// Copyright 2017 The Prometheus Authors // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package remote import ( "compress/gzip" "errors" "fmt" "io" "math" "net/http" "sort" "strings" "sync" "github.com/gogo/protobuf/proto" "github.com/golang/snappy" "github.com/prometheus/common/model" "go.opentelemetry.io/collector/pdata/pmetric/pmetricotlp" "golang.org/x/exp/slices" "github.com/prometheus/prometheus/model/exemplar" "github.com/prometheus/prometheus/model/histogram" "github.com/prometheus/prometheus/model/labels" "github.com/prometheus/prometheus/model/textparse" "github.com/prometheus/prometheus/prompb" "github.com/prometheus/prometheus/storage" "github.com/prometheus/prometheus/tsdb/chunkenc" "github.com/prometheus/prometheus/tsdb/chunks" "github.com/prometheus/prometheus/util/annotations" ) const ( // decodeReadLimit is the maximum size of a read request body in bytes. decodeReadLimit = 32 * 1024 * 1024 pbContentType = "application/x-protobuf" jsonContentType = "application/json" ) type HTTPError struct { msg string status int } func (e HTTPError) Error() string { return e.msg } func (e HTTPError) Status() int { return e.status } // DecodeReadRequest reads a remote.Request from a http.Request. func DecodeReadRequest(r *http.Request) (*prompb.ReadRequest, error) { compressed, err := io.ReadAll(io.LimitReader(r.Body, decodeReadLimit)) if err != nil { return nil, err } reqBuf, err := snappy.Decode(nil, compressed) if err != nil { return nil, err } var req prompb.ReadRequest if err := proto.Unmarshal(reqBuf, &req); err != nil { return nil, err } return &req, nil } // EncodeReadResponse writes a remote.Response to a http.ResponseWriter. func EncodeReadResponse(resp *prompb.ReadResponse, w http.ResponseWriter) error { data, err := proto.Marshal(resp) if err != nil { return err } compressed := snappy.Encode(nil, data) _, err = w.Write(compressed) return err } // ToQuery builds a Query proto. func ToQuery(from, to int64, matchers []*labels.Matcher, hints *storage.SelectHints) (*prompb.Query, error) { ms, err := toLabelMatchers(matchers) if err != nil { return nil, err } var rp *prompb.ReadHints if hints != nil { rp = &prompb.ReadHints{ StartMs: hints.Start, EndMs: hints.End, StepMs: hints.Step, Func: hints.Func, Grouping: hints.Grouping, By: hints.By, RangeMs: hints.Range, } } return &prompb.Query{ StartTimestampMs: from, EndTimestampMs: to, Matchers: ms, Hints: rp, }, nil } // ToQueryResult builds a QueryResult proto. func ToQueryResult(ss storage.SeriesSet, sampleLimit int) (*prompb.QueryResult, annotations.Annotations, error) { numSamples := 0 resp := &prompb.QueryResult{} var iter chunkenc.Iterator for ss.Next() { series := ss.At() iter = series.Iterator(iter) var ( samples []prompb.Sample histograms []prompb.Histogram ) for valType := iter.Next(); valType != chunkenc.ValNone; valType = iter.Next() { numSamples++ if sampleLimit > 0 && numSamples > sampleLimit { return nil, ss.Warnings(), HTTPError{ msg: fmt.Sprintf("exceeded sample limit (%d)", sampleLimit), status: http.StatusBadRequest, } } switch valType { case chunkenc.ValFloat: ts, val := iter.At() samples = append(samples, prompb.Sample{ Timestamp: ts, Value: val, }) case chunkenc.ValHistogram: ts, h := iter.AtHistogram() histograms = append(histograms, HistogramToHistogramProto(ts, h)) case chunkenc.ValFloatHistogram: ts, fh := iter.AtFloatHistogram() histograms = append(histograms, FloatHistogramToHistogramProto(ts, fh)) default: return nil, ss.Warnings(), fmt.Errorf("unrecognized value type: %s", valType) } } if err := iter.Err(); err != nil { return nil, ss.Warnings(), err } resp.Timeseries = append(resp.Timeseries, &prompb.TimeSeries{ Labels: labelsToLabelsProto(series.Labels(), nil), Samples: samples, Histograms: histograms, }) } return resp, ss.Warnings(), ss.Err() } // FromQueryResult unpacks and sorts a QueryResult proto. func FromQueryResult(sortSeries bool, res *prompb.QueryResult) storage.SeriesSet { series := make([]storage.Series, 0, len(res.Timeseries)) for _, ts := range res.Timeseries { if err := validateLabelsAndMetricName(ts.Labels); err != nil { return errSeriesSet{err: err} } lbls := labelProtosToLabels(ts.Labels) series = append(series, &concreteSeries{labels: lbls, floats: ts.Samples, histograms: ts.Histograms}) } if sortSeries { slices.SortFunc(series, func(a, b storage.Series) int { return labels.Compare(a.Labels(), b.Labels()) }) } return &concreteSeriesSet{ series: series, } } // NegotiateResponseType returns first accepted response type that this server supports. // On the empty accepted list we assume that the SAMPLES response type was requested. This is to maintain backward compatibility. func NegotiateResponseType(accepted []prompb.ReadRequest_ResponseType) (prompb.ReadRequest_ResponseType, error) { if len(accepted) == 0 { accepted = []prompb.ReadRequest_ResponseType{prompb.ReadRequest_SAMPLES} } supported := map[prompb.ReadRequest_ResponseType]struct{}{ prompb.ReadRequest_SAMPLES: {}, prompb.ReadRequest_STREAMED_XOR_CHUNKS: {}, } for _, resType := range accepted { if _, ok := supported[resType]; ok { return resType, nil } } return 0, fmt.Errorf("server does not support any of the requested response types: %v; supported: %v", accepted, supported) } // StreamChunkedReadResponses iterates over series, builds chunks and streams those to the caller. // It expects Series set with populated chunks. func StreamChunkedReadResponses( stream io.Writer, queryIndex int64, ss storage.ChunkSeriesSet, sortedExternalLabels []prompb.Label, maxBytesInFrame int, marshalPool *sync.Pool, ) (annotations.Annotations, error) { var ( chks []prompb.Chunk lbls []prompb.Label iter chunks.Iterator ) for ss.Next() { series := ss.At() iter = series.Iterator(iter) lbls = MergeLabels(labelsToLabelsProto(series.Labels(), lbls), sortedExternalLabels) maxDataLength := maxBytesInFrame for _, lbl := range lbls { maxDataLength -= lbl.Size() } frameBytesLeft := maxDataLength isNext := iter.Next() // Send at most one series per frame; series may be split over multiple frames according to maxBytesInFrame. for isNext { chk := iter.At() if chk.Chunk == nil { return ss.Warnings(), fmt.Errorf("StreamChunkedReadResponses: found not populated chunk returned by SeriesSet at ref: %v", chk.Ref) } // Cut the chunk. chks = append(chks, prompb.Chunk{ MinTimeMs: chk.MinTime, MaxTimeMs: chk.MaxTime, Type: prompb.Chunk_Encoding(chk.Chunk.Encoding()), Data: chk.Chunk.Bytes(), }) frameBytesLeft -= chks[len(chks)-1].Size() // We are fine with minor inaccuracy of max bytes per frame. The inaccuracy will be max of full chunk size. isNext = iter.Next() if frameBytesLeft > 0 && isNext { continue } resp := &prompb.ChunkedReadResponse{ ChunkedSeries: []*prompb.ChunkedSeries{ {Labels: lbls, Chunks: chks}, }, QueryIndex: queryIndex, } b, err := resp.PooledMarshal(marshalPool) if err != nil { return ss.Warnings(), fmt.Errorf("marshal ChunkedReadResponse: %w", err) } if _, err := stream.Write(b); err != nil { return ss.Warnings(), fmt.Errorf("write to stream: %w", err) } // We immediately flush the Write() so it is safe to return to the pool. marshalPool.Put(&b) chks = chks[:0] frameBytesLeft = maxDataLength } if err := iter.Err(); err != nil { return ss.Warnings(), err } } return ss.Warnings(), ss.Err() } // MergeLabels merges two sets of sorted proto labels, preferring those in // primary to those in secondary when there is an overlap. func MergeLabels(primary, secondary []prompb.Label) []prompb.Label { result := make([]prompb.Label, 0, len(primary)+len(secondary)) i, j := 0, 0 for i < len(primary) && j < len(secondary) { switch { case primary[i].Name < secondary[j].Name: result = append(result, primary[i]) i++ case primary[i].Name > secondary[j].Name: result = append(result, secondary[j]) j++ default: result = append(result, primary[i]) i++ j++ } } for ; i < len(primary); i++ { result = append(result, primary[i]) } for ; j < len(secondary); j++ { result = append(result, secondary[j]) } return result } // errSeriesSet implements storage.SeriesSet, just returning an error. type errSeriesSet struct { err error } func (errSeriesSet) Next() bool { return false } func (errSeriesSet) At() storage.Series { return nil } func (e errSeriesSet) Err() error { return e.err } func (e errSeriesSet) Warnings() annotations.Annotations { return nil } // concreteSeriesSet implements storage.SeriesSet. type concreteSeriesSet struct { cur int series []storage.Series } func (c *concreteSeriesSet) Next() bool { c.cur++ return c.cur-1 < len(c.series) } func (c *concreteSeriesSet) At() storage.Series { return c.series[c.cur-1] } func (c *concreteSeriesSet) Err() error { return nil } func (c *concreteSeriesSet) Warnings() annotations.Annotations { return nil } // concreteSeries implements storage.Series. type concreteSeries struct { labels labels.Labels floats []prompb.Sample histograms []prompb.Histogram } func (c *concreteSeries) Labels() labels.Labels { return c.labels.Copy() } func (c *concreteSeries) Iterator(it chunkenc.Iterator) chunkenc.Iterator { if csi, ok := it.(*concreteSeriesIterator); ok { csi.reset(c) return csi } return newConcreteSeriesIterator(c) } // concreteSeriesIterator implements storage.SeriesIterator. type concreteSeriesIterator struct { floatsCur int histogramsCur int curValType chunkenc.ValueType series *concreteSeries } func newConcreteSeriesIterator(series *concreteSeries) chunkenc.Iterator { return &concreteSeriesIterator{ floatsCur: -1, histogramsCur: -1, curValType: chunkenc.ValNone, series: series, } } func (c *concreteSeriesIterator) reset(series *concreteSeries) { c.floatsCur = -1 c.histogramsCur = -1 c.curValType = chunkenc.ValNone c.series = series } // Seek implements storage.SeriesIterator. func (c *concreteSeriesIterator) Seek(t int64) chunkenc.ValueType { if c.floatsCur == -1 { c.floatsCur = 0 } if c.histogramsCur == -1 { c.histogramsCur = 0 } if c.floatsCur >= len(c.series.floats) && c.histogramsCur >= len(c.series.histograms) { return chunkenc.ValNone } // No-op check. if (c.curValType == chunkenc.ValFloat && c.series.floats[c.floatsCur].Timestamp >= t) || ((c.curValType == chunkenc.ValHistogram || c.curValType == chunkenc.ValFloatHistogram) && c.series.histograms[c.histogramsCur].Timestamp >= t) { return c.curValType } c.curValType = chunkenc.ValNone // Binary search between current position and end for both float and histograms samples. c.floatsCur += sort.Search(len(c.series.floats)-c.floatsCur, func(n int) bool { return c.series.floats[n+c.floatsCur].Timestamp >= t }) c.histogramsCur += sort.Search(len(c.series.histograms)-c.histogramsCur, func(n int) bool { return c.series.histograms[n+c.histogramsCur].Timestamp >= t }) switch { case c.floatsCur < len(c.series.floats) && c.histogramsCur < len(c.series.histograms): // If float samples and histogram samples have overlapping timestamps prefer the float samples. if c.series.floats[c.floatsCur].Timestamp <= c.series.histograms[c.histogramsCur].Timestamp { c.curValType = chunkenc.ValFloat } else { c.curValType = getHistogramValType(&c.series.histograms[c.histogramsCur]) } // When the timestamps do not overlap the cursor for the non-selected sample type has advanced too // far; we decrement it back down here. if c.series.floats[c.floatsCur].Timestamp != c.series.histograms[c.histogramsCur].Timestamp { if c.curValType == chunkenc.ValFloat { c.histogramsCur-- } else { c.floatsCur-- } } case c.floatsCur < len(c.series.floats): c.curValType = chunkenc.ValFloat case c.histogramsCur < len(c.series.histograms): c.curValType = getHistogramValType(&c.series.histograms[c.histogramsCur]) } return c.curValType } func getHistogramValType(h *prompb.Histogram) chunkenc.ValueType { if h.IsFloatHistogram() { return chunkenc.ValFloatHistogram } return chunkenc.ValHistogram } // At implements chunkenc.Iterator. func (c *concreteSeriesIterator) At() (t int64, v float64) { if c.curValType != chunkenc.ValFloat { panic("iterator is not on a float sample") } s := c.series.floats[c.floatsCur] return s.Timestamp, s.Value } // AtHistogram implements chunkenc.Iterator. func (c *concreteSeriesIterator) AtHistogram() (int64, *histogram.Histogram) { if c.curValType != chunkenc.ValHistogram { panic("iterator is not on an integer histogram sample") } h := c.series.histograms[c.histogramsCur] return h.Timestamp, HistogramProtoToHistogram(h) } // AtFloatHistogram implements chunkenc.Iterator. func (c *concreteSeriesIterator) AtFloatHistogram() (int64, *histogram.FloatHistogram) { switch c.curValType { case chunkenc.ValHistogram: fh := c.series.histograms[c.histogramsCur] return fh.Timestamp, HistogramProtoToFloatHistogram(fh) case chunkenc.ValFloatHistogram: fh := c.series.histograms[c.histogramsCur] return fh.Timestamp, FloatHistogramProtoToFloatHistogram(fh) default: panic("iterator is not on a histogram sample") } } // AtT implements chunkenc.Iterator. func (c *concreteSeriesIterator) AtT() int64 { if c.curValType == chunkenc.ValHistogram || c.curValType == chunkenc.ValFloatHistogram { return c.series.histograms[c.histogramsCur].Timestamp } return c.series.floats[c.floatsCur].Timestamp } const noTS = int64(math.MaxInt64) // Next implements chunkenc.Iterator. func (c *concreteSeriesIterator) Next() chunkenc.ValueType { peekFloatTS := noTS if c.floatsCur+1 < len(c.series.floats) { peekFloatTS = c.series.floats[c.floatsCur+1].Timestamp } peekHistTS := noTS if c.histogramsCur+1 < len(c.series.histograms) { peekHistTS = c.series.histograms[c.histogramsCur+1].Timestamp } c.curValType = chunkenc.ValNone switch { case peekFloatTS < peekHistTS: c.floatsCur++ c.curValType = chunkenc.ValFloat case peekHistTS < peekFloatTS: c.histogramsCur++ c.curValType = chunkenc.ValHistogram case peekFloatTS == noTS && peekHistTS == noTS: // This only happens when the iterator is exhausted; we set the cursors off the end to prevent // Seek() from returning anything afterwards. c.floatsCur = len(c.series.floats) c.histogramsCur = len(c.series.histograms) default: // Prefer float samples to histogram samples if there's a conflict. We advance the cursor for histograms // anyway otherwise the histogram sample will get selected on the next call to Next(). c.floatsCur++ c.histogramsCur++ c.curValType = chunkenc.ValFloat } return c.curValType } // Err implements chunkenc.Iterator. func (c *concreteSeriesIterator) Err() error { return nil } // validateLabelsAndMetricName validates the label names/values and metric names returned from remote read, // also making sure that there are no labels with duplicate names. func validateLabelsAndMetricName(ls []prompb.Label) error { for i, l := range ls { if l.Name == labels.MetricName && !model.IsValidMetricName(model.LabelValue(l.Value)) { return fmt.Errorf("invalid metric name: %v", l.Value) } if !model.LabelName(l.Name).IsValid() { return fmt.Errorf("invalid label name: %v", l.Name) } if !model.LabelValue(l.Value).IsValid() { return fmt.Errorf("invalid label value: %v", l.Value) } if i > 0 && l.Name == ls[i-1].Name { return fmt.Errorf("duplicate label with name: %v", l.Name) } } return nil } func toLabelMatchers(matchers []*labels.Matcher) ([]*prompb.LabelMatcher, error) { pbMatchers := make([]*prompb.LabelMatcher, 0, len(matchers)) for _, m := range matchers { var mType prompb.LabelMatcher_Type switch m.Type { case labels.MatchEqual: mType = prompb.LabelMatcher_EQ case labels.MatchNotEqual: mType = prompb.LabelMatcher_NEQ case labels.MatchRegexp: mType = prompb.LabelMatcher_RE case labels.MatchNotRegexp: mType = prompb.LabelMatcher_NRE default: return nil, errors.New("invalid matcher type") } pbMatchers = append(pbMatchers, &prompb.LabelMatcher{ Type: mType, Name: m.Name, Value: m.Value, }) } return pbMatchers, nil } // FromLabelMatchers parses protobuf label matchers to Prometheus label matchers. func FromLabelMatchers(matchers []*prompb.LabelMatcher) ([]*labels.Matcher, error) { result := make([]*labels.Matcher, 0, len(matchers)) for _, matcher := range matchers { var mtype labels.MatchType switch matcher.Type { case prompb.LabelMatcher_EQ: mtype = labels.MatchEqual case prompb.LabelMatcher_NEQ: mtype = labels.MatchNotEqual case prompb.LabelMatcher_RE: mtype = labels.MatchRegexp case prompb.LabelMatcher_NRE: mtype = labels.MatchNotRegexp default: return nil, errors.New("invalid matcher type") } matcher, err := labels.NewMatcher(mtype, matcher.Name, matcher.Value) if err != nil { return nil, err } result = append(result, matcher) } return result, nil } func exemplarProtoToExemplar(ep prompb.Exemplar) exemplar.Exemplar { timestamp := ep.Timestamp return exemplar.Exemplar{ Labels: labelProtosToLabels(ep.Labels), Value: ep.Value, Ts: timestamp, HasTs: timestamp != 0, } } // HistogramProtoToHistogram extracts a (normal integer) Histogram from the // provided proto message. The caller has to make sure that the proto message // represents an integer histogram and not a float histogram, or it panics. func HistogramProtoToHistogram(hp prompb.Histogram) *histogram.Histogram { if hp.IsFloatHistogram() { panic("HistogramProtoToHistogram called with a float histogram") } return &histogram.Histogram{ CounterResetHint: histogram.CounterResetHint(hp.ResetHint), Schema: hp.Schema, ZeroThreshold: hp.ZeroThreshold, ZeroCount: hp.GetZeroCountInt(), Count: hp.GetCountInt(), Sum: hp.Sum, PositiveSpans: spansProtoToSpans(hp.GetPositiveSpans()), PositiveBuckets: hp.GetPositiveDeltas(), NegativeSpans: spansProtoToSpans(hp.GetNegativeSpans()), NegativeBuckets: hp.GetNegativeDeltas(), } } // FloatHistogramProtoToFloatHistogram extracts a float Histogram from the // provided proto message to a Float Histogram. The caller has to make sure that // the proto message represents a float histogram and not an integer histogram, // or it panics. func FloatHistogramProtoToFloatHistogram(hp prompb.Histogram) *histogram.FloatHistogram { if !hp.IsFloatHistogram() { panic("FloatHistogramProtoToFloatHistogram called with an integer histogram") } return &histogram.FloatHistogram{ CounterResetHint: histogram.CounterResetHint(hp.ResetHint), Schema: hp.Schema, ZeroThreshold: hp.ZeroThreshold, ZeroCount: hp.GetZeroCountFloat(), Count: hp.GetCountFloat(), Sum: hp.Sum, PositiveSpans: spansProtoToSpans(hp.GetPositiveSpans()), PositiveBuckets: hp.GetPositiveCounts(), NegativeSpans: spansProtoToSpans(hp.GetNegativeSpans()), NegativeBuckets: hp.GetNegativeCounts(), } } // HistogramProtoToFloatHistogram extracts and converts a (normal integer) histogram from the provided proto message // to a float histogram. The caller has to make sure that the proto message represents an integer histogram and not a // float histogram, or it panics. func HistogramProtoToFloatHistogram(hp prompb.Histogram) *histogram.FloatHistogram { if hp.IsFloatHistogram() { panic("HistogramProtoToFloatHistogram called with a float histogram") } return &histogram.FloatHistogram{ CounterResetHint: histogram.CounterResetHint(hp.ResetHint), Schema: hp.Schema, ZeroThreshold: hp.ZeroThreshold, ZeroCount: float64(hp.GetZeroCountInt()), Count: float64(hp.GetCountInt()), Sum: hp.Sum, PositiveSpans: spansProtoToSpans(hp.GetPositiveSpans()), PositiveBuckets: deltasToCounts(hp.GetPositiveDeltas()), NegativeSpans: spansProtoToSpans(hp.GetNegativeSpans()), NegativeBuckets: deltasToCounts(hp.GetNegativeDeltas()), } } func spansProtoToSpans(s []prompb.BucketSpan) []histogram.Span { spans := make([]histogram.Span, len(s)) for i := 0; i < len(s); i++ { spans[i] = histogram.Span{Offset: s[i].Offset, Length: s[i].Length} } return spans } func deltasToCounts(deltas []int64) []float64 { counts := make([]float64, len(deltas)) var cur float64 for i, d := range deltas { cur += float64(d) counts[i] = cur } return counts } func HistogramToHistogramProto(timestamp int64, h *histogram.Histogram) prompb.Histogram { return prompb.Histogram{ Count: &prompb.Histogram_CountInt{CountInt: h.Count}, Sum: h.Sum, Schema: h.Schema, ZeroThreshold: h.ZeroThreshold, ZeroCount: &prompb.Histogram_ZeroCountInt{ZeroCountInt: h.ZeroCount}, NegativeSpans: spansToSpansProto(h.NegativeSpans), NegativeDeltas: h.NegativeBuckets, PositiveSpans: spansToSpansProto(h.PositiveSpans), PositiveDeltas: h.PositiveBuckets, ResetHint: prompb.Histogram_ResetHint(h.CounterResetHint), Timestamp: timestamp, } } func FloatHistogramToHistogramProto(timestamp int64, fh *histogram.FloatHistogram) prompb.Histogram { return prompb.Histogram{ Count: &prompb.Histogram_CountFloat{CountFloat: fh.Count}, Sum: fh.Sum, Schema: fh.Schema, ZeroThreshold: fh.ZeroThreshold, ZeroCount: &prompb.Histogram_ZeroCountFloat{ZeroCountFloat: fh.ZeroCount}, NegativeSpans: spansToSpansProto(fh.NegativeSpans), NegativeCounts: fh.NegativeBuckets, PositiveSpans: spansToSpansProto(fh.PositiveSpans), PositiveCounts: fh.PositiveBuckets, ResetHint: prompb.Histogram_ResetHint(fh.CounterResetHint), Timestamp: timestamp, } } func spansToSpansProto(s []histogram.Span) []prompb.BucketSpan { spans := make([]prompb.BucketSpan, len(s)) for i := 0; i < len(s); i++ { spans[i] = prompb.BucketSpan{Offset: s[i].Offset, Length: s[i].Length} } return spans } // LabelProtosToMetric unpack a []*prompb.Label to a model.Metric. func LabelProtosToMetric(labelPairs []*prompb.Label) model.Metric { metric := make(model.Metric, len(labelPairs)) for _, l := range labelPairs { metric[model.LabelName(l.Name)] = model.LabelValue(l.Value) } return metric } func labelProtosToLabels(labelPairs []prompb.Label) labels.Labels { b := labels.ScratchBuilder{} for _, l := range labelPairs { b.Add(l.Name, l.Value) } b.Sort() return b.Labels() } // labelsToLabelsProto transforms labels into prompb labels. The buffer slice // will be used to avoid allocations if it is big enough to store the labels. func labelsToLabelsProto(lbls labels.Labels, buf []prompb.Label) []prompb.Label { result := buf[:0] lbls.Range(func(l labels.Label) { result = append(result, prompb.Label{ Name: l.Name, Value: l.Value, }) }) return result } // metricTypeToMetricTypeProto transforms a Prometheus metricType into prompb metricType. Since the former is a string we need to transform it to an enum. func metricTypeToMetricTypeProto(t textparse.MetricType) prompb.MetricMetadata_MetricType { mt := strings.ToUpper(string(t)) v, ok := prompb.MetricMetadata_MetricType_value[mt] if !ok { return prompb.MetricMetadata_UNKNOWN } return prompb.MetricMetadata_MetricType(v) } // DecodeWriteRequest from an io.Reader into a prompb.WriteRequest, handling // snappy decompression. func DecodeWriteRequest(r io.Reader) (*prompb.WriteRequest, error) { compressed, err := io.ReadAll(r) if err != nil { return nil, err } reqBuf, err := snappy.Decode(nil, compressed) if err != nil { return nil, err } var req prompb.WriteRequest if err := proto.Unmarshal(reqBuf, &req); err != nil { return nil, err } return &req, nil } func DecodeOTLPWriteRequest(r *http.Request) (pmetricotlp.ExportRequest, error) { contentType := r.Header.Get("Content-Type") var decoderFunc func(buf []byte) (pmetricotlp.ExportRequest, error) switch contentType { case pbContentType: decoderFunc = func(buf []byte) (pmetricotlp.ExportRequest, error) { req := pmetricotlp.NewExportRequest() return req, req.UnmarshalProto(buf) } case jsonContentType: decoderFunc = func(buf []byte) (pmetricotlp.ExportRequest, error) { req := pmetricotlp.NewExportRequest() return req, req.UnmarshalJSON(buf) } default: return pmetricotlp.NewExportRequest(), fmt.Errorf("unsupported content type: %s, supported: [%s, %s]", contentType, jsonContentType, pbContentType) } reader := r.Body // Handle compression. switch r.Header.Get("Content-Encoding") { case "gzip": gr, err := gzip.NewReader(reader) if err != nil { return pmetricotlp.NewExportRequest(), err } reader = gr case "": // No compression. default: return pmetricotlp.NewExportRequest(), fmt.Errorf("unsupported compression: %s. Only \"gzip\" or no compression supported", r.Header.Get("Content-Encoding")) } body, err := io.ReadAll(reader) if err != nil { r.Body.Close() return pmetricotlp.NewExportRequest(), err } if err = r.Body.Close(); err != nil { return pmetricotlp.NewExportRequest(), err } otlpReq, err := decoderFunc(body) if err != nil { return pmetricotlp.NewExportRequest(), err } return otlpReq, nil } // DecodeWriteRequest from an io.Reader into a prompb.WriteRequest, handling // snappy decompression. func DecodeReducedWriteRequest(r io.Reader) (*prompb.WriteRequestWithRefs, error) { compressed, err := io.ReadAll(r) if err != nil { return nil, err } reqBuf, err := snappy.Decode(nil, compressed) if err != nil { return nil, err } var req prompb.WriteRequestWithRefs if err := proto.Unmarshal(reqBuf, &req); err != nil { return nil, err } return &req, nil } func ReducedWriteRequestToWriteRequest(redReq *prompb.WriteRequestWithRefs) (*prompb.WriteRequest, error) { req := &prompb.WriteRequest{ Timeseries: make([]prompb.TimeSeries, len(redReq.Timeseries)), Metadata: redReq.Metadata, } for i, rts := range redReq.Timeseries { lbls := make([]prompb.Label, len(rts.Labels)) for j, l := range rts.Labels { lbls[j].Name = redReq.StringSymbolTable[l.NameRef] lbls[j].Value = redReq.StringSymbolTable[l.ValueRef] } exemplars := make([]prompb.Exemplar, len(rts.Exemplars)) for j, e := range rts.Exemplars { exemplars[j].Value = e.Value exemplars[j].Timestamp = e.Timestamp exemplars[j].Labels = make([]prompb.Label, len(e.Labels)) for k, l := range e.Labels { exemplars[j].Labels[k].Name = redReq.StringSymbolTable[l.NameRef] exemplars[j].Labels[k].Value = redReq.StringSymbolTable[l.ValueRef] } } req.Timeseries[i].Labels = lbls req.Timeseries[i].Samples = rts.Samples req.Timeseries[i].Exemplars = exemplars req.Timeseries[i].Histograms = rts.Histograms } return req, nil }