// Copyright 2024 The Prometheus Authors // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. //go:build dedupelabels package labels import ( "bytes" "slices" "strings" "sync" "github.com/cespare/xxhash/v2" ) // Labels is implemented by a SymbolTable and string holding name/value // pairs encoded as indexes into the table in varint encoding. // Names are in alphabetical order. type Labels struct { syms *nameTable data string } // Split SymbolTable into the part used by Labels and the part used by Builder. Only the latter needs the map. // This part is used by Labels. All fields are immutable after construction. type nameTable struct { byNum []string // This slice header is never changed, even while we are building the symbol table. symbolTable *SymbolTable // If we need to use it in a Builder. } // SymbolTable is used to map strings into numbers so they can be packed together. type SymbolTable struct { mx sync.Mutex *nameTable nextNum int byName map[string]int } const defaultSymbolTableSize = 1024 func NewSymbolTable() *SymbolTable { t := &SymbolTable{ nameTable: &nameTable{byNum: make([]string, defaultSymbolTableSize)}, byName: make(map[string]int, defaultSymbolTableSize), } t.nameTable.symbolTable = t return t } func (t *SymbolTable) Len() int { t.mx.Lock() defer t.mx.Unlock() return len(t.byName) } // ToNum maps a string to an integer, adding the string to the table if it is not already there. // Note: copies the string before adding, in case the caller passed part of // a buffer that should not be kept alive by this SymbolTable. func (t *SymbolTable) ToNum(name string) int { t.mx.Lock() defer t.mx.Unlock() return t.toNumUnlocked(name) } func (t *SymbolTable) toNumUnlocked(name string) int { if i, found := t.byName[name]; found { return i } i := t.nextNum if t.nextNum == cap(t.byNum) { // Name table is full; copy to a new one. Don't touch the existing slice, as nameTable is immutable after construction. newSlice := make([]string, cap(t.byNum)*2) copy(newSlice, t.byNum) t.nameTable = &nameTable{byNum: newSlice, symbolTable: t} } name = strings.Clone(name) t.byNum[i] = name t.byName[name] = i t.nextNum++ return i } func (t *SymbolTable) checkNum(name string) (int, bool) { t.mx.Lock() defer t.mx.Unlock() i, bool := t.byName[name] return i, bool } // ToName maps an integer to a string. func (t *nameTable) ToName(num int) string { return t.byNum[num] } // "Varint" in this file is non-standard: we encode small numbers (up to 32767) in 2 bytes, // because we expect most Prometheus to have more than 127 unique strings. // And we don't encode numbers larger than 4 bytes because we don't expect more than 536,870,912 unique strings. func decodeVarint(data string, index int) (int, int) { b := int(data[index]) + int(data[index+1])<<8 index += 2 if b < 0x8000 { return b, index } return decodeVarintRest(b, data, index) } func decodeVarintRest(b int, data string, index int) (int, int) { value := int(b & 0x7FFF) b = int(data[index]) index++ if b < 0x80 { return value | (b << 15), index } value |= (b & 0x7f) << 15 b = int(data[index]) index++ return value | (b << 22), index } func decodeString(t *nameTable, data string, index int) (string, int) { // Copy decodeVarint here, because the Go compiler says it's too big to inline. num := int(data[index]) + int(data[index+1])<<8 index += 2 if num >= 0x8000 { num, index = decodeVarintRest(num, data, index) } return t.ToName(num), index } // Bytes returns ls as a byte slice. // It uses non-printing characters and so should not be used for printing. func (ls Labels) Bytes(buf []byte) []byte { b := bytes.NewBuffer(buf[:0]) for i := 0; i < len(ls.data); { if i > 0 { b.WriteByte(sep) } var name, value string name, i = decodeString(ls.syms, ls.data, i) value, i = decodeString(ls.syms, ls.data, i) b.WriteString(name) b.WriteByte(sep) b.WriteString(value) } return b.Bytes() } // IsZero implements yaml.IsZeroer - if we don't have this then 'omitempty' fields are always omitted. func (ls Labels) IsZero() bool { return len(ls.data) == 0 } // MatchLabels returns a subset of Labels that matches/does not match with the provided label names based on the 'on' boolean. // If on is set to true, it returns the subset of labels that match with the provided label names and its inverse when 'on' is set to false. // TODO: This is only used in printing an error message func (ls Labels) MatchLabels(on bool, names ...string) Labels { b := NewBuilder(ls) if on { b.Keep(names...) } else { b.Del(MetricName) b.Del(names...) } return b.Labels() } // Hash returns a hash value for the label set. // Note: the result is not guaranteed to be consistent across different runs of Prometheus. func (ls Labels) Hash() uint64 { // Use xxhash.Sum64(b) for fast path as it's faster. b := make([]byte, 0, 1024) for pos := 0; pos < len(ls.data); { name, newPos := decodeString(ls.syms, ls.data, pos) value, newPos := decodeString(ls.syms, ls.data, newPos) if len(b)+len(name)+len(value)+2 >= cap(b) { // If labels entry is 1KB+, hash the rest of them via Write(). h := xxhash.New() _, _ = h.Write(b) for pos < len(ls.data) { name, pos = decodeString(ls.syms, ls.data, pos) value, pos = decodeString(ls.syms, ls.data, pos) _, _ = h.WriteString(name) _, _ = h.Write(seps) _, _ = h.WriteString(value) _, _ = h.Write(seps) } return h.Sum64() } b = append(b, name...) b = append(b, sep) b = append(b, value...) b = append(b, sep) pos = newPos } return xxhash.Sum64(b) } // HashForLabels returns a hash value for the labels matching the provided names. // 'names' have to be sorted in ascending order. func (ls Labels) HashForLabels(b []byte, names ...string) (uint64, []byte) { b = b[:0] j := 0 for i := 0; i < len(ls.data); { var name, value string name, i = decodeString(ls.syms, ls.data, i) value, i = decodeString(ls.syms, ls.data, i) for j < len(names) && names[j] < name { j++ } if j == len(names) { break } if name == names[j] { b = append(b, name...) b = append(b, sep) b = append(b, value...) b = append(b, sep) } } return xxhash.Sum64(b), b } // HashWithoutLabels returns a hash value for all labels except those matching // the provided names. // 'names' have to be sorted in ascending order. func (ls Labels) HashWithoutLabels(b []byte, names ...string) (uint64, []byte) { b = b[:0] j := 0 for i := 0; i < len(ls.data); { var name, value string name, i = decodeString(ls.syms, ls.data, i) value, i = decodeString(ls.syms, ls.data, i) for j < len(names) && names[j] < name { j++ } if name == MetricName || (j < len(names) && name == names[j]) { continue } b = append(b, name...) b = append(b, sep) b = append(b, value...) b = append(b, sep) } return xxhash.Sum64(b), b } // BytesWithLabels is just as Bytes(), but only for labels matching names. // 'names' have to be sorted in ascending order. func (ls Labels) BytesWithLabels(buf []byte, names ...string) []byte { b := bytes.NewBuffer(buf[:0]) j := 0 for pos := 0; pos < len(ls.data); { lName, newPos := decodeString(ls.syms, ls.data, pos) lValue, newPos := decodeString(ls.syms, ls.data, newPos) for j < len(names) && names[j] < lName { j++ } if j == len(names) { break } if lName == names[j] { if b.Len() > 1 { b.WriteByte(sep) } b.WriteString(lName) b.WriteByte(sep) b.WriteString(lValue) } pos = newPos } return b.Bytes() } // BytesWithoutLabels is just as Bytes(), but only for labels not matching names. // 'names' have to be sorted in ascending order. func (ls Labels) BytesWithoutLabels(buf []byte, names ...string) []byte { b := bytes.NewBuffer(buf[:0]) j := 0 for pos := 0; pos < len(ls.data); { lName, newPos := decodeString(ls.syms, ls.data, pos) lValue, newPos := decodeString(ls.syms, ls.data, newPos) for j < len(names) && names[j] < lName { j++ } if j == len(names) || lName != names[j] { if b.Len() > 1 { b.WriteByte(sep) } b.WriteString(lName) b.WriteByte(sep) b.WriteString(lValue) } pos = newPos } return b.Bytes() } // Copy returns a copy of the labels. func (ls Labels) Copy() Labels { return Labels{syms: ls.syms, data: strings.Clone(ls.data)} } // Get returns the value for the label with the given name. // Returns an empty string if the label doesn't exist. func (ls Labels) Get(name string) string { if name == "" { // Avoid crash in loop if someone asks for "". return "" // Prometheus does not store blank label names. } for i := 0; i < len(ls.data); { var lName, lValue string lName, i = decodeString(ls.syms, ls.data, i) if lName == name { lValue, _ = decodeString(ls.syms, ls.data, i) return lValue } else if lName[0] > name[0] { // Stop looking if we've gone past. break } // Copy decodeVarint here, because the Go compiler says it's too big to inline. num := int(ls.data[i]) + int(ls.data[i+1])<<8 i += 2 if num >= 0x8000 { _, i = decodeVarintRest(num, ls.data, i) } } return "" } // Has returns true if the label with the given name is present. func (ls Labels) Has(name string) bool { if name == "" { // Avoid crash in loop if someone asks for "". return false // Prometheus does not store blank label names. } for i := 0; i < len(ls.data); { var lName string lName, i = decodeString(ls.syms, ls.data, i) if lName == name { return true } else if lName[0] > name[0] { // Stop looking if we've gone past. break } // Copy decodeVarint here, because the Go compiler says it's too big to inline. num := int(ls.data[i]) + int(ls.data[i+1])<<8 i += 2 if num >= 0x8000 { _, i = decodeVarintRest(num, ls.data, i) } } return false } // HasDuplicateLabelNames returns whether ls has duplicate label names. // It assumes that the labelset is sorted. func (ls Labels) HasDuplicateLabelNames() (string, bool) { prevNum := -1 for i := 0; i < len(ls.data); { var lNum int lNum, i = decodeVarint(ls.data, i) _, i = decodeVarint(ls.data, i) if lNum == prevNum { return ls.syms.ToName(lNum), true } prevNum = lNum } return "", false } // WithoutEmpty returns the labelset without empty labels. // May return the same labelset. func (ls Labels) WithoutEmpty() Labels { if ls.IsEmpty() { return ls } // Idea: have a constant symbol for blank, then we don't have to look it up. blank, ok := ls.syms.symbolTable.checkNum("") if !ok { // Symbol table has no entry for blank - none of the values can be blank. return ls } for pos := 0; pos < len(ls.data); { _, newPos := decodeVarint(ls.data, pos) lValue, newPos := decodeVarint(ls.data, newPos) if lValue != blank { pos = newPos continue } // Do not copy the slice until it's necessary. // TODO: could optimise the case where all blanks are at the end. // Note: we size the new buffer on the assumption there is exactly one blank value. buf := make([]byte, pos, pos+(len(ls.data)-newPos)) copy(buf, ls.data[:pos]) // copy the initial non-blank labels pos = newPos // move past the first blank value for pos < len(ls.data) { var newPos int _, newPos = decodeVarint(ls.data, pos) lValue, newPos = decodeVarint(ls.data, newPos) if lValue != blank { buf = append(buf, ls.data[pos:newPos]...) } pos = newPos } return Labels{syms: ls.syms, data: yoloString(buf)} } return ls } // Equal returns whether the two label sets are equal. func Equal(a, b Labels) bool { if a.syms == b.syms { return a.data == b.data } la, lb := len(a.data), len(b.data) ia, ib := 0, 0 for ia < la && ib < lb { var aValue, bValue string aValue, ia = decodeString(a.syms, a.data, ia) bValue, ib = decodeString(b.syms, b.data, ib) if aValue != bValue { return false } } if ia != la || ib != lb { return false } return true } // EmptyLabels returns an empty Labels value, for convenience. func EmptyLabels() Labels { return Labels{} } // New returns a sorted Labels from the given labels. // The caller has to guarantee that all label names are unique. // Note this function is not efficient; should not be used in performance-critical places. func New(ls ...Label) Labels { slices.SortFunc(ls, func(a, b Label) int { return strings.Compare(a.Name, b.Name) }) syms := NewSymbolTable() var stackSpace [16]int size, nums := mapLabelsToNumbers(syms, ls, stackSpace[:]) buf := make([]byte, size) marshalNumbersToSizedBuffer(nums, buf) return Labels{syms: syms.nameTable, data: yoloString(buf)} } // FromStrings creates new labels from pairs of strings. func FromStrings(ss ...string) Labels { if len(ss)%2 != 0 { panic("invalid number of strings") } ls := make([]Label, 0, len(ss)/2) for i := 0; i < len(ss); i += 2 { ls = append(ls, Label{Name: ss[i], Value: ss[i+1]}) } return New(ls...) } // Compare compares the two label sets. // The result will be 0 if a==b, <0 if a < b, and >0 if a > b. func Compare(a, b Labels) int { la, lb := len(a.data), len(b.data) ia, ib := 0, 0 for ia < la && ib < lb { var aName, bName string aName, ia = decodeString(a.syms, a.data, ia) bName, ib = decodeString(b.syms, b.data, ib) if aName != bName { if aName < bName { return -1 } return 1 } var aValue, bValue string aValue, ia = decodeString(a.syms, a.data, ia) bValue, ib = decodeString(b.syms, b.data, ib) if aValue != bValue { if aValue < bValue { return -1 } return 1 } } // If all labels so far were in common, the set with fewer labels comes first. return (la - ia) - (lb - ib) } // Copy labels from b on top of whatever was in ls previously, reusing memory or expanding if needed. func (ls *Labels) CopyFrom(b Labels) { *ls = b // Straightforward memberwise copy is all we need. } // IsEmpty returns true if ls represents an empty set of labels. func (ls Labels) IsEmpty() bool { return len(ls.data) == 0 } // Len returns the number of labels; it is relatively slow. func (ls Labels) Len() int { count := 0 for i := 0; i < len(ls.data); { _, i = decodeVarint(ls.data, i) _, i = decodeVarint(ls.data, i) count++ } return count } // Range calls f on each label. func (ls Labels) Range(f func(l Label)) { for i := 0; i < len(ls.data); { var lName, lValue string lName, i = decodeString(ls.syms, ls.data, i) lValue, i = decodeString(ls.syms, ls.data, i) f(Label{Name: lName, Value: lValue}) } } // Validate calls f on each label. If f returns a non-nil error, then it returns that error cancelling the iteration. func (ls Labels) Validate(f func(l Label) error) error { for i := 0; i < len(ls.data); { var lName, lValue string lName, i = decodeString(ls.syms, ls.data, i) lValue, i = decodeString(ls.syms, ls.data, i) err := f(Label{Name: lName, Value: lValue}) if err != nil { return err } } return nil } // InternStrings calls intern on every string value inside ls, replacing them with what it returns. func (ls *Labels) InternStrings(intern func(string) string) { // TODO: remove these calls as there is nothing to do. } // ReleaseStrings calls release on every string value inside ls. func (ls Labels) ReleaseStrings(release func(string)) { // TODO: remove these calls as there is nothing to do. } // DropMetricName returns Labels with "__name__" removed. func (ls Labels) DropMetricName() Labels { for i := 0; i < len(ls.data); { lName, i2 := decodeString(ls.syms, ls.data, i) _, i2 = decodeVarint(ls.data, i2) if lName == MetricName { if i == 0 { // Make common case fast with no allocations. ls.data = ls.data[i2:] } else { ls.data = ls.data[:i] + ls.data[i2:] } break } else if lName[0] > MetricName[0] { // Stop looking if we've gone past. break } i = i2 } return ls } // Builder allows modifying Labels. type Builder struct { syms *SymbolTable nums []int base Labels del []string add []Label } // NewBuilderWithSymbolTable returns a new LabelsBuilder not based on any labels, but with the SymbolTable. func NewBuilderWithSymbolTable(s *SymbolTable) *Builder { return &Builder{ syms: s, } } // Reset clears all current state for the builder. func (b *Builder) Reset(base Labels) { if base.syms != nil { // If base has a symbol table, use that. b.syms = base.syms.symbolTable } else if b.syms == nil { // Or continue using previous symbol table in builder. b.syms = NewSymbolTable() // Don't do this in performance-sensitive code. } b.base = base b.del = b.del[:0] b.add = b.add[:0] base.Range(func(l Label) { if l.Value == "" { b.del = append(b.del, l.Name) } }) } // Labels returns the labels from the builder. // If no modifications were made, the original labels are returned. func (b *Builder) Labels() Labels { if len(b.del) == 0 && len(b.add) == 0 { return b.base } slices.SortFunc(b.add, func(a, b Label) int { return strings.Compare(a.Name, b.Name) }) slices.Sort(b.del) a, d, newSize := 0, 0, 0 newSize, b.nums = mapLabelsToNumbers(b.syms, b.add, b.nums) bufSize := len(b.base.data) + newSize buf := make([]byte, 0, bufSize) for pos := 0; pos < len(b.base.data); { oldPos := pos var lName string lName, pos = decodeString(b.base.syms, b.base.data, pos) _, pos = decodeVarint(b.base.data, pos) for d < len(b.del) && b.del[d] < lName { d++ } if d < len(b.del) && b.del[d] == lName { continue // This label has been deleted. } for ; a < len(b.add) && b.add[a].Name < lName; a++ { buf = appendLabelTo(b.nums[a*2], b.nums[a*2+1], buf) // Insert label that was not in the base set. } if a < len(b.add) && b.add[a].Name == lName { buf = appendLabelTo(b.nums[a*2], b.nums[a*2+1], buf) a++ continue // This label has been replaced. } buf = append(buf, b.base.data[oldPos:pos]...) // If base had a symbol-table we are using it, so we don't need to look up these symbols. } // We have come to the end of the base set; add any remaining labels. for ; a < len(b.add); a++ { buf = appendLabelTo(b.nums[a*2], b.nums[a*2+1], buf) } return Labels{syms: b.syms.nameTable, data: yoloString(buf)} } func marshalNumbersToSizedBuffer(nums []int, data []byte) int { i := len(data) for index := len(nums) - 1; index >= 0; index-- { i = encodeVarint(data, i, nums[index]) } return len(data) - i } func sizeVarint(x uint64) (n int) { // Most common case first if x < 1<<15 { return 2 } if x < 1<<22 { return 3 } if x >= 1<<29 { panic("Number too large to represent") } return 4 } func encodeVarintSlow(data []byte, offset int, v uint64) int { offset -= sizeVarint(v) base := offset data[offset] = uint8(v) v >>= 8 offset++ for v >= 1<<7 { data[offset] = uint8(v&0x7f | 0x80) v >>= 7 offset++ } data[offset] = uint8(v) return base } // Special code for the common case that a value is less than 32768 func encodeVarint(data []byte, offset, v int) int { if v < 1<<15 { offset -= 2 data[offset] = uint8(v) data[offset+1] = uint8(v >> 8) return offset } return encodeVarintSlow(data, offset, uint64(v)) } // Map all the strings in lbls to the symbol table; return the total size required to hold them and all the individual mappings. func mapLabelsToNumbers(t *SymbolTable, lbls []Label, buf []int) (totalSize int, nums []int) { nums = buf[:0] t.mx.Lock() defer t.mx.Unlock() // we just encode name/value/name/value, without any extra tags or length bytes for _, m := range lbls { // strings are encoded as a single varint, the index into the symbol table. i := t.toNumUnlocked(m.Name) nums = append(nums, i) totalSize += sizeVarint(uint64(i)) i = t.toNumUnlocked(m.Value) nums = append(nums, i) totalSize += sizeVarint(uint64(i)) } return totalSize, nums } func appendLabelTo(nameNum, valueNum int, buf []byte) []byte { size := sizeVarint(uint64(nameNum)) + sizeVarint(uint64(valueNum)) sizeRequired := len(buf) + size if cap(buf) >= sizeRequired { buf = buf[:sizeRequired] } else { bufSize := cap(buf) // Double size of buffer each time it needs to grow, to amortise copying cost. for bufSize < sizeRequired { bufSize = bufSize*2 + 1 } newBuf := make([]byte, sizeRequired, bufSize) copy(newBuf, buf) buf = newBuf } i := sizeRequired i = encodeVarint(buf, i, valueNum) i = encodeVarint(buf, i, nameNum) return buf } // ScratchBuilder allows efficient construction of a Labels from scratch. type ScratchBuilder struct { syms *SymbolTable nums []int add []Label output Labels overwriteBuffer []byte } // NewScratchBuilder creates a ScratchBuilder initialized for Labels with n entries. // Warning: expensive; don't call in tight loops. func NewScratchBuilder(n int) ScratchBuilder { return ScratchBuilder{syms: NewSymbolTable(), add: make([]Label, 0, n)} } // NewScratchBuilderWithSymbolTable creates a ScratchBuilder initialized for Labels with n entries. func NewScratchBuilderWithSymbolTable(s *SymbolTable, n int) ScratchBuilder { return ScratchBuilder{syms: s, add: make([]Label, 0, n)} } func (b *ScratchBuilder) SetSymbolTable(s *SymbolTable) { b.syms = s } func (b *ScratchBuilder) Reset() { b.add = b.add[:0] b.output = EmptyLabels() } // Add a name/value pair. // Note if you Add the same name twice you will get a duplicate label, which is invalid. func (b *ScratchBuilder) Add(name, value string) { b.add = append(b.add, Label{Name: name, Value: value}) } // Add a name/value pair, using []byte instead of string to reduce memory allocations. // The values must remain live until Labels() is called. func (b *ScratchBuilder) UnsafeAddBytes(name, value []byte) { b.add = append(b.add, Label{Name: yoloString(name), Value: yoloString(value)}) } // Sort the labels added so far by name. func (b *ScratchBuilder) Sort() { slices.SortFunc(b.add, func(a, b Label) int { return strings.Compare(a.Name, b.Name) }) } // Assign is for when you already have a Labels which you want this ScratchBuilder to return. func (b *ScratchBuilder) Assign(l Labels) { b.output = l } // Labels returns the name/value pairs added as a Labels object. Calling Add() after Labels() has no effect. // Note: if you want them sorted, call Sort() first. func (b *ScratchBuilder) Labels() Labels { if b.output.IsEmpty() { var size int size, b.nums = mapLabelsToNumbers(b.syms, b.add, b.nums) buf := make([]byte, size) marshalNumbersToSizedBuffer(b.nums, buf) b.output = Labels{syms: b.syms.nameTable, data: yoloString(buf)} } return b.output } // Write the newly-built Labels out to ls, reusing an internal buffer. // Callers must ensure that there are no other references to ls, or any strings fetched from it. func (b *ScratchBuilder) Overwrite(ls *Labels) { var size int size, b.nums = mapLabelsToNumbers(b.syms, b.add, b.nums) if size <= cap(b.overwriteBuffer) { b.overwriteBuffer = b.overwriteBuffer[:size] } else { b.overwriteBuffer = make([]byte, size) } marshalNumbersToSizedBuffer(b.nums, b.overwriteBuffer) ls.syms = b.syms.nameTable ls.data = yoloString(b.overwriteBuffer) }