// Copyright 2015 The Prometheus Authors // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package promql import ( "time" "github.com/pkg/errors" "github.com/prometheus/prometheus/pkg/labels" "github.com/prometheus/prometheus/storage" ) // Node is a generic interface for all nodes in an AST. // // Whenever numerous nodes are listed such as in a switch-case statement // or a chain of function definitions (e.g. String(), expr(), etc.) convention is // to list them as follows: // // - Statements // - statement types (alphabetical) // - ... // - Expressions // - expression types (alphabetical) // - ... // type Node interface { // String representation of the node that returns the given node when parsed // as part of a valid query. String() string } // Statement is a generic interface for all statements. type Statement interface { Node // stmt ensures that no other type accidentally implements the interface stmt() } // EvalStmt holds an expression and information on the range it should // be evaluated on. type EvalStmt struct { Expr Expr // Expression to be evaluated. // The time boundaries for the evaluation. If Start equals End an instant // is evaluated. Start, End time.Time // Time between two evaluated instants for the range [Start:End]. Interval time.Duration } func (*EvalStmt) stmt() {} // Expr is a generic interface for all expression types. type Expr interface { Node // Type returns the type the expression evaluates to. It does not perform // in-depth checks as this is done at parsing-time. Type() ValueType // expr ensures that no other types accidentally implement the interface. expr() } // Expressions is a list of expression nodes that implements Node. type Expressions []Expr // AggregateExpr represents an aggregation operation on a Vector. type AggregateExpr struct { Op ItemType // The used aggregation operation. Expr Expr // The Vector expression over which is aggregated. Param Expr // Parameter used by some aggregators. Grouping []string // The labels by which to group the Vector. Without bool // Whether to drop the given labels rather than keep them. } // BinaryExpr represents a binary expression between two child expressions. type BinaryExpr struct { Op ItemType // The operation of the expression. LHS, RHS Expr // The operands on the respective sides of the operator. // The matching behavior for the operation if both operands are Vectors. // If they are not this field is nil. VectorMatching *VectorMatching // If a comparison operator, return 0/1 rather than filtering. ReturnBool bool } // Call represents a function call. type Call struct { Func *Function // The function that was called. Args Expressions // Arguments used in the call. } // MatrixSelector represents a Matrix selection. type MatrixSelector struct { Name string Range time.Duration Offset time.Duration LabelMatchers []*labels.Matcher // The unexpanded seriesSet populated at query preparation time. unexpandedSeriesSet storage.SeriesSet series []storage.Series } // SubqueryExpr represents a subquery. type SubqueryExpr struct { Expr Expr Range time.Duration Offset time.Duration Step time.Duration } // NumberLiteral represents a number. type NumberLiteral struct { Val float64 } // ParenExpr wraps an expression so it cannot be disassembled as a consequence // of operator precedence. type ParenExpr struct { Expr Expr } // StringLiteral represents a string. type StringLiteral struct { Val string } // UnaryExpr represents a unary operation on another expression. // Currently unary operations are only supported for Scalars. type UnaryExpr struct { Op ItemType Expr Expr } // VectorSelector represents a Vector selection. type VectorSelector struct { Name string Offset time.Duration LabelMatchers []*labels.Matcher // The unexpanded seriesSet populated at query preparation time. unexpandedSeriesSet storage.SeriesSet series []storage.Series } func (e *AggregateExpr) Type() ValueType { return ValueTypeVector } func (e *Call) Type() ValueType { return e.Func.ReturnType } func (e *MatrixSelector) Type() ValueType { return ValueTypeMatrix } func (e *SubqueryExpr) Type() ValueType { return ValueTypeMatrix } func (e *NumberLiteral) Type() ValueType { return ValueTypeScalar } func (e *ParenExpr) Type() ValueType { return e.Expr.Type() } func (e *StringLiteral) Type() ValueType { return ValueTypeString } func (e *UnaryExpr) Type() ValueType { return e.Expr.Type() } func (e *VectorSelector) Type() ValueType { return ValueTypeVector } func (e *BinaryExpr) Type() ValueType { if e.LHS.Type() == ValueTypeScalar && e.RHS.Type() == ValueTypeScalar { return ValueTypeScalar } return ValueTypeVector } func (*AggregateExpr) expr() {} func (*BinaryExpr) expr() {} func (*Call) expr() {} func (*MatrixSelector) expr() {} func (*SubqueryExpr) expr() {} func (*NumberLiteral) expr() {} func (*ParenExpr) expr() {} func (*StringLiteral) expr() {} func (*UnaryExpr) expr() {} func (*VectorSelector) expr() {} // VectorMatchCardinality describes the cardinality relationship // of two Vectors in a binary operation. type VectorMatchCardinality int const ( CardOneToOne VectorMatchCardinality = iota CardManyToOne CardOneToMany CardManyToMany ) func (vmc VectorMatchCardinality) String() string { switch vmc { case CardOneToOne: return "one-to-one" case CardManyToOne: return "many-to-one" case CardOneToMany: return "one-to-many" case CardManyToMany: return "many-to-many" } panic("promql.VectorMatchCardinality.String: unknown match cardinality") } // VectorMatching describes how elements from two Vectors in a binary // operation are supposed to be matched. type VectorMatching struct { // The cardinality of the two Vectors. Card VectorMatchCardinality // MatchingLabels contains the labels which define equality of a pair of // elements from the Vectors. MatchingLabels []string // On includes the given label names from matching, // rather than excluding them. On bool // Include contains additional labels that should be included in // the result from the side with the lower cardinality. Include []string } // Visitor allows visiting a Node and its child nodes. The Visit method is // invoked for each node with the path leading to the node provided additionally. // If the result visitor w is not nil and no error, Walk visits each of the children // of node with the visitor w, followed by a call of w.Visit(nil, nil). type Visitor interface { Visit(node Node, path []Node) (w Visitor, err error) } // Walk traverses an AST in depth-first order: It starts by calling // v.Visit(node, path); node must not be nil. If the visitor w returned by // v.Visit(node, path) is not nil and the visitor returns no error, Walk is // invoked recursively with visitor w for each of the non-nil children of node, // followed by a call of w.Visit(nil), returning an error // As the tree is descended the path of previous nodes is provided. func Walk(v Visitor, node Node, path []Node) error { var err error if v, err = v.Visit(node, path); v == nil || err != nil { return err } path = append(path, node) switch n := node.(type) { case *EvalStmt: if err := Walk(v, n.Expr, path); err != nil { return err } case Expressions: for _, e := range n { if err := Walk(v, e, path); err != nil { return err } } case *AggregateExpr: if n.Param != nil { if err := Walk(v, n.Param, path); err != nil { return err } } if err := Walk(v, n.Expr, path); err != nil { return err } case *BinaryExpr: if err := Walk(v, n.LHS, path); err != nil { return err } if err := Walk(v, n.RHS, path); err != nil { return err } case *Call: if err := Walk(v, n.Args, path); err != nil { return err } case *SubqueryExpr: if err := Walk(v, n.Expr, path); err != nil { return err } case *ParenExpr: if err := Walk(v, n.Expr, path); err != nil { return err } case *UnaryExpr: if err := Walk(v, n.Expr, path); err != nil { return err } case *MatrixSelector, *NumberLiteral, *StringLiteral, *VectorSelector: // nothing to do default: panic(errors.Errorf("promql.Walk: unhandled node type %T", node)) } _, err = v.Visit(nil, nil) return err } type inspector func(Node, []Node) error func (f inspector) Visit(node Node, path []Node) (Visitor, error) { if err := f(node, path); err != nil { return nil, err } return f, nil } // Inspect traverses an AST in depth-first order: It starts by calling // f(node, path); node must not be nil. If f returns a nil error, Inspect invokes f // for all the non-nil children of node, recursively. func Inspect(node Node, f inspector) { //nolint: errcheck Walk(inspector(f), node, nil) }