i] = s.Iterator(csi.iterators[i]) } return csi } func ChainSampleIteratorFromIterables(it chunkenc.Iterator, iterables []chunkenc.Iterable) chunkenc.Iterator { csi := getChainSampleIterator(it, len(iterables)) for i, c := range iterables { csi.iterators[i] = c.Iterator(csi.iterators[i]) } return csi } func ChainSampleIteratorFromIterators(it chunkenc.Iterator, iterators []chunkenc.Iterator) chunkenc.Iterator { csi := getChainSampleIterator(it, 0) csi.iterators = iterators return csi } func (c *chainSampleIterator) Seek(t int64) chunkenc.ValueType { // No-op check. if c.curr != nil && c.lastT >= t { return c.curr.Seek(c.lastT) } // Don't bother to find out if the next sample is consecutive. Callers // of Seek usually aren't interested anyway. c.consecutive = false c.h = samplesIteratorHeap{} for _, iter := range c.iterators { if iter.Seek(t) == chunkenc.ValNone { if iter.Err() != nil { // If any iterator is reporting an error, abort. return chunkenc.ValNone } continue } heap.Push(&c.h, iter) } if len(c.h) > 0 { c.curr = heap.Pop(&c.h).(chunkenc.Iterator) c.lastT = c.curr.AtT() return c.curr.Seek(c.lastT) } c.curr = nil return chunkenc.ValNone } func (c *chainSampleIterator) At() (t int64, v float64) { if c.curr == nil { panic("chainSampleIterator.At called before first .Next or after .Next returned false.") } return c.curr.At() } func (c *chainSampleIterator) AtHistogram(h *histogram.Histogram) (int64, *histogram.Histogram) { if c.curr == nil { panic("chainSampleIterator.AtHistogram called before first .Next or after .Next returned false.") } t, h := c.curr.AtHistogram(h) // If the current sample is not consecutive with the previous one, we // cannot be sure anymore about counter resets for counter histograms. // TODO(beorn7): If a `NotCounterReset` sample is followed by a // non-consecutive `CounterReset` sample, we could keep the hint as // `CounterReset`. But then we needed to track the previous sample // in more detail, which might not be worth it. if !c.consecutive && h.CounterResetHint != histogram.GaugeType { h.CounterResetHint = histogram.UnknownCounterReset } return t, h } func (c *chainSampleIterator) AtFloatHistogram(fh *histogram.FloatHistogram) (int64, *histogram.FloatHistogram) { if c.curr == nil { panic("chainSampleIterator.AtFloatHistogram called before first .Next or after .Next returned false.") } t, fh := c.curr.AtFloatHistogram(fh) // If the current sample is not consecutive with the previous one, we // cannot be sure anymore about counter resets for counter histograms. // TODO(beorn7): If a `NotCounterReset` sample is followed by a // non-consecutive `CounterReset` sample, we could keep the hint as // `CounterReset`. But then we needed to track the previous sample // in more detail, which might not be worth it. if !c.consecutive && fh.CounterResetHint != histogram.GaugeType { fh.CounterResetHint = histogram.UnknownCounterReset } return t, fh } func (c *chainSampleIterator) AtT() int64 { if c.curr == nil { panic("chainSampleIterator.AtT called before first .Next or after .Next returned false.") } return c.curr.AtT() } func (c *chainSampleIterator) Next() chunkenc.ValueType { var ( currT int64 currValueType chunkenc.ValueType iteratorChanged bool ) if c.h == nil { iteratorChanged = true c.h = samplesIteratorHeap{} // We call c.curr.Next() as the first thing below. // So, we don't call Next() on it here. c.curr = c.iterators[0] for _, iter := range c.iterators[1:] { if iter.Next() == chunkenc.ValNone { if iter.Err() != nil { // If any iterator is reporting an error, abort. // If c.iterators[0] is reporting an error, we'll handle that below. return chunkenc.ValNone } } else { heap.Push(&c.h, iter) } } } if c.curr == nil { return chunkenc.ValNone } for { currValueType = c.curr.Next() if currValueType == chunkenc.ValNone { if c.curr.Err() != nil { // Abort if we've hit an error. return chunkenc.ValNone } if len(c.h) == 0 { // No iterator left to iterate. c.curr = nil return chunkenc.ValNone } } else { currT = c.curr.AtT() if currT == c.lastT { // Ignoring sample for the same timestamp. continue } if len(c.h) == 0 { // curr is the only iterator remaining, // no need to check with the heap. break } // Check current iterator with the top of the heap. nextT := c.h[0].AtT() if currT < nextT { // Current iterator has smaller timestamp than the heap. break } // Current iterator does not hold the smallest timestamp. heap.Push(&c.h, c.curr) } c.curr = heap.Pop(&c.h).(chunkenc.Iterator) iteratorChanged = true currT = c.curr.AtT() currValueType = c.curr.Seek(currT) if currT != c.lastT { break } } c.consecutive = !iteratorChanged c.lastT = currT return currValueType } func (c *chainSampleIterator) Err() error { errs := tsdb_errors.NewMulti() for _, iter := range c.iterators { errs.Add(iter.Err()) } return errs.Err() } type samplesIteratorHeap []chunkenc.Iterator func (h samplesIteratorHeap) Len() int { return len(h) } func (h samplesIteratorHeap) Swap(i, j int) { h[i], h[j] = h[j], h[i] } func (h samplesIteratorHeap) Less(i, j int) bool { return h[i].AtT() < h[j].AtT() } func (h *samplesIteratorHeap) Push(x interface{}) { *h = append(*h, x.(chunkenc.Iterator)) } func (h *samplesIteratorHeap) Pop() interface{} { old := *h n := len(old) x := old[n-1] *h = old[0 : n-1] return x } // NewCompactingChunkSeriesMerger returns VerticalChunkSeriesMergeFunc that merges the same chunk series into single chunk series. // In case of the chunk overlaps, it compacts those into one or more time-ordered non-overlapping chunks with merged data. // Samples from overlapped chunks are merged using series vertical merge func. // It expects the same labels for each given series. // // NOTE: Use the returned merge function only when you see potentially overlapping series, as this introduces small a overhead // to handle overlaps between series. func NewCompactingChunkSeriesMerger(mergeFunc VerticalSeriesMergeFunc) VerticalChunkSeriesMergeFunc { return func(series ...ChunkSeries) ChunkSeries { if len(series) == 0 { return nil } return &ChunkSeriesEntry{ Lset: series[0].Labels(), ChunkIteratorFn: func(chunks.Iterator) chunks.Iterator { iterators := make([]chunks.Iterator, 0, len(series)) for _, s := range series { iterators = append(iterators, s.Iterator(nil)) } return &compactChunkIterator{ mergeFunc: mergeFunc, iterators: iterators, } }, } } } // compactChunkIterator is responsible to compact chunks from different iterators of the same time series into single chainSeries. // If time-overlapping chunks are found, they are encoded and passed to series merge and encoded again into one bigger chunk. // TODO(bwplotka): Currently merge will compact overlapping chunks with bigger chunk, without limit. Split it: https://github.com/prometheus/tsdb/issues/670 type compactChunkIterator struct { mergeFunc VerticalSeriesMergeFunc iterators []chunks.Iterator h chunkIteratorHeap err error curr chunks.Meta } func (c *compactChunkIterator) At() chunks.Meta { return c.curr } func (c *compactChunkIterator) Next() bool { if c.h == nil { for _, iter := range c.iterators { if iter.Next() { heap.Push(&c.h, iter) } } } if len(c.h) == 0 { return false } iter := heap.Pop(&c.h).(chunks.Iterator) c.curr = iter.At() if iter.Next() { heap.Push(&c.h, iter) } var ( overlapping []Series oMaxTime = c.curr.MaxTime prev = c.curr ) // Detect overlaps to compact. Be smart about it and deduplicate on the fly if chunks are identical. for len(c.h) > 0 { // Get the next oldest chunk by min, then max time. next := c.h[0].At() if next.MinTime > oMaxTime { // No overlap with current one. break } // Only do something if it is not a perfect duplicate. if next.MinTime != prev.MinTime || next.MaxTime != prev.MaxTime || !bytes.Equal(next.Chunk.Bytes(), prev.Chunk.Bytes()) { // We operate on same series, so labels do not matter here. overlapping = append(overlapping, newChunkToSeriesDecoder(labels.EmptyLabels(), next)) if next.MaxTime > oMaxTime { oMaxTime = next.MaxTime } prev = next } iter := heap.Pop(&c.h).(chunks.Iterator) if iter.Next() { heap.Push(&c.h, iter) } } if len(overlapping) == 0 { return true } // Add last as it's not yet included in overlap. We operate on same series, so labels does not matter here. iter = NewSeriesToChunkEncoder(c.mergeFunc(append(overlapping, newChunkToSeriesDecoder(labels.EmptyLabels(), c.curr))...)).Iterator(nil) if !iter.Next() { if c.err = iter.Err(); c.err != nil { return false } panic("unexpected seriesToChunkEncoder lack of iterations") } c.curr = iter.At() if iter.Next() { heap.Push(&c.h, iter) } return true } func (c *compactChunkIterator) Err() error { errs := tsdb_errors.NewMulti() for _, iter := range c.iterators { errs.Add(iter.Err()) } errs.Add(c.err) return errs.Err() } type chunkIteratorHeap []chunks.Iterator func (h chunkIteratorHeap) Len() int { return len(h) } func (h chunkIteratorHeap) Swap(i, j int) { h[i], h[j] = h[j], h[i] } func (h chunkIteratorHeap) Less(i, j int) bool { at := h[i].At() bt := h[j].At() if at.MinTime == bt.MinTime { return at.MaxTime < bt.MaxTime } return at.MinTime < bt.MinTime } func (h *chunkIteratorHeap) Push(x interface{}) { *h = append(*h, x.(chunks.Iterator)) } func (h *chunkIteratorHeap) Pop() interface{} { old := *h n := len(old) x := old[n-1] *h = old[0 : n-1] return x } // NewConcatenatingChunkSeriesMerger returns a VerticalChunkSeriesMergeFunc that simply concatenates the // chunks from the series. The resultant stream of chunks for a series might be overlapping and unsorted. func NewConcatenatingChunkSeriesMerger() VerticalChunkSeriesMergeFunc { return func(series ...ChunkSeries) ChunkSeries { if len(series) == 0 { return nil } return &ChunkSeriesEntry{ Lset: series[0].Labels(), ChunkIteratorFn: func(chunks.Iterator) chunks.Iterator { iterators := make([]chunks.Iterator, 0, len(series)) for _, s := range series { iterators = append(iterators, s.Iterator(nil)) } return &concatenatingChunkIterator{ iterators: iterators, } }, } } } type concatenatingChunkIterator struct { iterators []chunks.Iterator idx int curr chunks.Meta } func (c *concatenatingChunkIterator) At() chunks.Meta { return c.curr } func (c *concatenatingChunkIterator) Next() bool { if c.idx >= len(c.iterators) { return false } if c.iterators[c.idx].Next() { c.curr = c.iterators[c.idx].At() return true } if c.iterators[c.idx].Err() != nil { return false } c.idx++ return c.Next() } func (c *concatenatingChunkIterator) Err() error { errs := tsdb_errors.NewMulti() for _, iter := range c.iterators { errs.Add(iter.Err()) } return errs.Err() }