// Copyright 2017 The Prometheus Authors // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package chunks import ( "bufio" "encoding/binary" "fmt" "hash" "hash/crc32" "io" "os" "path/filepath" "strconv" "github.com/pkg/errors" "github.com/prometheus/prometheus/tsdb/chunkenc" tsdb_errors "github.com/prometheus/prometheus/tsdb/errors" "github.com/prometheus/prometheus/tsdb/fileutil" ) // Segment header fields constants. const ( // MagicChunks is 4 bytes at the head of a series file. MagicChunks = 0x85BD40DD // MagicChunksSize is the size in bytes of MagicChunks. MagicChunksSize = 4 chunksFormatV1 = 1 ChunksFormatVersionSize = 1 segmentHeaderPaddingSize = 3 // SegmentHeaderSize defines the total size of the header part. SegmentHeaderSize = MagicChunksSize + ChunksFormatVersionSize + segmentHeaderPaddingSize ) // Chunk fields constants. const ( // MaxChunkLengthFieldSize defines the maximum size of the data length part. MaxChunkLengthFieldSize = binary.MaxVarintLen32 // ChunkEncodingSize defines the size of the chunk encoding part. ChunkEncodingSize = 1 ) // ChunkRef is a generic reference for reading chunk data. In prometheus it // is either a HeadChunkRef or BlockChunkRef, though other implementations // may have their own reference types. type ChunkRef uint64 // HeadSeriesRef refers to in-memory series. type HeadSeriesRef uint64 // HeadChunkRef packs a HeadSeriesRef and a ChunkID into a global 8 Byte ID. // The HeadSeriesRef and ChunkID may not exceed 5 and 3 bytes respectively. type HeadChunkRef uint64 func NewHeadChunkRef(hsr HeadSeriesRef, chunkID HeadChunkID) HeadChunkRef { if hsr > (1<<40)-1 { panic("series ID exceeds 5 bytes") } if chunkID > (1<<24)-1 { panic("chunk ID exceeds 3 bytes") } return HeadChunkRef(uint64(hsr<<24) | uint64(chunkID)) } func (p HeadChunkRef) Unpack() (HeadSeriesRef, HeadChunkID) { return HeadSeriesRef(p >> 24), HeadChunkID(p<<40) >> 40 } // HeadChunkID refers to a specific chunk in a series (memSeries) in the Head. // Each memSeries has its own monotonically increasing number to refer to its chunks. // If the HeadChunkID value is... // - memSeries.firstChunkID+len(memSeries.mmappedChunks), it's the head chunk. // - less than the above, but >= memSeries.firstID, then it's // memSeries.mmappedChunks[i] where i = HeadChunkID - memSeries.firstID. // // If memSeries.headChunks is non-nil it points to a *memChunk that holds the current // "open" (accepting appends) instance. *memChunk is a linked list and memChunk.next pointer // might link to the older *memChunk instance. // If there are multiple *memChunk instances linked to each other from memSeries.headChunks // they will be m-mapped as soon as possible leaving only "open" *memChunk instance. // // Example: // assume a memSeries.firstChunkID=7 and memSeries.mmappedChunks=[p5,p6,p7,p8,p9]. // | HeadChunkID value | refers to ... | // |-------------------|----------------------------------------------------------------------------------------| // | 0-6 | chunks that have been compacted to blocks, these won't return data for queries in Head | // | 7-11 | memSeries.mmappedChunks[i] where i is 0 to 4. | // | 12 | *memChunk{next: nil} // | 13 | *memChunk{next: ^} // | 14 | memSeries.headChunks -> *memChunk{next: ^} type HeadChunkID uint64 // BlockChunkRef refers to a chunk within a persisted block. // The upper 4 bytes are for the segment index and // the lower 4 bytes are for the segment offset where the data starts for this chunk. type BlockChunkRef uint64 // NewBlockChunkRef packs the file index and byte offset into a BlockChunkRef. func NewBlockChunkRef(fileIndex, fileOffset uint64) BlockChunkRef { return BlockChunkRef(fileIndex<<32 | fileOffset) } func (b BlockChunkRef) Unpack() (int, int) { sgmIndex := int(b >> 32) chkStart := int((b << 32) >> 32) return sgmIndex, chkStart } // Meta holds information about a chunk of data. type Meta struct { // Ref and Chunk hold either a reference that can be used to retrieve // chunk data or the data itself. // If Chunk is nil, call ChunkReader.Chunk(Meta.Ref) to get the chunk and assign it to the Chunk field Ref ChunkRef Chunk chunkenc.Chunk // Time range the data covers. // When MaxTime == math.MaxInt64 the chunk is still open and being appended to. MinTime, MaxTime int64 // OOOLastRef, OOOLastMinTime and OOOLastMaxTime are kept as markers for // overlapping chunks. // These fields point to the last created out of order Chunk (the head) that existed // when Series() was called and was overlapping. // Series() and Chunk() method responses should be consistent for the same // query even if new data is added in between the calls. OOOLastRef ChunkRef OOOLastMinTime, OOOLastMaxTime int64 } // ChunkFromSamples requires all samples to have the same type. func ChunkFromSamples(s []Sample) (Meta, error) { return ChunkFromSamplesGeneric(SampleSlice(s)) } // ChunkFromSamplesGeneric requires all samples to have the same type. func ChunkFromSamplesGeneric(s Samples) (Meta, error) { emptyChunk := Meta{Chunk: chunkenc.NewXORChunk()} mint, maxt := int64(0), int64(0) if s.Len() > 0 { mint, maxt = s.Get(0).T(), s.Get(s.Len()-1).T() } if s.Len() == 0 { return emptyChunk, nil } sampleType := s.Get(0).Type() c, err := chunkenc.NewEmptyChunk(sampleType.ChunkEncoding()) if err != nil { return Meta{}, err } ca, _ := c.Appender() var newChunk chunkenc.Chunk for i := 0; i < s.Len(); i++ { switch sampleType { case chunkenc.ValFloat: ca.Append(s.Get(i).T(), s.Get(i).F()) case chunkenc.ValHistogram: newChunk, _, ca, err = ca.AppendHistogram(nil, s.Get(i).T(), s.Get(i).H(), false) if err != nil { return emptyChunk, err } if newChunk != nil { return emptyChunk, fmt.Errorf("did not expect to start a second chunk") } case chunkenc.ValFloatHistogram: newChunk, _, ca, err = ca.AppendFloatHistogram(nil, s.Get(i).T(), s.Get(i).FH(), false) if err != nil { return emptyChunk, err } if newChunk != nil { return emptyChunk, fmt.Errorf("did not expect to start a second chunk") } default: panic(fmt.Sprintf("unknown sample type %s", sampleType.String())) } } return Meta{ MinTime: mint, MaxTime: maxt, Chunk: c, }, nil } // PopulatedChunk creates a chunk populated with samples every second starting at minTime func PopulatedChunk(numSamples int, minTime int64) (Meta, error) { samples := make([]Sample, numSamples) for i := 0; i < numSamples; i++ { samples[i] = sample{t: minTime + int64(i*1000), f: 1.0} } return ChunkFromSamples(samples) } // ChunkMetasToSamples converts a slice of chunk meta data to a slice of samples. // Used in tests to compare the content of chunks. func ChunkMetasToSamples(chunks []Meta) (result []Sample) { if len(chunks) == 0 { return } for _, chunk := range chunks { it := chunk.Chunk.Iterator(nil) for vt := it.Next(); vt != chunkenc.ValNone; vt = it.Next() { switch vt { case chunkenc.ValFloat: t, v := it.At() result = append(result, sample{t: t, f: v}) case chunkenc.ValHistogram: t, h := it.AtHistogram() result = append(result, sample{t: t, h: h}) case chunkenc.ValFloatHistogram: t, fh := it.AtFloatHistogram() result = append(result, sample{t: t, fh: fh}) default: panic("unexpected value type") } } } return } // Iterator iterates over the chunks of a single time series. type Iterator interface { // At returns the current meta. // It depends on implementation if the chunk is populated or not. At() Meta // Next advances the iterator by one. Next() bool // Err returns optional error if Next is false. Err() error } // writeHash writes the chunk encoding and raw data into the provided hash. func (cm *Meta) writeHash(h hash.Hash, buf []byte) error { buf = append(buf[:0], byte(cm.Chunk.Encoding())) if _, err := h.Write(buf[:1]); err != nil { return err } if _, err := h.Write(cm.Chunk.Bytes()); err != nil { return err } return nil } // OverlapsClosedInterval Returns true if the chunk overlaps [mint, maxt]. func (cm *Meta) OverlapsClosedInterval(mint, maxt int64) bool { // The chunk itself is a closed interval [cm.MinTime, cm.MaxTime]. return cm.MinTime <= maxt && mint <= cm.MaxTime } var errInvalidSize = fmt.Errorf("invalid size") var castagnoliTable *crc32.Table func init() { castagnoliTable = crc32.MakeTable(crc32.Castagnoli) } // newCRC32 initializes a CRC32 hash with a preconfigured polynomial, so the // polynomial may be easily changed in one location at a later time, if necessary. func newCRC32() hash.Hash32 { return crc32.New(castagnoliTable) } // Check if the CRC of data matches that stored in sum, computed when the chunk was stored. func checkCRC32(data, sum []byte) error { got := crc32.Checksum(data, castagnoliTable) // This combination of shifts is the inverse of digest.Sum() in go/src/hash/crc32. want := uint32(sum[0])<<24 + uint32(sum[1])<<16 + uint32(sum[2])<<8 + uint32(sum[3]) if got != want { return errors.Errorf("checksum mismatch expected:%x, actual:%x", want, got) } return nil } // Writer implements the ChunkWriter interface for the standard // serialization format. type Writer struct { dirFile *os.File files []*os.File wbuf *bufio.Writer n int64 crc32 hash.Hash buf [binary.MaxVarintLen32]byte segmentSize int64 } const ( // DefaultChunkSegmentSize is the default chunks segment size. DefaultChunkSegmentSize = 512 * 1024 * 1024 ) // NewWriterWithSegSize returns a new writer against the given directory // and allows setting a custom size for the segments. func NewWriterWithSegSize(dir string, segmentSize int64) (*Writer, error) { return newWriter(dir, segmentSize) } // NewWriter returns a new writer against the given directory // using the default segment size. func NewWriter(dir string) (*Writer, error) { return newWriter(dir, DefaultChunkSegmentSize) } func newWriter(dir string, segmentSize int64) (*Writer, error) { if segmentSize <= 0 { segmentSize = DefaultChunkSegmentSize } if err := os.MkdirAll(dir, 0o777); err != nil { return nil, err } dirFile, err := fileutil.OpenDir(dir) if err != nil { return nil, err } return &Writer{ dirFile: dirFile, n: 0, crc32: newCRC32(), segmentSize: segmentSize, }, nil } func (w *Writer) tail() *os.File { if len(w.files) == 0 { return nil } return w.files[len(w.files)-1] } // finalizeTail writes all pending data to the current tail file, // truncates its size, and closes it. func (w *Writer) finalizeTail() error { tf := w.tail() if tf == nil { return nil } if err := w.wbuf.Flush(); err != nil { return err } if err := tf.Sync(); err != nil { return err } // As the file was pre-allocated, we truncate any superfluous zero bytes. off, err := tf.Seek(0, io.SeekCurrent) if err != nil { return err } if err := tf.Truncate(off); err != nil { return err } return tf.Close() } func (w *Writer) cut() error { // Sync current tail to disk and close. if err := w.finalizeTail(); err != nil { return err } n, f, _, err := cutSegmentFile(w.dirFile, MagicChunks, chunksFormatV1, w.segmentSize) if err != nil { return err } w.n = int64(n) w.files = append(w.files, f) if w.wbuf != nil { w.wbuf.Reset(f) } else { w.wbuf = bufio.NewWriterSize(f, 8*1024*1024) } return nil } func cutSegmentFile(dirFile *os.File, magicNumber uint32, chunksFormat byte, allocSize int64) (headerSize int, newFile *os.File, seq int, returnErr error) { p, seq, err := nextSequenceFile(dirFile.Name()) if err != nil { return 0, nil, 0, errors.Wrap(err, "next sequence file") } ptmp := p + ".tmp" f, err := os.OpenFile(ptmp, os.O_WRONLY|os.O_CREATE, 0o666) if err != nil { return 0, nil, 0, errors.Wrap(err, "open temp file") } defer func() { if returnErr != nil { errs := tsdb_errors.NewMulti(returnErr) if f != nil { errs.Add(f.Close()) } // Calling RemoveAll on a non-existent file does not return error. errs.Add(os.RemoveAll(ptmp)) returnErr = errs.Err() } }() if allocSize > 0 { if err = fileutil.Preallocate(f, allocSize, true); err != nil { return 0, nil, 0, errors.Wrap(err, "preallocate") } } if err = dirFile.Sync(); err != nil { return 0, nil, 0, errors.Wrap(err, "sync directory") } // Write header metadata for new file. metab := make([]byte, SegmentHeaderSize) binary.BigEndian.PutUint32(metab[:MagicChunksSize], magicNumber) metab[4] = chunksFormat n, err := f.Write(metab) if err != nil { return 0, nil, 0, errors.Wrap(err, "write header") } if err := f.Close(); err != nil { return 0, nil, 0, errors.Wrap(err, "close temp file") } f = nil if err := fileutil.Rename(ptmp, p); err != nil { return 0, nil, 0, errors.Wrap(err, "replace file") } f, err = os.OpenFile(p, os.O_WRONLY, 0o666) if err != nil { return 0, nil, 0, errors.Wrap(err, "open final file") } // Skip header for further writes. if _, err := f.Seek(int64(n), 0); err != nil { return 0, nil, 0, errors.Wrap(err, "seek in final file") } return n, f, seq, nil } func (w *Writer) write(b []byte) error { n, err := w.wbuf.Write(b) w.n += int64(n) return err } // WriteChunks writes as many chunks as possible to the current segment, // cuts a new segment when the current segment is full and // writes the rest of the chunks in the new segment. func (w *Writer) WriteChunks(chks ...Meta) error { var ( batchSize = int64(0) batchStart = 0 batches = make([][]Meta, 1) batchID = 0 firstBatch = true ) for i, chk := range chks { // Each chunk contains: data length + encoding + the data itself + crc32 chkSize := int64(MaxChunkLengthFieldSize) // The data length is a variable length field so use the maximum possible value. chkSize += ChunkEncodingSize // The chunk encoding. chkSize += int64(len(chk.Chunk.Bytes())) // The data itself. chkSize += crc32.Size // The 4 bytes of crc32. batchSize += chkSize // Cut a new batch when it is not the first chunk(to avoid empty segments) and // the batch is too large to fit in the current segment. cutNewBatch := (i != 0) && (batchSize+SegmentHeaderSize > w.segmentSize) // When the segment already has some data than // the first batch size calculation should account for that. if firstBatch && w.n > SegmentHeaderSize { cutNewBatch = batchSize+w.n > w.segmentSize if cutNewBatch { firstBatch = false } } if cutNewBatch { batchStart = i batches = append(batches, []Meta{}) batchID++ batchSize = chkSize } batches[batchID] = chks[batchStart : i+1] } // Create a new segment when one doesn't already exist. if w.n == 0 { if err := w.cut(); err != nil { return err } } for i, chks := range batches { if err := w.writeChunks(chks); err != nil { return err } // Cut a new segment only when there are more chunks to write. // Avoid creating a new empty segment at the end of the write. if i < len(batches)-1 { if err := w.cut(); err != nil { return err } } } return nil } // writeChunks writes the chunks into the current segment irrespective // of the configured segment size limit. A segment should have been already // started before calling this. func (w *Writer) writeChunks(chks []Meta) error { if len(chks) == 0 { return nil } seq := uint64(w.seq()) for i := range chks { chk := &chks[i] chk.Ref = ChunkRef(NewBlockChunkRef(seq, uint64(w.n))) n := binary.PutUvarint(w.buf[:], uint64(len(chk.Chunk.Bytes()))) if err := w.write(w.buf[:n]); err != nil { return err } w.buf[0] = byte(chk.Chunk.Encoding()) if err := w.write(w.buf[:1]); err != nil { return err } if err := w.write(chk.Chunk.Bytes()); err != nil { return err } w.crc32.Reset() if err := chk.writeHash(w.crc32, w.buf[:]); err != nil { return err } if err := w.write(w.crc32.Sum(w.buf[:0])); err != nil { return err } } return nil } func (w *Writer) seq() int { return len(w.files) - 1 } func (w *Writer) Close() error { if err := w.finalizeTail(); err != nil { return err } // close dir file (if not windows platform will fail on rename) return w.dirFile.Close() } // ByteSlice abstracts a byte slice. type ByteSlice interface { Len() int Range(start, end int) []byte } type realByteSlice []byte func (b realByteSlice) Len() int { return len(b) } func (b realByteSlice) Range(start, end int) []byte { return b[start:end] } // Reader implements a ChunkReader for a serialized byte stream // of series data. type Reader struct { // The underlying bytes holding the encoded series data. // Each slice holds the data for a different segment. bs []ByteSlice cs []io.Closer // Closers for resources behind the byte slices. size int64 // The total size of bytes in the reader. pool chunkenc.Pool } func newReader(bs []ByteSlice, cs []io.Closer, pool chunkenc.Pool) (*Reader, error) { cr := Reader{pool: pool, bs: bs, cs: cs} for i, b := range cr.bs { if b.Len() < SegmentHeaderSize { return nil, errors.Wrapf(errInvalidSize, "invalid segment header in segment %d", i) } // Verify magic number. if m := binary.BigEndian.Uint32(b.Range(0, MagicChunksSize)); m != MagicChunks { return nil, errors.Errorf("invalid magic number %x", m) } // Verify chunk format version. if v := int(b.Range(MagicChunksSize, MagicChunksSize+ChunksFormatVersionSize)[0]); v != chunksFormatV1 { return nil, errors.Errorf("invalid chunk format version %d", v) } cr.size += int64(b.Len()) } return &cr, nil } // NewDirReader returns a new Reader against sequentially numbered files in the // given directory. func NewDirReader(dir string, pool chunkenc.Pool) (*Reader, error) { files, err := sequenceFiles(dir) if err != nil { return nil, err } if pool == nil { pool = chunkenc.NewPool() } var ( bs []ByteSlice cs []io.Closer ) for _, fn := range files { f, err := fileutil.OpenMmapFile(fn) if err != nil { return nil, tsdb_errors.NewMulti( errors.Wrap(err, "mmap files"), tsdb_errors.CloseAll(cs), ).Err() } cs = append(cs, f) bs = append(bs, realByteSlice(f.Bytes())) } reader, err := newReader(bs, cs, pool) if err != nil { return nil, tsdb_errors.NewMulti( err, tsdb_errors.CloseAll(cs), ).Err() } return reader, nil } func (s *Reader) Close() error { return tsdb_errors.CloseAll(s.cs) } // Size returns the size of the chunks. func (s *Reader) Size() int64 { return s.size } // Chunk returns a chunk from a given reference. func (s *Reader) Chunk(meta Meta) (chunkenc.Chunk, error) { sgmIndex, chkStart := BlockChunkRef(meta.Ref).Unpack() if sgmIndex >= len(s.bs) { return nil, errors.Errorf("segment index %d out of range", sgmIndex) } sgmBytes := s.bs[sgmIndex] if chkStart+MaxChunkLengthFieldSize > sgmBytes.Len() { return nil, errors.Errorf("segment doesn't include enough bytes to read the chunk size data field - required:%v, available:%v", chkStart+MaxChunkLengthFieldSize, sgmBytes.Len()) } // With the minimum chunk length this should never cause us reading // over the end of the slice. c := sgmBytes.Range(chkStart, chkStart+MaxChunkLengthFieldSize) chkDataLen, n := binary.Uvarint(c) if n <= 0 { return nil, errors.Errorf("reading chunk length failed with %d", n) } chkEncStart := chkStart + n chkEnd := chkEncStart + ChunkEncodingSize + int(chkDataLen) + crc32.Size chkDataStart := chkEncStart + ChunkEncodingSize chkDataEnd := chkEnd - crc32.Size if chkEnd > sgmBytes.Len() { return nil, errors.Errorf("segment doesn't include enough bytes to read the chunk - required:%v, available:%v", chkEnd, sgmBytes.Len()) } sum := sgmBytes.Range(chkDataEnd, chkEnd) if err := checkCRC32(sgmBytes.Range(chkEncStart, chkDataEnd), sum); err != nil { return nil, err } chkData := sgmBytes.Range(chkDataStart, chkDataEnd) chkEnc := sgmBytes.Range(chkEncStart, chkEncStart+ChunkEncodingSize)[0] return s.pool.Get(chunkenc.Encoding(chkEnc), chkData) } func nextSequenceFile(dir string) (string, int, error) { files, err := os.ReadDir(dir) if err != nil { return "", 0, err } i := uint64(0) for _, f := range files { j, err := strconv.ParseUint(f.Name(), 10, 64) if err != nil { continue } // It is not necessary that we find the files in number order, // for example with '1000000' and '200000', '1000000' would come first. // Though this is a very very race case, we check anyway for the max id. if j > i { i = j } } return segmentFile(dir, int(i+1)), int(i + 1), nil } func segmentFile(baseDir string, index int) string { return filepath.Join(baseDir, fmt.Sprintf("%0.6d", index)) } func sequenceFiles(dir string) ([]string, error) { files, err := os.ReadDir(dir) if err != nil { return nil, err } var res []string for _, fi := range files { if _, err := strconv.ParseUint(fi.Name(), 10, 64); err != nil { continue } res = append(res, filepath.Join(dir, fi.Name())) } return res, nil }