// Copyright 2016 The Prometheus Authors // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package local import "github.com/prometheus/common/model" var ( // bit masks for consecutive bits in a byte at various offsets. bitMask = [][]byte{ {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, // 0 bit {0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01}, // 1 bit {0xC0, 0x60, 0x30, 0x18, 0x0C, 0x06, 0x03, 0x01}, // 2 bit {0xE0, 0x70, 0x38, 0x1C, 0x0E, 0x07, 0x03, 0x01}, // 3 bit {0xF0, 0x78, 0x3C, 0x1E, 0x0F, 0x07, 0x03, 0x01}, // 4 bit {0xF8, 0x7C, 0x3E, 0x1F, 0x0F, 0x07, 0x03, 0x01}, // 5 bit {0xFC, 0x7E, 0x3F, 0x1F, 0x0F, 0x07, 0x03, 0x01}, // 6 bit {0xFE, 0x7F, 0x3F, 0x1F, 0x0F, 0x07, 0x03, 0x01}, // 7 bit {0xFF, 0x7F, 0x3F, 0x1F, 0x0F, 0x07, 0x03, 0x01}, // 8 bit } ) // isInt32 returns true if v can be represented as an int32. func isInt32(v model.SampleValue) bool { return model.SampleValue(int32(v)) == v } // countBits returs the number of leading zero bits and the number of // significant bits after that in the given bit pattern. The maximum number of // leading zeros is 31 (so that it can be represented by a 5bit number). Leading // zeros beyond that are considered part of the significant bits. func countBits(pattern uint64) (leading, significant byte) { // TODO(beorn7): This would probably be faster with ugly endless switch // statements. if pattern == 0 { return } for pattern < 1<<63 { leading++ pattern <<= 1 } for pattern > 0 { significant++ pattern <<= 1 } if leading > 31 { // 5 bit limit. significant += leading - 31 leading = 31 } return } // isSignedIntN returns if n can be represented as a signed int with the given // bit length. func isSignedIntN(i int64, n byte) bool { upper := int64(1) << (n - 1) if i >= upper { return false } lower := upper - (1 << n) if i < lower { return false } return true }