// Copyright 2020 The Prometheus Authors // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package storage import ( "bytes" "container/heap" "math" "sort" "strings" "sync" "github.com/pkg/errors" "github.com/prometheus/prometheus/pkg/histogram" "github.com/prometheus/prometheus/pkg/labels" "github.com/prometheus/prometheus/tsdb/chunkenc" "github.com/prometheus/prometheus/tsdb/chunks" tsdb_errors "github.com/prometheus/prometheus/tsdb/errors" ) type mergeGenericQuerier struct { queriers []genericQuerier // mergeFn is used when we see series from different queriers Selects with the same labels. mergeFn genericSeriesMergeFunc // TODO(bwplotka): Remove once remote queries are asynchronous. False by default. concurrentSelect bool } // NewMergeQuerier returns a new Querier that merges results of given primary and secondary queriers. // See NewFanout commentary to learn more about primary vs secondary differences. // // In case of overlaps between the data given by primaries' and secondaries' Selects, merge function will be used. func NewMergeQuerier(primaries []Querier, secondaries []Querier, mergeFn VerticalSeriesMergeFunc) Querier { queriers := make([]genericQuerier, 0, len(primaries)+len(secondaries)) for _, q := range primaries { if _, ok := q.(noopQuerier); !ok && q != nil { queriers = append(queriers, newGenericQuerierFrom(q)) } } for _, q := range secondaries { if _, ok := q.(noopQuerier); !ok && q != nil { queriers = append(queriers, newSecondaryQuerierFrom(q)) } } concurrentSelect := false if len(secondaries) > 0 { concurrentSelect = true } return &querierAdapter{&mergeGenericQuerier{ mergeFn: (&seriesMergerAdapter{VerticalSeriesMergeFunc: mergeFn}).Merge, queriers: queriers, concurrentSelect: concurrentSelect, }} } // NewMergeChunkQuerier returns a new Chunk Querier that merges results of given primary and secondary chunk queriers. // See NewFanout commentary to learn more about primary vs secondary differences. // // In case of overlaps between the data given by primaries' and secondaries' Selects, merge function will be used. // TODO(bwplotka): Currently merge will compact overlapping chunks with bigger chunk, without limit. Split it: https://github.com/prometheus/tsdb/issues/670 func NewMergeChunkQuerier(primaries []ChunkQuerier, secondaries []ChunkQuerier, mergeFn VerticalChunkSeriesMergeFunc) ChunkQuerier { queriers := make([]genericQuerier, 0, len(primaries)+len(secondaries)) for _, q := range primaries { if _, ok := q.(noopChunkQuerier); !ok && q != nil { queriers = append(queriers, newGenericQuerierFromChunk(q)) } } for _, querier := range secondaries { if _, ok := querier.(noopChunkQuerier); !ok && querier != nil { queriers = append(queriers, newSecondaryQuerierFromChunk(querier)) } } concurrentSelect := false if len(secondaries) > 0 { concurrentSelect = true } return &chunkQuerierAdapter{&mergeGenericQuerier{ mergeFn: (&chunkSeriesMergerAdapter{VerticalChunkSeriesMergeFunc: mergeFn}).Merge, queriers: queriers, concurrentSelect: concurrentSelect, }} } // Select returns a set of series that matches the given label matchers. func (q *mergeGenericQuerier) Select(sortSeries bool, hints *SelectHints, matchers ...*labels.Matcher) genericSeriesSet { if len(q.queriers) == 0 { return noopGenericSeriesSet{} } if len(q.queriers) == 1 { return q.queriers[0].Select(sortSeries, hints, matchers...) } var seriesSets = make([]genericSeriesSet, 0, len(q.queriers)) if !q.concurrentSelect { for _, querier := range q.queriers { // We need to sort for merge to work. seriesSets = append(seriesSets, querier.Select(true, hints, matchers...)) } return &lazyGenericSeriesSet{init: func() (genericSeriesSet, bool) { s := newGenericMergeSeriesSet(seriesSets, q.mergeFn) return s, s.Next() }} } var ( wg sync.WaitGroup seriesSetChan = make(chan genericSeriesSet) ) // Schedule all Selects for all queriers we know about. for _, querier := range q.queriers { wg.Add(1) go func(qr genericQuerier) { defer wg.Done() // We need to sort for NewMergeSeriesSet to work. seriesSetChan <- qr.Select(true, hints, matchers...) }(querier) } go func() { wg.Wait() close(seriesSetChan) }() for r := range seriesSetChan { seriesSets = append(seriesSets, r) } return &lazyGenericSeriesSet{init: func() (genericSeriesSet, bool) { s := newGenericMergeSeriesSet(seriesSets, q.mergeFn) return s, s.Next() }} } type labelGenericQueriers []genericQuerier func (l labelGenericQueriers) Len() int { return len(l) } func (l labelGenericQueriers) Get(i int) LabelQuerier { return l[i] } func (l labelGenericQueriers) SplitByHalf() (labelGenericQueriers, labelGenericQueriers) { i := len(l) / 2 return l[:i], l[i:] } // LabelValues returns all potential values for a label name. // If matchers are specified the returned result set is reduced // to label values of metrics matching the matchers. func (q *mergeGenericQuerier) LabelValues(name string, matchers ...*labels.Matcher) ([]string, Warnings, error) { res, ws, err := q.lvals(q.queriers, name, matchers...) if err != nil { return nil, nil, errors.Wrapf(err, "LabelValues() from merge generic querier for label %s", name) } return res, ws, nil } // lvals performs merge sort for LabelValues from multiple queriers. func (q *mergeGenericQuerier) lvals(lq labelGenericQueriers, n string, matchers ...*labels.Matcher) ([]string, Warnings, error) { if lq.Len() == 0 { return nil, nil, nil } if lq.Len() == 1 { return lq.Get(0).LabelValues(n, matchers...) } a, b := lq.SplitByHalf() var ws Warnings s1, w, err := q.lvals(a, n, matchers...) ws = append(ws, w...) if err != nil { return nil, ws, err } s2, ws, err := q.lvals(b, n, matchers...) ws = append(ws, w...) if err != nil { return nil, ws, err } return mergeStrings(s1, s2), ws, nil } func mergeStrings(a, b []string) []string { maxl := len(a) if len(b) > len(a) { maxl = len(b) } res := make([]string, 0, maxl*10/9) for len(a) > 0 && len(b) > 0 { d := strings.Compare(a[0], b[0]) if d == 0 { res = append(res, a[0]) a, b = a[1:], b[1:] } else if d < 0 { res = append(res, a[0]) a = a[1:] } else if d > 0 { res = append(res, b[0]) b = b[1:] } } // Append all remaining elements. res = append(res, a...) res = append(res, b...) return res } // LabelNames returns all the unique label names present in all queriers in sorted order. func (q *mergeGenericQuerier) LabelNames(matchers ...*labels.Matcher) ([]string, Warnings, error) { var ( labelNamesMap = make(map[string]struct{}) warnings Warnings ) for _, querier := range q.queriers { names, wrn, err := querier.LabelNames(matchers...) if wrn != nil { // TODO(bwplotka): We could potentially wrap warnings. warnings = append(warnings, wrn...) } if err != nil { return nil, nil, errors.Wrap(err, "LabelNames() from merge generic querier") } for _, name := range names { labelNamesMap[name] = struct{}{} } } if len(labelNamesMap) == 0 { return nil, warnings, nil } labelNames := make([]string, 0, len(labelNamesMap)) for name := range labelNamesMap { labelNames = append(labelNames, name) } sort.Strings(labelNames) return labelNames, warnings, nil } // Close releases the resources of the generic querier. func (q *mergeGenericQuerier) Close() error { errs := tsdb_errors.NewMulti() for _, querier := range q.queriers { if err := querier.Close(); err != nil { errs.Add(err) } } return errs.Err() } // VerticalSeriesMergeFunc returns merged series implementation that merges series with same labels together. // It has to handle time-overlapped series as well. type VerticalSeriesMergeFunc func(...Series) Series // NewMergeSeriesSet returns a new SeriesSet that merges many SeriesSets together. func NewMergeSeriesSet(sets []SeriesSet, mergeFunc VerticalSeriesMergeFunc) SeriesSet { genericSets := make([]genericSeriesSet, 0, len(sets)) for _, s := range sets { genericSets = append(genericSets, &genericSeriesSetAdapter{s}) } return &seriesSetAdapter{newGenericMergeSeriesSet(genericSets, (&seriesMergerAdapter{VerticalSeriesMergeFunc: mergeFunc}).Merge)} } // VerticalChunkSeriesMergeFunc returns merged chunk series implementation that merges potentially time-overlapping // chunk series with the same labels into single ChunkSeries. // // NOTE: It's up to implementation how series are vertically merged (if chunks are sorted, re-encoded etc). type VerticalChunkSeriesMergeFunc func(...ChunkSeries) ChunkSeries // NewMergeChunkSeriesSet returns a new ChunkSeriesSet that merges many SeriesSet together. func NewMergeChunkSeriesSet(sets []ChunkSeriesSet, mergeFunc VerticalChunkSeriesMergeFunc) ChunkSeriesSet { genericSets := make([]genericSeriesSet, 0, len(sets)) for _, s := range sets { genericSets = append(genericSets, &genericChunkSeriesSetAdapter{s}) } return &chunkSeriesSetAdapter{newGenericMergeSeriesSet(genericSets, (&chunkSeriesMergerAdapter{VerticalChunkSeriesMergeFunc: mergeFunc}).Merge)} } // genericMergeSeriesSet implements genericSeriesSet. type genericMergeSeriesSet struct { currentLabels labels.Labels mergeFunc genericSeriesMergeFunc heap genericSeriesSetHeap sets []genericSeriesSet currentSets []genericSeriesSet } // newGenericMergeSeriesSet returns a new genericSeriesSet that merges (and deduplicates) // series returned by the series sets when iterating. // Each series set must return its series in labels order, otherwise // merged series set will be incorrect. // Overlapped situations are merged using provided mergeFunc. func newGenericMergeSeriesSet(sets []genericSeriesSet, mergeFunc genericSeriesMergeFunc) genericSeriesSet { if len(sets) == 1 { return sets[0] } // We are pre-advancing sets, so we can introspect the label of the // series under the cursor. var h genericSeriesSetHeap for _, set := range sets { if set == nil { continue } if set.Next() { heap.Push(&h, set) } if err := set.Err(); err != nil { return errorOnlySeriesSet{err} } } return &genericMergeSeriesSet{ mergeFunc: mergeFunc, sets: sets, heap: h, } } func (c *genericMergeSeriesSet) Next() bool { // Run in a loop because the "next" series sets may not be valid anymore. // If, for the current label set, all the next series sets come from // failed remote storage sources, we want to keep trying with the next label set. for { // Firstly advance all the current series sets. If any of them have run out, // we can drop them, otherwise they should be inserted back into the heap. for _, set := range c.currentSets { if set.Next() { heap.Push(&c.heap, set) } } if len(c.heap) == 0 { return false } // Now, pop items of the heap that have equal label sets. c.currentSets = nil c.currentLabels = c.heap[0].At().Labels() for len(c.heap) > 0 && labels.Equal(c.currentLabels, c.heap[0].At().Labels()) { set := heap.Pop(&c.heap).(genericSeriesSet) c.currentSets = append(c.currentSets, set) } // As long as the current set contains at least 1 set, // then it should return true. if len(c.currentSets) != 0 { break } } return true } func (c *genericMergeSeriesSet) At() Labels { if len(c.currentSets) == 1 { return c.currentSets[0].At() } series := make([]Labels, 0, len(c.currentSets)) for _, seriesSet := range c.currentSets { series = append(series, seriesSet.At()) } return c.mergeFunc(series...) } func (c *genericMergeSeriesSet) Err() error { for _, set := range c.sets { if err := set.Err(); err != nil { return err } } return nil } func (c *genericMergeSeriesSet) Warnings() Warnings { var ws Warnings for _, set := range c.sets { ws = append(ws, set.Warnings()...) } return ws } type genericSeriesSetHeap []genericSeriesSet func (h genericSeriesSetHeap) Len() int { return len(h) } func (h genericSeriesSetHeap) Swap(i, j int) { h[i], h[j] = h[j], h[i] } func (h genericSeriesSetHeap) Less(i, j int) bool { a, b := h[i].At().Labels(), h[j].At().Labels() return labels.Compare(a, b) < 0 } func (h *genericSeriesSetHeap) Push(x interface{}) { *h = append(*h, x.(genericSeriesSet)) } func (h *genericSeriesSetHeap) Pop() interface{} { old := *h n := len(old) x := old[n-1] *h = old[0 : n-1] return x } // ChainedSeriesMerge returns single series from many same, potentially overlapping series by chaining samples together. // If one or more samples overlap, one sample from random overlapped ones is kept and all others with the same // timestamp are dropped. // // This works the best with replicated series, where data from two series are exactly the same. This does not work well // with "almost" the same data, e.g. from 2 Prometheus HA replicas. This is fine, since from the Prometheus perspective // this never happens. // // It's optimized for non-overlap cases as well. func ChainedSeriesMerge(series ...Series) Series { if len(series) == 0 { return nil } return &SeriesEntry{ Lset: series[0].Labels(), SampleIteratorFn: func() chunkenc.Iterator { iterators := make([]chunkenc.Iterator, 0, len(series)) for _, s := range series { iterators = append(iterators, s.Iterator()) } return newChainSampleIterator(iterators) }, } } // chainSampleIterator is responsible to iterate over samples from different iterators of the same time series in timestamps // order. If one or more samples overlap, one sample from random overlapped ones is kept and all others with the same // timestamp are dropped. It's optimized for non-overlap cases as well. type chainSampleIterator struct { iterators []chunkenc.Iterator h samplesIteratorHeap curr chunkenc.Iterator lastt int64 } func newChainSampleIterator(iterators []chunkenc.Iterator) chunkenc.Iterator { return &chainSampleIterator{ iterators: iterators, h: nil, lastt: math.MinInt64, } } func (c *chainSampleIterator) Seek(t int64) bool { c.h = samplesIteratorHeap{} for _, iter := range c.iterators { if iter.Seek(t) { heap.Push(&c.h, iter) } } if len(c.h) > 0 { c.curr = heap.Pop(&c.h).(chunkenc.Iterator) if c.curr.ChunkEncoding() == chunkenc.EncSHS { c.lastt, _ = c.curr.AtHistogram() } else { c.lastt, _ = c.curr.At() } return true } c.curr = nil return false } func (c *chainSampleIterator) At() (t int64, v float64) { if c.curr == nil { panic("chainSampleIterator.At() called before first .Next() or after .Next() returned false.") } return c.curr.At() } func (c *chainSampleIterator) AtHistogram() (int64, histogram.SparseHistogram) { if c.curr == nil { panic("chainSampleIterator.AtHistogram() called before first .Next() or after .Next() returned false.") } return c.curr.AtHistogram() } func (c *chainSampleIterator) ChunkEncoding() chunkenc.Encoding { if c.curr == nil { panic("chainSampleIterator.ChunkEncoding() called before first .Next() or after .Next() returned false.") } return c.curr.ChunkEncoding() } func (c *chainSampleIterator) Next() bool { if c.h == nil { c.h = samplesIteratorHeap{} // We call c.curr.Next() as the first thing below. // So, we don't call Next() on it here. c.curr = c.iterators[0] for _, iter := range c.iterators[1:] { if iter.Next() { heap.Push(&c.h, iter) } } } if c.curr == nil { return false } var currt int64 for { if c.curr.Next() { if c.curr.ChunkEncoding() == chunkenc.EncSHS { currt, _ = c.curr.AtHistogram() } else { currt, _ = c.curr.At() } if currt == c.lastt { // Ignoring sample for the same timestamp. continue } if len(c.h) == 0 { // curr is the only iterator remaining, // no need to check with the heap. break } // Check current iterator with the top of the heap. var nextt int64 if c.h[0].ChunkEncoding() == chunkenc.EncSHS { nextt, _ = c.h[0].AtHistogram() } else { nextt, _ = c.h[0].At() } if currt < nextt { // Current iterator has smaller timestamp than the heap. break } // Current iterator does not hold the smallest timestamp. heap.Push(&c.h, c.curr) } else if len(c.h) == 0 { // No iterator left to iterate. c.curr = nil return false } c.curr = heap.Pop(&c.h).(chunkenc.Iterator) if c.curr.ChunkEncoding() == chunkenc.EncSHS { currt, _ = c.curr.AtHistogram() } else { currt, _ = c.curr.At() } if currt != c.lastt { break } } c.lastt = currt return true } func (c *chainSampleIterator) Err() error { errs := tsdb_errors.NewMulti() for _, iter := range c.iterators { errs.Add(iter.Err()) } return errs.Err() } type samplesIteratorHeap []chunkenc.Iterator func (h samplesIteratorHeap) Len() int { return len(h) } func (h samplesIteratorHeap) Swap(i, j int) { h[i], h[j] = h[j], h[i] } func (h samplesIteratorHeap) Less(i, j int) bool { var at, bt int64 if h[i].ChunkEncoding() == chunkenc.EncSHS { at, _ = h[i].AtHistogram() } else { at, _ = h[i].At() } if h[j].ChunkEncoding() == chunkenc.EncSHS { bt, _ = h[j].AtHistogram() } else { bt, _ = h[j].At() } return at < bt } func (h *samplesIteratorHeap) Push(x interface{}) { *h = append(*h, x.(chunkenc.Iterator)) } func (h *samplesIteratorHeap) Pop() interface{} { old := *h n := len(old) x := old[n-1] *h = old[0 : n-1] return x } // NewCompactingChunkSeriesMerger returns VerticalChunkSeriesMergeFunc that merges the same chunk series into single chunk series. // In case of the chunk overlaps, it compacts those into one or more time-ordered non-overlapping chunks with merged data. // Samples from overlapped chunks are merged using series vertical merge func. // It expects the same labels for each given series. // // NOTE: Use the returned merge function only when you see potentially overlapping series, as this introduces small a overhead // to handle overlaps between series. func NewCompactingChunkSeriesMerger(mergeFunc VerticalSeriesMergeFunc) VerticalChunkSeriesMergeFunc { return func(series ...ChunkSeries) ChunkSeries { if len(series) == 0 { return nil } return &ChunkSeriesEntry{ Lset: series[0].Labels(), ChunkIteratorFn: func() chunks.Iterator { iterators := make([]chunks.Iterator, 0, len(series)) for _, s := range series { iterators = append(iterators, s.Iterator()) } return &compactChunkIterator{ mergeFunc: mergeFunc, iterators: iterators, } }, } } } // compactChunkIterator is responsible to compact chunks from different iterators of the same time series into single chainSeries. // If time-overlapping chunks are found, they are encoded and passed to series merge and encoded again into one bigger chunk. // TODO(bwplotka): Currently merge will compact overlapping chunks with bigger chunk, without limit. Split it: https://github.com/prometheus/tsdb/issues/670 type compactChunkIterator struct { mergeFunc VerticalSeriesMergeFunc iterators []chunks.Iterator h chunkIteratorHeap err error curr chunks.Meta } func (c *compactChunkIterator) At() chunks.Meta { return c.curr } func (c *compactChunkIterator) Next() bool { if c.h == nil { for _, iter := range c.iterators { if iter.Next() { heap.Push(&c.h, iter) } } } if len(c.h) == 0 { return false } iter := heap.Pop(&c.h).(chunks.Iterator) c.curr = iter.At() if iter.Next() { heap.Push(&c.h, iter) } var ( overlapping []Series oMaxTime = c.curr.MaxTime prev = c.curr ) // Detect overlaps to compact. Be smart about it and deduplicate on the fly if chunks are identical. for len(c.h) > 0 { // Get the next oldest chunk by min, then max time. next := c.h[0].At() if next.MinTime > oMaxTime { // No overlap with current one. break } if next.MinTime == prev.MinTime && next.MaxTime == prev.MaxTime && bytes.Equal(next.Chunk.Bytes(), prev.Chunk.Bytes()) { // 1:1 duplicates, skip it. } else { // We operate on same series, so labels does not matter here. overlapping = append(overlapping, newChunkToSeriesDecoder(nil, next)) if next.MaxTime > oMaxTime { oMaxTime = next.MaxTime } prev = next } iter := heap.Pop(&c.h).(chunks.Iterator) if iter.Next() { heap.Push(&c.h, iter) } } if len(overlapping) == 0 { return true } // Add last as it's not yet included in overlap. We operate on same series, so labels does not matter here. iter = NewSeriesToChunkEncoder(c.mergeFunc(append(overlapping, newChunkToSeriesDecoder(nil, c.curr))...)).Iterator() if !iter.Next() { if c.err = iter.Err(); c.err != nil { return false } panic("unexpected seriesToChunkEncoder lack of iterations") } c.curr = iter.At() if iter.Next() { heap.Push(&c.h, iter) } return true } func (c *compactChunkIterator) Err() error { errs := tsdb_errors.NewMulti() for _, iter := range c.iterators { errs.Add(iter.Err()) } errs.Add(c.err) return errs.Err() } type chunkIteratorHeap []chunks.Iterator func (h chunkIteratorHeap) Len() int { return len(h) } func (h chunkIteratorHeap) Swap(i, j int) { h[i], h[j] = h[j], h[i] } func (h chunkIteratorHeap) Less(i, j int) bool { at := h[i].At() bt := h[j].At() if at.MinTime == bt.MinTime { return at.MaxTime < bt.MaxTime } return at.MinTime < bt.MinTime } func (h *chunkIteratorHeap) Push(x interface{}) { *h = append(*h, x.(chunks.Iterator)) } func (h *chunkIteratorHeap) Pop() interface{} { old := *h n := len(old) x := old[n-1] *h = old[0 : n-1] return x }