// Copyright 2017 The Prometheus Authors // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package index import ( "container/heap" "context" "encoding/binary" "fmt" "math" "runtime" "slices" "sort" "strings" "sync" "time" "github.com/bboreham/go-loser" "github.com/prometheus/prometheus/model/labels" "github.com/prometheus/prometheus/storage" ) var allPostingsKey = labels.Label{} // AllPostingsKey returns the label key that is used to store the postings list of all existing IDs. func AllPostingsKey() (name, value string) { return allPostingsKey.Name, allPostingsKey.Value } // ensureOrderBatchSize is the max number of postings passed to a worker in a single batch in MemPostings.EnsureOrder(). const ensureOrderBatchSize = 1024 // ensureOrderBatchPool is a pool used to recycle batches passed to workers in MemPostings.EnsureOrder(). var ensureOrderBatchPool = sync.Pool{ New: func() interface{} { x := make([][]storage.SeriesRef, 0, ensureOrderBatchSize) return &x // Return pointer type as preferred by Pool. }, } // MemPostings holds postings list for series ID per label pair. They may be written // to out of order. // EnsureOrder() must be called once before any reads are done. This allows for quick // unordered batch fills on startup. type MemPostings struct { mtx sync.RWMutex m map[string]map[string][]storage.SeriesRef ordered bool } // NewMemPostings returns a memPostings that's ready for reads and writes. func NewMemPostings() *MemPostings { return &MemPostings{ m: make(map[string]map[string][]storage.SeriesRef, 512), ordered: true, } } // NewUnorderedMemPostings returns a memPostings that is not safe to be read from // until EnsureOrder() was called once. func NewUnorderedMemPostings() *MemPostings { return &MemPostings{ m: make(map[string]map[string][]storage.SeriesRef, 512), ordered: false, } } // Symbols returns an iterator over all unique name and value strings, in order. func (p *MemPostings) Symbols() StringIter { p.mtx.RLock() // Add all the strings to a map to de-duplicate. symbols := make(map[string]struct{}, 512) for n, e := range p.m { symbols[n] = struct{}{} for v := range e { symbols[v] = struct{}{} } } p.mtx.RUnlock() res := make([]string, 0, len(symbols)) for k := range symbols { res = append(res, k) } slices.Sort(res) return NewStringListIter(res) } // SortedKeys returns a list of sorted label keys of the postings. func (p *MemPostings) SortedKeys() []labels.Label { p.mtx.RLock() keys := make([]labels.Label, 0, len(p.m)) for n, e := range p.m { for v := range e { keys = append(keys, labels.Label{Name: n, Value: v}) } } p.mtx.RUnlock() slices.SortFunc(keys, func(a, b labels.Label) int { nameCompare := strings.Compare(a.Name, b.Name) // If names are the same, compare values. if nameCompare != 0 { return nameCompare } return strings.Compare(a.Value, b.Value) }) return keys } // LabelNames returns all the unique label names. func (p *MemPostings) LabelNames() []string { p.mtx.RLock() defer p.mtx.RUnlock() n := len(p.m) if n == 0 { return nil } names := make([]string, 0, n-1) for name := range p.m { if name != allPostingsKey.Name { names = append(names, name) } } return names } // LabelValues returns label values for the given name. func (p *MemPostings) LabelValues(_ context.Context, name string) []string { p.mtx.RLock() defer p.mtx.RUnlock() values := make([]string, 0, len(p.m[name])) for v := range p.m[name] { values = append(values, v) } return values } // PostingsStats contains cardinality based statistics for postings. type PostingsStats struct { CardinalityMetricsStats []Stat CardinalityLabelStats []Stat LabelValueStats []Stat LabelValuePairsStats []Stat NumLabelPairs int } // Stats calculates the cardinality statistics from postings. func (p *MemPostings) Stats(label string, limit int) *PostingsStats { var size uint64 p.mtx.RLock() metrics := &maxHeap{} labels := &maxHeap{} labelValueLength := &maxHeap{} labelValuePairs := &maxHeap{} numLabelPairs := 0 metrics.init(limit) labels.init(limit) labelValueLength.init(limit) labelValuePairs.init(limit) for n, e := range p.m { if n == "" { continue } labels.push(Stat{Name: n, Count: uint64(len(e))}) numLabelPairs += len(e) size = 0 for name, values := range e { if n == label { metrics.push(Stat{Name: name, Count: uint64(len(values))}) } seriesCnt := uint64(len(values)) labelValuePairs.push(Stat{Name: n + "=" + name, Count: seriesCnt}) size += uint64(len(name)) * seriesCnt } labelValueLength.push(Stat{Name: n, Count: size}) } p.mtx.RUnlock() return &PostingsStats{ CardinalityMetricsStats: metrics.get(), CardinalityLabelStats: labels.get(), LabelValueStats: labelValueLength.get(), LabelValuePairsStats: labelValuePairs.get(), NumLabelPairs: numLabelPairs, } } // Get returns a postings list for the given label pair. func (p *MemPostings) Get(name, value string) Postings { var lp []storage.SeriesRef p.mtx.RLock() l := p.m[name] if l != nil { lp = l[value] } p.mtx.RUnlock() if lp == nil { return EmptyPostings() } return newListPostings(lp...) } // All returns a postings list over all documents ever added. func (p *MemPostings) All() Postings { return p.Get(AllPostingsKey()) } // EnsureOrder ensures that all postings lists are sorted. After it returns all further // calls to add and addFor will insert new IDs in a sorted manner. // Parameter numberOfConcurrentProcesses is used to specify the maximal number of // CPU cores used for this operation. If it is <= 0, GOMAXPROCS is used. // GOMAXPROCS was the default before introducing this parameter. func (p *MemPostings) EnsureOrder(numberOfConcurrentProcesses int) { p.mtx.Lock() defer p.mtx.Unlock() if p.ordered { return } concurrency := numberOfConcurrentProcesses if concurrency <= 0 { concurrency = runtime.GOMAXPROCS(0) } workc := make(chan *[][]storage.SeriesRef) var wg sync.WaitGroup wg.Add(concurrency) for i := 0; i < concurrency; i++ { go func() { for job := range workc { for _, l := range *job { slices.Sort(l) } *job = (*job)[:0] ensureOrderBatchPool.Put(job) } wg.Done() }() } nextJob := ensureOrderBatchPool.Get().(*[][]storage.SeriesRef) for _, e := range p.m { for _, l := range e { *nextJob = append(*nextJob, l) if len(*nextJob) >= ensureOrderBatchSize { workc <- nextJob nextJob = ensureOrderBatchPool.Get().(*[][]storage.SeriesRef) } } } // If the last job was partially filled, we need to push it to workers too. if len(*nextJob) > 0 { workc <- nextJob } close(workc) wg.Wait() p.ordered = true } // Delete removes all ids in the given map from the postings lists. // affectedLabels contains all the labels that are affected by the deletion, there's no need to check other labels. func (p *MemPostings) Delete(deleted map[storage.SeriesRef]struct{}, affected map[labels.Label]struct{}) { p.mtx.Lock() defer p.mtx.Unlock() process := func(l labels.Label) { orig := p.m[l.Name][l.Value] repl := make([]storage.SeriesRef, 0, len(orig)) for _, id := range orig { if _, ok := deleted[id]; !ok { repl = append(repl, id) } } if len(repl) > 0 { p.m[l.Name][l.Value] = repl } else { delete(p.m[l.Name], l.Value) // Delete the key if we removed all values. if len(p.m[l.Name]) == 0 { delete(p.m, l.Name) } } } i := 0 for l := range affected { i++ process(l) // From time to time we want some readers to go through and read their postings. // It takes around 50ms to process a 1K series batch, and 120ms to process a 10K series batch (local benchmarks on an M3). // Note that a read query will most likely want to read multiple postings lists, say 5, 10 or 20 (depending on the number of matchers) // And that read query will most likely evaluate only one of those matchers before we unpause here, so we want to pause often. if i%512 == 0 { p.mtx.Unlock() // While it's tempting to just do a `time.Sleep(time.Millisecond)` here, // it wouldn't ensure use that readers actually were able to get the read lock, // because if there are writes waiting on same mutex, readers won't be able to get it. // So we just grab one RLock ourselves. p.mtx.RLock() // We shouldn't wait here, because we would be blocking a potential write for no reason. // Note that if there's a writer waiting for us to unlock, no reader will be able to get the read lock. p.mtx.RUnlock() //nolint:staticcheck // SA2001: this is an intentionally empty critical section. // Now we can wait a little bit just to increase the chance of a reader getting the lock. // If we were deleting 100M series here, pausing every 512 with 1ms sleeps would be an extra of 200s, which is negligible. time.Sleep(time.Millisecond) p.mtx.Lock() } } process(allPostingsKey) } // Iter calls f for each postings list. It aborts if f returns an error and returns it. func (p *MemPostings) Iter(f func(labels.Label, Postings) error) error { p.mtx.RLock() defer p.mtx.RUnlock() for n, e := range p.m { for v, p := range e { if err := f(labels.Label{Name: n, Value: v}, newListPostings(p...)); err != nil { return err } } } return nil } // Add a label set to the postings index. func (p *MemPostings) Add(id storage.SeriesRef, lset labels.Labels) { p.mtx.Lock() lset.Range(func(l labels.Label) { p.addFor(id, l) }) p.addFor(id, allPostingsKey) p.mtx.Unlock() } func appendWithExponentialGrowth[T any](a []T, v T) []T { if cap(a) < len(a)+1 { newList := make([]T, len(a), len(a)*2+1) copy(newList, a) a = newList } return append(a, v) } func (p *MemPostings) addFor(id storage.SeriesRef, l labels.Label) { nm, ok := p.m[l.Name] if !ok { nm = map[string][]storage.SeriesRef{} p.m[l.Name] = nm } list := appendWithExponentialGrowth(nm[l.Value], id) nm[l.Value] = list if !p.ordered { return } // There is no guarantee that no higher ID was inserted before as they may // be generated independently before adding them to postings. // We repair order violations on insert. The invariant is that the first n-1 // items in the list are already sorted. for i := len(list) - 1; i >= 1; i-- { if list[i] >= list[i-1] { break } list[i], list[i-1] = list[i-1], list[i] } } func (p *MemPostings) PostingsForLabelMatching(ctx context.Context, name string, match func(string) bool) Postings { // We'll copy the values into a slice and then match over that, // this way we don't need to hold the mutex while we're matching, // which can be slow (seconds) if the match function is a huge regex. // Holding this lock prevents new series from being added (slows down the write path) // and blocks the compaction process. vals := p.labelValues(name) for i, count := 0, 1; i < len(vals); count++ { if count%checkContextEveryNIterations == 0 && ctx.Err() != nil { return ErrPostings(ctx.Err()) } if match(vals[i]) { i++ continue } // Didn't match, bring the last value to this position, make the slice shorter and check again. // The order of the slice doesn't matter as it comes from a map iteration. vals[i], vals = vals[len(vals)-1], vals[:len(vals)-1] } // If none matched (or this label had no values), no need to grab the lock again. if len(vals) == 0 { return EmptyPostings() } // Now `vals` only contains the values that matched, get their postings. its := make([]Postings, 0, len(vals)) p.mtx.RLock() e := p.m[name] for _, v := range vals { if refs, ok := e[v]; ok { // Some of the values may have been garbage-collected in the meantime this is fine, we'll just skip them. // If we didn't let the mutex go, we'd have these postings here, but they would be pointing nowhere // because there would be a `MemPostings.Delete()` call waiting for the lock to delete these labels, // because the series were deleted already. its = append(its, NewListPostings(refs)) } } // Let the mutex go before merging. p.mtx.RUnlock() return Merge(ctx, its...) } func (p *MemPostings) PostingsForAllLabelValues(ctx context.Context, name string) Postings { p.mtx.RLock() e := p.m[name] its := make([]Postings, 0, len(e)) for _, refs := range e { if len(refs) > 0 { its = append(its, NewListPostings(refs)) } } // Let the mutex go before merging. p.mtx.RUnlock() return Merge(ctx, its...) } // labelValues returns a slice of label values for the given label name. // It will take the read lock. func (p *MemPostings) labelValues(name string) []string { p.mtx.RLock() defer p.mtx.RUnlock() e := p.m[name] if len(e) == 0 { return nil } vals := make([]string, 0, len(e)) for v, srs := range e { if len(srs) > 0 { vals = append(vals, v) } } return vals } // ExpandPostings returns the postings expanded as a slice. func ExpandPostings(p Postings) (res []storage.SeriesRef, err error) { for p.Next() { res = append(res, p.At()) } return res, p.Err() } // Postings provides iterative access over a postings list. type Postings interface { // Next advances the iterator and returns true if another value was found. Next() bool // Seek advances the iterator to value v or greater and returns // true if a value was found. Seek(v storage.SeriesRef) bool // At returns the value at the current iterator position. // At should only be called after a successful call to Next or Seek. At() storage.SeriesRef // Err returns the last error of the iterator. Err() error } // errPostings is an empty iterator that always errors. type errPostings struct { err error } func (e errPostings) Next() bool { return false } func (e errPostings) Seek(storage.SeriesRef) bool { return false } func (e errPostings) At() storage.SeriesRef { return 0 } func (e errPostings) Err() error { return e.err } var emptyPostings = errPostings{} // EmptyPostings returns a postings list that's always empty. // NOTE: Returning EmptyPostings sentinel when Postings struct has no postings is recommended. // It triggers optimized flow in other functions like Intersect, Without etc. func EmptyPostings() Postings { return emptyPostings } // IsEmptyPostingsType returns true if the postings are an empty postings list. // When this function returns false, it doesn't mean that the postings isn't empty // (it could be an empty intersection of two non-empty postings, for example). func IsEmptyPostingsType(p Postings) bool { return p == emptyPostings } // ErrPostings returns new postings that immediately error. func ErrPostings(err error) Postings { return errPostings{err} } // Intersect returns a new postings list over the intersection of the // input postings. func Intersect(its ...Postings) Postings { if len(its) == 0 { return EmptyPostings() } if len(its) == 1 { return its[0] } for _, p := range its { if p == EmptyPostings() { return EmptyPostings() } } return newIntersectPostings(its...) } type intersectPostings struct { arr []Postings cur storage.SeriesRef } func newIntersectPostings(its ...Postings) *intersectPostings { return &intersectPostings{arr: its} } func (it *intersectPostings) At() storage.SeriesRef { return it.cur } func (it *intersectPostings) doNext() bool { Loop: for { for _, p := range it.arr { if !p.Seek(it.cur) { return false } if p.At() > it.cur { it.cur = p.At() continue Loop } } return true } } func (it *intersectPostings) Next() bool { for _, p := range it.arr { if !p.Next() { return false } if p.At() > it.cur { it.cur = p.At() } } return it.doNext() } func (it *intersectPostings) Seek(id storage.SeriesRef) bool { it.cur = id return it.doNext() } func (it *intersectPostings) Err() error { for _, p := range it.arr { if p.Err() != nil { return p.Err() } } return nil } // Merge returns a new iterator over the union of the input iterators. func Merge(_ context.Context, its ...Postings) Postings { if len(its) == 0 { return EmptyPostings() } if len(its) == 1 { return its[0] } p, ok := newMergedPostings(its) if !ok { return EmptyPostings() } return p } type mergedPostings struct { p []Postings h *loser.Tree[storage.SeriesRef, Postings] cur storage.SeriesRef } func newMergedPostings(p []Postings) (m *mergedPostings, nonEmpty bool) { const maxVal = storage.SeriesRef(math.MaxUint64) // This value must be higher than all real values used in the tree. lt := loser.New(p, maxVal) return &mergedPostings{p: p, h: lt}, true } func (it *mergedPostings) Next() bool { for { if !it.h.Next() { return false } // Remove duplicate entries. newItem := it.h.At() if newItem != it.cur { it.cur = newItem return true } } } func (it *mergedPostings) Seek(id storage.SeriesRef) bool { for !it.h.IsEmpty() && it.h.At() < id { finished := !it.h.Winner().Seek(id) it.h.Fix(finished) } if it.h.IsEmpty() { return false } it.cur = it.h.At() return true } func (it mergedPostings) At() storage.SeriesRef { return it.cur } func (it mergedPostings) Err() error { for _, p := range it.p { if err := p.Err(); err != nil { return err } } return nil } // Without returns a new postings list that contains all elements from the full list that // are not in the drop list. func Without(full, drop Postings) Postings { if full == EmptyPostings() { return EmptyPostings() } if drop == EmptyPostings() { return full } return newRemovedPostings(full, drop) } type removedPostings struct { full, remove Postings cur storage.SeriesRef initialized bool fok, rok bool } func newRemovedPostings(full, remove Postings) *removedPostings { return &removedPostings{ full: full, remove: remove, } } func (rp *removedPostings) At() storage.SeriesRef { return rp.cur } func (rp *removedPostings) Next() bool { if !rp.initialized { rp.fok = rp.full.Next() rp.rok = rp.remove.Next() rp.initialized = true } for { if !rp.fok { return false } if !rp.rok { rp.cur = rp.full.At() rp.fok = rp.full.Next() return true } switch fcur, rcur := rp.full.At(), rp.remove.At(); { case fcur < rcur: rp.cur = fcur rp.fok = rp.full.Next() return true case rcur < fcur: // Forward the remove postings to the right position. rp.rok = rp.remove.Seek(fcur) default: // Skip the current posting. rp.fok = rp.full.Next() } } } func (rp *removedPostings) Seek(id storage.SeriesRef) bool { if rp.cur >= id { return true } rp.fok = rp.full.Seek(id) rp.rok = rp.remove.Seek(id) rp.initialized = true return rp.Next() } func (rp *removedPostings) Err() error { if rp.full.Err() != nil { return rp.full.Err() } return rp.remove.Err() } // ListPostings implements the Postings interface over a plain list. type ListPostings struct { list []storage.SeriesRef cur storage.SeriesRef } func NewListPostings(list []storage.SeriesRef) Postings { return newListPostings(list...) } func newListPostings(list ...storage.SeriesRef) *ListPostings { return &ListPostings{list: list} } func (it *ListPostings) At() storage.SeriesRef { return it.cur } func (it *ListPostings) Next() bool { if len(it.list) > 0 { it.cur = it.list[0] it.list = it.list[1:] return true } it.cur = 0 return false } func (it *ListPostings) Seek(x storage.SeriesRef) bool { // If the current value satisfies, then return. if it.cur >= x { return true } if len(it.list) == 0 { return false } // Do binary search between current position and end. i, _ := slices.BinarySearch(it.list, x) if i < len(it.list) { it.cur = it.list[i] it.list = it.list[i+1:] return true } it.list = nil return false } func (it *ListPostings) Err() error { return nil } // bigEndianPostings implements the Postings interface over a byte stream of // big endian numbers. type bigEndianPostings struct { list []byte cur uint32 } func newBigEndianPostings(list []byte) *bigEndianPostings { return &bigEndianPostings{list: list} } func (it *bigEndianPostings) At() storage.SeriesRef { return storage.SeriesRef(it.cur) } func (it *bigEndianPostings) Next() bool { if len(it.list) >= 4 { it.cur = binary.BigEndian.Uint32(it.list) it.list = it.list[4:] return true } return false } func (it *bigEndianPostings) Seek(x storage.SeriesRef) bool { if storage.SeriesRef(it.cur) >= x { return true } num := len(it.list) / 4 // Do binary search between current position and end. i := sort.Search(num, func(i int) bool { return binary.BigEndian.Uint32(it.list[i*4:]) >= uint32(x) }) if i < num { j := i * 4 it.cur = binary.BigEndian.Uint32(it.list[j:]) it.list = it.list[j+4:] return true } it.list = nil return false } func (it *bigEndianPostings) Err() error { return nil } // FindIntersectingPostings checks the intersection of p and candidates[i] for each i in candidates, // if intersection is non empty, then i is added to the indexes returned. // Returned indexes are not sorted. func FindIntersectingPostings(p Postings, candidates []Postings) (indexes []int, err error) { h := make(postingsWithIndexHeap, 0, len(candidates)) for idx, it := range candidates { switch { case it.Next(): h = append(h, postingsWithIndex{index: idx, p: it}) case it.Err() != nil: return nil, it.Err() } } if h.empty() { return nil, nil } heap.Init(&h) for !h.empty() { if !p.Seek(h.at()) { return indexes, p.Err() } if p.At() == h.at() { indexes = append(indexes, h.popIndex()) } else if err := h.next(); err != nil { return nil, err } } return indexes, nil } // postingsWithIndex is used as postingsWithIndexHeap elements by FindIntersectingPostings, // keeping track of the original index of each postings while they move inside the heap. type postingsWithIndex struct { index int p Postings // popped means that these postings shouldn't be considered anymore. // See popIndex() comment to understand why we need this. popped bool } // postingsWithIndexHeap implements heap.Interface, // with root always pointing to the postings with minimum Postings.At() value. // It also implements a special way of removing elements that marks them as popped and moves them to the bottom of the // heap instead of actually removing them, see popIndex() for more details. type postingsWithIndexHeap []postingsWithIndex // empty checks whether the heap is empty, which is true if it has no elements, of if the smallest element is popped. func (h *postingsWithIndexHeap) empty() bool { return len(*h) == 0 || (*h)[0].popped } // popIndex pops the smallest heap element and returns its index. // In our implementation we don't actually do heap.Pop(), instead we mark the element as `popped` and fix its position, which // should be after all the non-popped elements according to our sorting strategy. // By skipping the `heap.Pop()` call we avoid an extra allocation in this heap's Pop() implementation which returns an interface{}. func (h *postingsWithIndexHeap) popIndex() int { index := (*h)[0].index (*h)[0].popped = true heap.Fix(h, 0) return index } // at provides the storage.SeriesRef where root Postings is pointing at this moment. func (h postingsWithIndexHeap) at() storage.SeriesRef { return h[0].p.At() } // next performs the Postings.Next() operation on the root of the heap, performing the related operation on the heap // and conveniently returning the result of calling Postings.Err() if the result of calling Next() was false. // If Next() succeeds, heap is fixed to move the root to its new position, according to its Postings.At() value. // If Next() returns fails and there's no error reported by Postings.Err(), then root is marked as removed and heap is fixed. func (h *postingsWithIndexHeap) next() error { pi := (*h)[0] next := pi.p.Next() if next { heap.Fix(h, 0) return nil } if err := pi.p.Err(); err != nil { return fmt.Errorf("postings %d: %w", pi.index, err) } h.popIndex() return nil } // Len implements heap.Interface. // Notice that Len() > 0 does not imply that heap is not empty as elements are not removed from this heap. // Use empty() to check whether heap is empty or not. func (h postingsWithIndexHeap) Len() int { return len(h) } // Less implements heap.Interface, it puts all the popped elements at the bottom, // and then sorts by Postings.At() property of each node. func (h postingsWithIndexHeap) Less(i, j int) bool { if h[i].popped != h[j].popped { return h[j].popped } return h[i].p.At() < h[j].p.At() } // Swap implements heap.Interface. func (h *postingsWithIndexHeap) Swap(i, j int) { (*h)[i], (*h)[j] = (*h)[j], (*h)[i] } // Push implements heap.Interface. func (h *postingsWithIndexHeap) Push(x interface{}) { *h = append(*h, x.(postingsWithIndex)) } // Pop implements heap.Interface and pops the last element, which is NOT the min element, // so this doesn't return the same heap.Pop() // Although this method is implemented for correctness, we don't expect it to be used, see popIndex() method for details. func (h *postingsWithIndexHeap) Pop() interface{} { old := *h n := len(old) x := old[n-1] *h = old[0 : n-1] return x }