// Copyright 2015 The Prometheus Authors // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package promql import ( "fmt" "math" "sort" "strconv" "strings" "time" "github.com/grafana/regexp" "github.com/prometheus/common/model" "golang.org/x/exp/slices" "github.com/prometheus/prometheus/model/histogram" "github.com/prometheus/prometheus/model/labels" "github.com/prometheus/prometheus/promql/parser" "github.com/prometheus/prometheus/promql/parser/posrange" "github.com/prometheus/prometheus/util/annotations" ) // FunctionCall is the type of a PromQL function implementation // // vals is a list of the evaluated arguments for the function call. // // For range vectors it will be a Matrix with one series, instant vectors a // Vector, scalars a Vector with one series whose value is the scalar // value,and nil for strings. // // args are the original arguments to the function, where you can access // matrixSelectors, vectorSelectors, and StringLiterals. // // enh.Out is a pre-allocated empty vector that you may use to accumulate // output before returning it. The vectors in vals should not be returned.a // // Range vector functions need only return a vector with the right value, // the metric and timestamp are not needed. // // Instant vector functions need only return a vector with the right values and // metrics, the timestamp are not needed. // // Scalar results should be returned as the value of a sample in a Vector. type FunctionCall func(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) // === time() float64 === func funcTime(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { return Vector{Sample{ F: float64(enh.Ts) / 1000, }}, nil } // extrapolatedRate is a utility function for rate/increase/delta. // It calculates the rate (allowing for counter resets if isCounter is true), // extrapolates if the first/last sample is close to the boundary, and returns // the result as either per-second (if isRate is true) or overall. func extrapolatedRate(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper, isCounter, isRate bool) (Vector, annotations.Annotations) { ms := args[0].(*parser.MatrixSelector) vs := ms.VectorSelector.(*parser.VectorSelector) var ( samples = vals[0].(Matrix)[0] rangeStart = enh.Ts - durationMilliseconds(ms.Range+vs.Offset) rangeEnd = enh.Ts - durationMilliseconds(vs.Offset) resultFloat float64 resultHistogram *histogram.FloatHistogram firstT, lastT int64 numSamplesMinusOne int annos annotations.Annotations ) // We need either at least two Histograms and no Floats, or at least two // Floats and no Histograms to calculate a rate. Otherwise, drop this // Vector element. metricName := samples.Metric.Get(labels.MetricName) if len(samples.Histograms) > 0 && len(samples.Floats) > 0 { return enh.Out, annos.Add(annotations.NewMixedFloatsHistogramsWarning(metricName, args[0].PositionRange())) } switch { case len(samples.Histograms) > 1: numSamplesMinusOne = len(samples.Histograms) - 1 firstT = samples.Histograms[0].T lastT = samples.Histograms[numSamplesMinusOne].T var newAnnos annotations.Annotations resultHistogram, newAnnos = histogramRate(samples.Histograms, isCounter, metricName, args[0].PositionRange()) if resultHistogram == nil { // The histograms are not compatible with each other. return enh.Out, annos.Merge(newAnnos) } case len(samples.Floats) > 1: numSamplesMinusOne = len(samples.Floats) - 1 firstT = samples.Floats[0].T lastT = samples.Floats[numSamplesMinusOne].T resultFloat = samples.Floats[numSamplesMinusOne].F - samples.Floats[0].F if !isCounter { break } // Handle counter resets: prevValue := samples.Floats[0].F for _, currPoint := range samples.Floats[1:] { if currPoint.F < prevValue { resultFloat += prevValue } prevValue = currPoint.F } default: // TODO: add RangeTooShortWarning return enh.Out, annos } // Duration between first/last samples and boundary of range. durationToStart := float64(firstT-rangeStart) / 1000 durationToEnd := float64(rangeEnd-lastT) / 1000 sampledInterval := float64(lastT-firstT) / 1000 averageDurationBetweenSamples := sampledInterval / float64(numSamplesMinusOne) // TODO(beorn7): Do this for histograms, too. if isCounter && resultFloat > 0 && len(samples.Floats) > 0 && samples.Floats[0].F >= 0 { // Counters cannot be negative. If we have any slope at all // (i.e. resultFloat went up), we can extrapolate the zero point // of the counter. If the duration to the zero point is shorter // than the durationToStart, we take the zero point as the start // of the series, thereby avoiding extrapolation to negative // counter values. durationToZero := sampledInterval * (samples.Floats[0].F / resultFloat) if durationToZero < durationToStart { durationToStart = durationToZero } } // If the first/last samples are close to the boundaries of the range, // extrapolate the result. This is as we expect that another sample // will exist given the spacing between samples we've seen thus far, // with an allowance for noise. extrapolationThreshold := averageDurationBetweenSamples * 1.1 extrapolateToInterval := sampledInterval if durationToStart < extrapolationThreshold { extrapolateToInterval += durationToStart } else { extrapolateToInterval += averageDurationBetweenSamples / 2 } if durationToEnd < extrapolationThreshold { extrapolateToInterval += durationToEnd } else { extrapolateToInterval += averageDurationBetweenSamples / 2 } factor := extrapolateToInterval / sampledInterval if isRate { factor /= ms.Range.Seconds() } if resultHistogram == nil { resultFloat *= factor } else { resultHistogram.Mul(factor) } return append(enh.Out, Sample{F: resultFloat, H: resultHistogram}), annos } // histogramRate is a helper function for extrapolatedRate. It requires // points[0] to be a histogram. It returns nil if any other Point in points is // not a histogram, and a warning wrapped in an annotation in that case. // Otherwise, it returns the calculated histogram and an empty annotation. func histogramRate(points []HPoint, isCounter bool, metricName string, pos posrange.PositionRange) (*histogram.FloatHistogram, annotations.Annotations) { prev := points[0].H last := points[len(points)-1].H if last == nil { return nil, annotations.New().Add(annotations.NewMixedFloatsHistogramsWarning(metricName, pos)) } minSchema := prev.Schema if last.Schema < minSchema { minSchema = last.Schema } // First iteration to find out two things: // - What's the smallest relevant schema? // - Are all data points histograms? // TODO(beorn7): Find a way to check that earlier, e.g. by handing in a // []FloatPoint and a []HistogramPoint separately. for _, currPoint := range points[1 : len(points)-1] { curr := currPoint.H if curr == nil { return nil, annotations.New().Add(annotations.NewMixedFloatsHistogramsWarning(metricName, pos)) } // TODO(trevorwhitney): Check if isCounter is consistent with curr.CounterResetHint. if !isCounter { continue } if curr.Schema < minSchema { minSchema = curr.Schema } } h := last.CopyToSchema(minSchema) h.Sub(prev) if isCounter { // Second iteration to deal with counter resets. for _, currPoint := range points[1:] { curr := currPoint.H if curr.DetectReset(prev) { h.Add(prev) } prev = curr } } h.CounterResetHint = histogram.GaugeType return h.Compact(0), nil } // === delta(Matrix parser.ValueTypeMatrix) (Vector, Annotations) === func funcDelta(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { return extrapolatedRate(vals, args, enh, false, false) } // === rate(node parser.ValueTypeMatrix) (Vector, Annotations) === func funcRate(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { return extrapolatedRate(vals, args, enh, true, true) } // === increase(node parser.ValueTypeMatrix) (Vector, Annotations) === func funcIncrease(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { return extrapolatedRate(vals, args, enh, true, false) } // === irate(node parser.ValueTypeMatrix) (Vector, Annotations) === func funcIrate(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { return instantValue(vals, enh.Out, true) } // === idelta(node model.ValMatrix) (Vector, Annotations) === func funcIdelta(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { return instantValue(vals, enh.Out, false) } func instantValue(vals []parser.Value, out Vector, isRate bool) (Vector, annotations.Annotations) { samples := vals[0].(Matrix)[0] // No sense in trying to compute a rate without at least two points. Drop // this Vector element. // TODO: add RangeTooShortWarning if len(samples.Floats) < 2 { return out, nil } lastSample := samples.Floats[len(samples.Floats)-1] previousSample := samples.Floats[len(samples.Floats)-2] var resultValue float64 if isRate && lastSample.F < previousSample.F { // Counter reset. resultValue = lastSample.F } else { resultValue = lastSample.F - previousSample.F } sampledInterval := lastSample.T - previousSample.T if sampledInterval == 0 { // Avoid dividing by 0. return out, nil } if isRate { // Convert to per-second. resultValue /= float64(sampledInterval) / 1000 } return append(out, Sample{F: resultValue}), nil } // Calculate the trend value at the given index i in raw data d. // This is somewhat analogous to the slope of the trend at the given index. // The argument "tf" is the trend factor. // The argument "s0" is the computed smoothed value. // The argument "s1" is the computed trend factor. // The argument "b" is the raw input value. func calcTrendValue(i int, tf, s0, s1, b float64) float64 { if i == 0 { return b } x := tf * (s1 - s0) y := (1 - tf) * b return x + y } // Holt-Winters is similar to a weighted moving average, where historical data has exponentially less influence on the current data. // Holt-Winter also accounts for trends in data. The smoothing factor (0 < sf < 1) affects how historical data will affect the current // data. A lower smoothing factor increases the influence of historical data. The trend factor (0 < tf < 1) affects // how trends in historical data will affect the current data. A higher trend factor increases the influence. // of trends. Algorithm taken from https://en.wikipedia.org/wiki/Exponential_smoothing titled: "Double exponential smoothing". func funcHoltWinters(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { samples := vals[0].(Matrix)[0] // The smoothing factor argument. sf := vals[1].(Vector)[0].F // The trend factor argument. tf := vals[2].(Vector)[0].F // Check that the input parameters are valid. if sf <= 0 || sf >= 1 { panic(fmt.Errorf("invalid smoothing factor. Expected: 0 < sf < 1, got: %f", sf)) } if tf <= 0 || tf >= 1 { panic(fmt.Errorf("invalid trend factor. Expected: 0 < tf < 1, got: %f", tf)) } l := len(samples.Floats) // Can't do the smoothing operation with less than two points. if l < 2 { return enh.Out, nil } var s0, s1, b float64 // Set initial values. s1 = samples.Floats[0].F b = samples.Floats[1].F - samples.Floats[0].F // Run the smoothing operation. var x, y float64 for i := 1; i < l; i++ { // Scale the raw value against the smoothing factor. x = sf * samples.Floats[i].F // Scale the last smoothed value with the trend at this point. b = calcTrendValue(i-1, tf, s0, s1, b) y = (1 - sf) * (s1 + b) s0, s1 = s1, x+y } return append(enh.Out, Sample{F: s1}), nil } // === sort(node parser.ValueTypeVector) (Vector, Annotations) === func funcSort(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { // NaN should sort to the bottom, so take descending sort with NaN first and // reverse it. byValueSorter := vectorByReverseValueHeap(vals[0].(Vector)) sort.Sort(sort.Reverse(byValueSorter)) return Vector(byValueSorter), nil } // === sortDesc(node parser.ValueTypeVector) (Vector, Annotations) === func funcSortDesc(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { // NaN should sort to the bottom, so take ascending sort with NaN first and // reverse it. byValueSorter := vectorByValueHeap(vals[0].(Vector)) sort.Sort(sort.Reverse(byValueSorter)) return Vector(byValueSorter), nil } // === sort_by_label(vector parser.ValueTypeVector, label parser.ValueTypeString...) (Vector, Annotations) === func funcSortByLabel(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { // In case the labels are the same, NaN should sort to the bottom, so take // ascending sort with NaN first and reverse it. var anno annotations.Annotations vals[0], anno = funcSort(vals, args, enh) labels := stringSliceFromArgs(args[1:]) slices.SortFunc(vals[0].(Vector), func(a, b Sample) int { // Iterate over each given label for _, label := range labels { lv1 := a.Metric.Get(label) lv2 := b.Metric.Get(label) // 0 if a == b, -1 if a < b, and +1 if a > b. switch strings.Compare(lv1, lv2) { case -1: return -1 case +1: return +1 default: continue } } return 0 }) return vals[0].(Vector), anno } // === sort_by_label_desc(vector parser.ValueTypeVector, label parser.ValueTypeString...) (Vector, Annotations) === func funcSortByLabelDesc(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { // In case the labels are the same, NaN should sort to the bottom, so take // ascending sort with NaN first and reverse it. var anno annotations.Annotations vals[0], anno = funcSortDesc(vals, args, enh) labels := stringSliceFromArgs(args[1:]) slices.SortFunc(vals[0].(Vector), func(a, b Sample) int { // Iterate over each given label for _, label := range labels { lv1 := a.Metric.Get(label) lv2 := b.Metric.Get(label) // If label values are the same, continue to the next label if lv1 == lv2 { continue } // 0 if a == b, -1 if a < b, and +1 if a > b. switch strings.Compare(lv1, lv2) { case -1: return +1 case +1: return -1 default: continue } } return 0 }) return vals[0].(Vector), anno } // === clamp(Vector parser.ValueTypeVector, min, max Scalar) (Vector, Annotations) === func funcClamp(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { vec := vals[0].(Vector) min := vals[1].(Vector)[0].F max := vals[2].(Vector)[0].F if max < min { return enh.Out, nil } for _, el := range vec { enh.Out = append(enh.Out, Sample{ Metric: enh.DropMetricName(el.Metric), F: math.Max(min, math.Min(max, el.F)), }) } return enh.Out, nil } // === clamp_max(Vector parser.ValueTypeVector, max Scalar) (Vector, Annotations) === func funcClampMax(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { vec := vals[0].(Vector) max := vals[1].(Vector)[0].F for _, el := range vec { enh.Out = append(enh.Out, Sample{ Metric: enh.DropMetricName(el.Metric), F: math.Min(max, el.F), }) } return enh.Out, nil } // === clamp_min(Vector parser.ValueTypeVector, min Scalar) (Vector, Annotations) === func funcClampMin(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { vec := vals[0].(Vector) min := vals[1].(Vector)[0].F for _, el := range vec { enh.Out = append(enh.Out, Sample{ Metric: enh.DropMetricName(el.Metric), F: math.Max(min, el.F), }) } return enh.Out, nil } // === round(Vector parser.ValueTypeVector, toNearest=1 Scalar) (Vector, Annotations) === func funcRound(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { vec := vals[0].(Vector) // round returns a number rounded to toNearest. // Ties are solved by rounding up. toNearest := float64(1) if len(args) >= 2 { toNearest = vals[1].(Vector)[0].F } // Invert as it seems to cause fewer floating point accuracy issues. toNearestInverse := 1.0 / toNearest for _, el := range vec { f := math.Floor(el.F*toNearestInverse+0.5) / toNearestInverse enh.Out = append(enh.Out, Sample{ Metric: enh.DropMetricName(el.Metric), F: f, }) } return enh.Out, nil } // === Scalar(node parser.ValueTypeVector) Scalar === func funcScalar(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { v := vals[0].(Vector) if len(v) != 1 { return append(enh.Out, Sample{F: math.NaN()}), nil } return append(enh.Out, Sample{F: v[0].F}), nil } func aggrOverTime(vals []parser.Value, enh *EvalNodeHelper, aggrFn func(Series) float64) Vector { el := vals[0].(Matrix)[0] return append(enh.Out, Sample{F: aggrFn(el)}) } func aggrHistOverTime(vals []parser.Value, enh *EvalNodeHelper, aggrFn func(Series) *histogram.FloatHistogram) Vector { el := vals[0].(Matrix)[0] return append(enh.Out, Sample{H: aggrFn(el)}) } // === avg_over_time(Matrix parser.ValueTypeMatrix) (Vector, Annotations) === func funcAvgOverTime(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { firstSeries := vals[0].(Matrix)[0] if len(firstSeries.Floats) > 0 && len(firstSeries.Histograms) > 0 { metricName := firstSeries.Metric.Get(labels.MetricName) return enh.Out, annotations.New().Add(annotations.NewMixedFloatsHistogramsWarning(metricName, args[0].PositionRange())) } if len(firstSeries.Floats) == 0 { // The passed values only contain histograms. return aggrHistOverTime(vals, enh, func(s Series) *histogram.FloatHistogram { count := 1 mean := s.Histograms[0].H.Copy() for _, h := range s.Histograms[1:] { count++ left := h.H.Copy().Div(float64(count)) right := mean.Copy().Div(float64(count)) // The histogram being added/subtracted must have // an equal or larger schema. if h.H.Schema >= mean.Schema { toAdd := right.Mul(-1).Add(left) mean.Add(toAdd) } else { toAdd := left.Sub(right) mean = toAdd.Add(mean) } } return mean }), nil } return aggrOverTime(vals, enh, func(s Series) float64 { var mean, count, c float64 for _, f := range s.Floats { count++ if math.IsInf(mean, 0) { if math.IsInf(f.F, 0) && (mean > 0) == (f.F > 0) { // The `mean` and `f.F` values are `Inf` of the same sign. They // can't be subtracted, but the value of `mean` is correct // already. continue } if !math.IsInf(f.F, 0) && !math.IsNaN(f.F) { // At this stage, the mean is an infinite. If the added // value is neither an Inf or a Nan, we can keep that mean // value. // This is required because our calculation below removes // the mean value, which would look like Inf += x - Inf and // end up as a NaN. continue } } mean, c = kahanSumInc(f.F/count-mean/count, mean, c) } if math.IsInf(mean, 0) { return mean } return mean + c }), nil } // === count_over_time(Matrix parser.ValueTypeMatrix) (Vector, Notes) === func funcCountOverTime(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { return aggrOverTime(vals, enh, func(s Series) float64 { return float64(len(s.Floats) + len(s.Histograms)) }), nil } // === last_over_time(Matrix parser.ValueTypeMatrix) (Vector, Notes) === func funcLastOverTime(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { el := vals[0].(Matrix)[0] var f FPoint if len(el.Floats) > 0 { f = el.Floats[len(el.Floats)-1] } var h HPoint if len(el.Histograms) > 0 { h = el.Histograms[len(el.Histograms)-1] } if h.H == nil || h.T < f.T { return append(enh.Out, Sample{ Metric: el.Metric, F: f.F, }), nil } return append(enh.Out, Sample{ Metric: el.Metric, H: h.H, }), nil } // === max_over_time(Matrix parser.ValueTypeMatrix) (Vector, Annotations) === func funcMaxOverTime(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { if len(vals[0].(Matrix)[0].Floats) == 0 { // TODO(beorn7): The passed values only contain // histograms. max_over_time ignores histograms for now. If // there are only histograms, we have to return without adding // anything to enh.Out. return enh.Out, nil } return aggrOverTime(vals, enh, func(s Series) float64 { max := s.Floats[0].F for _, f := range s.Floats { if f.F > max || math.IsNaN(max) { max = f.F } } return max }), nil } // === min_over_time(Matrix parser.ValueTypeMatrix) (Vector, Annotations) === func funcMinOverTime(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { if len(vals[0].(Matrix)[0].Floats) == 0 { // TODO(beorn7): The passed values only contain // histograms. min_over_time ignores histograms for now. If // there are only histograms, we have to return without adding // anything to enh.Out. return enh.Out, nil } return aggrOverTime(vals, enh, func(s Series) float64 { min := s.Floats[0].F for _, f := range s.Floats { if f.F < min || math.IsNaN(min) { min = f.F } } return min }), nil } // === sum_over_time(Matrix parser.ValueTypeMatrix) (Vector, Annotations) === func funcSumOverTime(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { firstSeries := vals[0].(Matrix)[0] if len(firstSeries.Floats) > 0 && len(firstSeries.Histograms) > 0 { metricName := firstSeries.Metric.Get(labels.MetricName) return enh.Out, annotations.New().Add(annotations.NewMixedFloatsHistogramsWarning(metricName, args[0].PositionRange())) } if len(firstSeries.Floats) == 0 { // The passed values only contain histograms. return aggrHistOverTime(vals, enh, func(s Series) *histogram.FloatHistogram { sum := s.Histograms[0].H.Copy() for _, h := range s.Histograms[1:] { // The histogram being added must have // an equal or larger schema. if h.H.Schema >= sum.Schema { sum.Add(h.H) } else { sum = h.H.Copy().Add(sum) } } return sum }), nil } return aggrOverTime(vals, enh, func(s Series) float64 { var sum, c float64 for _, f := range s.Floats { sum, c = kahanSumInc(f.F, sum, c) } if math.IsInf(sum, 0) { return sum } return sum + c }), nil } // === quantile_over_time(Matrix parser.ValueTypeMatrix) (Vector, Annotations) === func funcQuantileOverTime(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { q := vals[0].(Vector)[0].F el := vals[1].(Matrix)[0] if len(el.Floats) == 0 { // TODO(beorn7): The passed values only contain // histograms. quantile_over_time ignores histograms for now. If // there are only histograms, we have to return without adding // anything to enh.Out. return enh.Out, nil } var annos annotations.Annotations if math.IsNaN(q) || q < 0 || q > 1 { annos.Add(annotations.NewInvalidQuantileWarning(q, args[0].PositionRange())) } values := make(vectorByValueHeap, 0, len(el.Floats)) for _, f := range el.Floats { values = append(values, Sample{F: f.F}) } return append(enh.Out, Sample{F: quantile(q, values)}), annos } // === stddev_over_time(Matrix parser.ValueTypeMatrix) (Vector, Annotations) === func funcStddevOverTime(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { if len(vals[0].(Matrix)[0].Floats) == 0 { // TODO(beorn7): The passed values only contain // histograms. stddev_over_time ignores histograms for now. If // there are only histograms, we have to return without adding // anything to enh.Out. return enh.Out, nil } return aggrOverTime(vals, enh, func(s Series) float64 { var count float64 var mean, cMean float64 var aux, cAux float64 for _, f := range s.Floats { count++ delta := f.F - (mean + cMean) mean, cMean = kahanSumInc(delta/count, mean, cMean) aux, cAux = kahanSumInc(delta*(f.F-(mean+cMean)), aux, cAux) } return math.Sqrt((aux + cAux) / count) }), nil } // === stdvar_over_time(Matrix parser.ValueTypeMatrix) (Vector, Annotations) === func funcStdvarOverTime(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { if len(vals[0].(Matrix)[0].Floats) == 0 { // TODO(beorn7): The passed values only contain // histograms. stdvar_over_time ignores histograms for now. If // there are only histograms, we have to return without adding // anything to enh.Out. return enh.Out, nil } return aggrOverTime(vals, enh, func(s Series) float64 { var count float64 var mean, cMean float64 var aux, cAux float64 for _, f := range s.Floats { count++ delta := f.F - (mean + cMean) mean, cMean = kahanSumInc(delta/count, mean, cMean) aux, cAux = kahanSumInc(delta*(f.F-(mean+cMean)), aux, cAux) } return (aux + cAux) / count }), nil } // === absent(Vector parser.ValueTypeVector) (Vector, Annotations) === func funcAbsent(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { if len(vals[0].(Vector)) > 0 { return enh.Out, nil } return append(enh.Out, Sample{ Metric: createLabelsForAbsentFunction(args[0]), F: 1, }), nil } // === absent_over_time(Vector parser.ValueTypeMatrix) (Vector, Annotations) === // As this function has a matrix as argument, it does not get all the Series. // This function will return 1 if the matrix has at least one element. // Due to engine optimization, this function is only called when this condition is true. // Then, the engine post-processes the results to get the expected output. func funcAbsentOverTime(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { return append(enh.Out, Sample{F: 1}), nil } // === present_over_time(Vector parser.ValueTypeMatrix) (Vector, Annotations) === func funcPresentOverTime(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { return aggrOverTime(vals, enh, func(s Series) float64 { return 1 }), nil } func simpleFunc(vals []parser.Value, enh *EvalNodeHelper, f func(float64) float64) Vector { for _, el := range vals[0].(Vector) { if el.H == nil { // Process only float samples. enh.Out = append(enh.Out, Sample{ Metric: enh.DropMetricName(el.Metric), F: f(el.F), }) } } return enh.Out } // === abs(Vector parser.ValueTypeVector) (Vector, Annotations) === func funcAbs(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { return simpleFunc(vals, enh, math.Abs), nil } // === ceil(Vector parser.ValueTypeVector) (Vector, Annotations) === func funcCeil(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { return simpleFunc(vals, enh, math.Ceil), nil } // === floor(Vector parser.ValueTypeVector) (Vector, Annotations) === func funcFloor(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { return simpleFunc(vals, enh, math.Floor), nil } // === exp(Vector parser.ValueTypeVector) (Vector, Annotations) === func funcExp(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { return simpleFunc(vals, enh, math.Exp), nil } // === sqrt(Vector VectorNode) (Vector, Annotations) === func funcSqrt(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { return simpleFunc(vals, enh, math.Sqrt), nil } // === ln(Vector parser.ValueTypeVector) (Vector, Annotations) === func funcLn(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { return simpleFunc(vals, enh, math.Log), nil } // === log2(Vector parser.ValueTypeVector) (Vector, Annotations) === func funcLog2(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { return simpleFunc(vals, enh, math.Log2), nil } // === log10(Vector parser.ValueTypeVector) (Vector, Annotations) === func funcLog10(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { return simpleFunc(vals, enh, math.Log10), nil } // === sin(Vector parser.ValueTypeVector) (Vector, Annotations) === func funcSin(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { return simpleFunc(vals, enh, math.Sin), nil } // === cos(Vector parser.ValueTypeVector) (Vector, Annotations) === func funcCos(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { return simpleFunc(vals, enh, math.Cos), nil } // === tan(Vector parser.ValueTypeVector) (Vector, Annotations) === func funcTan(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { return simpleFunc(vals, enh, math.Tan), nil } // === asin(Vector parser.ValueTypeVector) (Vector, Annotations) === func funcAsin(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { return simpleFunc(vals, enh, math.Asin), nil } // === acos(Vector parser.ValueTypeVector) (Vector, Annotations) === func funcAcos(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { return simpleFunc(vals, enh, math.Acos), nil } // === atan(Vector parser.ValueTypeVector) (Vector, Annotations) === func funcAtan(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { return simpleFunc(vals, enh, math.Atan), nil } // === sinh(Vector parser.ValueTypeVector) (Vector, Annotations) === func funcSinh(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { return simpleFunc(vals, enh, math.Sinh), nil } // === cosh(Vector parser.ValueTypeVector) (Vector, Annotations) === func funcCosh(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { return simpleFunc(vals, enh, math.Cosh), nil } // === tanh(Vector parser.ValueTypeVector) (Vector, Annotations) === func funcTanh(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { return simpleFunc(vals, enh, math.Tanh), nil } // === asinh(Vector parser.ValueTypeVector) (Vector, Annotations) === func funcAsinh(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { return simpleFunc(vals, enh, math.Asinh), nil } // === acosh(Vector parser.ValueTypeVector) (Vector, Annotations) === func funcAcosh(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { return simpleFunc(vals, enh, math.Acosh), nil } // === atanh(Vector parser.ValueTypeVector) (Vector, Annotations) === func funcAtanh(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { return simpleFunc(vals, enh, math.Atanh), nil } // === rad(Vector parser.ValueTypeVector) (Vector, Annotations) === func funcRad(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { return simpleFunc(vals, enh, func(v float64) float64 { return v * math.Pi / 180 }), nil } // === deg(Vector parser.ValueTypeVector) (Vector, Annotations) === func funcDeg(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { return simpleFunc(vals, enh, func(v float64) float64 { return v * 180 / math.Pi }), nil } // === pi() Scalar === func funcPi(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { return Vector{Sample{F: math.Pi}}, nil } // === sgn(Vector parser.ValueTypeVector) (Vector, Annotations) === func funcSgn(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { return simpleFunc(vals, enh, func(v float64) float64 { switch { case v < 0: return -1 case v > 0: return 1 default: return v } }), nil } // === timestamp(Vector parser.ValueTypeVector) (Vector, Annotations) === func funcTimestamp(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { vec := vals[0].(Vector) for _, el := range vec { enh.Out = append(enh.Out, Sample{ Metric: enh.DropMetricName(el.Metric), F: float64(el.T) / 1000, }) } return enh.Out, nil } func kahanSum(samples []float64) float64 { var sum, c float64 for _, v := range samples { sum, c = kahanSumInc(v, sum, c) } return sum + c } func kahanSumInc(inc, sum, c float64) (newSum, newC float64) { t := sum + inc // Using Neumaier improvement, swap if next term larger than sum. if math.Abs(sum) >= math.Abs(inc) { c += (sum - t) + inc } else { c += (inc - t) + sum } return t, c } // linearRegression performs a least-square linear regression analysis on the // provided SamplePairs. It returns the slope, and the intercept value at the // provided time. func linearRegression(samples []FPoint, interceptTime int64) (slope, intercept float64) { var ( n float64 sumX, cX float64 sumY, cY float64 sumXY, cXY float64 sumX2, cX2 float64 initY float64 constY bool ) initY = samples[0].F constY = true for i, sample := range samples { // Set constY to false if any new y values are encountered. if constY && i > 0 && sample.F != initY { constY = false } n += 1.0 x := float64(sample.T-interceptTime) / 1e3 sumX, cX = kahanSumInc(x, sumX, cX) sumY, cY = kahanSumInc(sample.F, sumY, cY) sumXY, cXY = kahanSumInc(x*sample.F, sumXY, cXY) sumX2, cX2 = kahanSumInc(x*x, sumX2, cX2) } if constY { if math.IsInf(initY, 0) { return math.NaN(), math.NaN() } return 0, initY } sumX += cX sumY += cY sumXY += cXY sumX2 += cX2 covXY := sumXY - sumX*sumY/n varX := sumX2 - sumX*sumX/n slope = covXY / varX intercept = sumY/n - slope*sumX/n return slope, intercept } // === deriv(node parser.ValueTypeMatrix) (Vector, Annotations) === func funcDeriv(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { samples := vals[0].(Matrix)[0] // No sense in trying to compute a derivative without at least two points. // Drop this Vector element. if len(samples.Floats) < 2 { return enh.Out, nil } // We pass in an arbitrary timestamp that is near the values in use // to avoid floating point accuracy issues, see // https://github.com/prometheus/prometheus/issues/2674 slope, _ := linearRegression(samples.Floats, samples.Floats[0].T) return append(enh.Out, Sample{F: slope}), nil } // === predict_linear(node parser.ValueTypeMatrix, k parser.ValueTypeScalar) (Vector, Annotations) === func funcPredictLinear(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { samples := vals[0].(Matrix)[0] duration := vals[1].(Vector)[0].F // No sense in trying to predict anything without at least two points. // Drop this Vector element. if len(samples.Floats) < 2 { return enh.Out, nil } slope, intercept := linearRegression(samples.Floats, enh.Ts) return append(enh.Out, Sample{F: slope*duration + intercept}), nil } // === histogram_count(Vector parser.ValueTypeVector) (Vector, Annotations) === func funcHistogramCount(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { inVec := vals[0].(Vector) for _, sample := range inVec { // Skip non-histogram samples. if sample.H == nil { continue } enh.Out = append(enh.Out, Sample{ Metric: enh.DropMetricName(sample.Metric), F: sample.H.Count, }) } return enh.Out, nil } // === histogram_sum(Vector parser.ValueTypeVector) (Vector, Annotations) === func funcHistogramSum(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { inVec := vals[0].(Vector) for _, sample := range inVec { // Skip non-histogram samples. if sample.H == nil { continue } enh.Out = append(enh.Out, Sample{ Metric: enh.DropMetricName(sample.Metric), F: sample.H.Sum, }) } return enh.Out, nil } // === histogram_stddev(Vector parser.ValueTypeVector) (Vector, Annotations) === func funcHistogramStdDev(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { inVec := vals[0].(Vector) for _, sample := range inVec { // Skip non-histogram samples. if sample.H == nil { continue } mean := sample.H.Sum / sample.H.Count var variance, cVariance float64 it := sample.H.AllBucketIterator() for it.Next() { bucket := it.At() var val float64 if bucket.Lower <= 0 && 0 <= bucket.Upper { val = 0 } else { val = math.Sqrt(bucket.Upper * bucket.Lower) } delta := val - mean variance, cVariance = kahanSumInc(bucket.Count*delta*delta, variance, cVariance) } variance += cVariance variance /= sample.H.Count enh.Out = append(enh.Out, Sample{ Metric: enh.DropMetricName(sample.Metric), F: math.Sqrt(variance), }) } return enh.Out, nil } // === histogram_stdvar(Vector parser.ValueTypeVector) (Vector, Annotations) === func funcHistogramStdVar(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { inVec := vals[0].(Vector) for _, sample := range inVec { // Skip non-histogram samples. if sample.H == nil { continue } mean := sample.H.Sum / sample.H.Count var variance, cVariance float64 it := sample.H.AllBucketIterator() for it.Next() { bucket := it.At() var val float64 if bucket.Lower <= 0 && 0 <= bucket.Upper { val = 0 } else { val = math.Sqrt(bucket.Upper * bucket.Lower) } delta := val - mean variance, cVariance = kahanSumInc(bucket.Count*delta*delta, variance, cVariance) } variance += cVariance variance /= sample.H.Count enh.Out = append(enh.Out, Sample{ Metric: enh.DropMetricName(sample.Metric), F: variance, }) } return enh.Out, nil } // === histogram_fraction(lower, upper parser.ValueTypeScalar, Vector parser.ValueTypeVector) (Vector, Annotations) === func funcHistogramFraction(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { lower := vals[0].(Vector)[0].F upper := vals[1].(Vector)[0].F inVec := vals[2].(Vector) for _, sample := range inVec { // Skip non-histogram samples. if sample.H == nil { continue } enh.Out = append(enh.Out, Sample{ Metric: enh.DropMetricName(sample.Metric), F: histogramFraction(lower, upper, sample.H), }) } return enh.Out, nil } // === histogram_quantile(k parser.ValueTypeScalar, Vector parser.ValueTypeVector) (Vector, Annotations) === func funcHistogramQuantile(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { q := vals[0].(Vector)[0].F inVec := vals[1].(Vector) var annos annotations.Annotations if math.IsNaN(q) || q < 0 || q > 1 { annos.Add(annotations.NewInvalidQuantileWarning(q, args[0].PositionRange())) } if enh.signatureToMetricWithBuckets == nil { enh.signatureToMetricWithBuckets = map[string]*metricWithBuckets{} } else { for _, v := range enh.signatureToMetricWithBuckets { v.buckets = v.buckets[:0] } } var histogramSamples []Sample for _, sample := range inVec { // We are only looking for classic buckets here. Remember // the histograms for later treatment. if sample.H != nil { histogramSamples = append(histogramSamples, sample) continue } upperBound, err := strconv.ParseFloat( sample.Metric.Get(model.BucketLabel), 64, ) if err != nil { annos.Add(annotations.NewBadBucketLabelWarning(sample.Metric.Get(labels.MetricName), sample.Metric.Get(model.BucketLabel), args[1].PositionRange())) continue } enh.lblBuf = sample.Metric.BytesWithoutLabels(enh.lblBuf, labels.BucketLabel) mb, ok := enh.signatureToMetricWithBuckets[string(enh.lblBuf)] if !ok { sample.Metric = labels.NewBuilder(sample.Metric). Del(excludedLabels...). Labels() mb = &metricWithBuckets{sample.Metric, nil} enh.signatureToMetricWithBuckets[string(enh.lblBuf)] = mb } mb.buckets = append(mb.buckets, bucket{upperBound, sample.F}) } // Now deal with the histograms. for _, sample := range histogramSamples { // We have to reconstruct the exact same signature as above for // a classic histogram, just ignoring any le label. enh.lblBuf = sample.Metric.Bytes(enh.lblBuf) if mb, ok := enh.signatureToMetricWithBuckets[string(enh.lblBuf)]; ok && len(mb.buckets) > 0 { // At this data point, we have classic histogram // buckets and a native histogram with the same name and // labels. Do not evaluate anything. annos.Add(annotations.NewMixedClassicNativeHistogramsWarning(sample.Metric.Get(labels.MetricName), args[1].PositionRange())) delete(enh.signatureToMetricWithBuckets, string(enh.lblBuf)) continue } enh.Out = append(enh.Out, Sample{ Metric: enh.DropMetricName(sample.Metric), F: histogramQuantile(q, sample.H), }) } for _, mb := range enh.signatureToMetricWithBuckets { if len(mb.buckets) > 0 { res, forcedMonotonicity, _ := bucketQuantile(q, mb.buckets) enh.Out = append(enh.Out, Sample{ Metric: mb.metric, F: res, }) if forcedMonotonicity { annos.Add(annotations.NewHistogramQuantileForcedMonotonicityInfo(mb.metric.Get(labels.MetricName), args[1].PositionRange())) } } } return enh.Out, annos } // === resets(Matrix parser.ValueTypeMatrix) (Vector, Annotations) === func funcResets(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { floats := vals[0].(Matrix)[0].Floats histograms := vals[0].(Matrix)[0].Histograms resets := 0 if len(floats) > 1 { prev := floats[0].F for _, sample := range floats[1:] { current := sample.F if current < prev { resets++ } prev = current } } if len(histograms) > 1 { prev := histograms[0].H for _, sample := range histograms[1:] { current := sample.H if current.DetectReset(prev) { resets++ } prev = current } } return append(enh.Out, Sample{F: float64(resets)}), nil } // === changes(Matrix parser.ValueTypeMatrix) (Vector, Annotations) === func funcChanges(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { floats := vals[0].(Matrix)[0].Floats changes := 0 if len(floats) == 0 { // TODO(beorn7): Only histogram values, still need to add support. return enh.Out, nil } prev := floats[0].F for _, sample := range floats[1:] { current := sample.F if current != prev && !(math.IsNaN(current) && math.IsNaN(prev)) { changes++ } prev = current } return append(enh.Out, Sample{F: float64(changes)}), nil } // === label_replace(Vector parser.ValueTypeVector, dst_label, replacement, src_labelname, regex parser.ValueTypeString) (Vector, Annotations) === func funcLabelReplace(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { var ( vector = vals[0].(Vector) dst = stringFromArg(args[1]) repl = stringFromArg(args[2]) src = stringFromArg(args[3]) regexStr = stringFromArg(args[4]) ) if enh.regex == nil { var err error enh.regex, err = regexp.Compile("^(?:" + regexStr + ")$") if err != nil { panic(fmt.Errorf("invalid regular expression in label_replace(): %s", regexStr)) } if !model.LabelNameRE.MatchString(dst) { panic(fmt.Errorf("invalid destination label name in label_replace(): %s", dst)) } enh.Dmn = make(map[uint64]labels.Labels, len(enh.Out)) } for _, el := range vector { h := el.Metric.Hash() var outMetric labels.Labels if l, ok := enh.Dmn[h]; ok { outMetric = l } else { srcVal := el.Metric.Get(src) indexes := enh.regex.FindStringSubmatchIndex(srcVal) if indexes == nil { // If there is no match, no replacement should take place. outMetric = el.Metric enh.Dmn[h] = outMetric } else { res := enh.regex.ExpandString([]byte{}, repl, srcVal, indexes) lb := labels.NewBuilder(el.Metric).Del(dst) if len(res) > 0 { lb.Set(dst, string(res)) } outMetric = lb.Labels() enh.Dmn[h] = outMetric } } enh.Out = append(enh.Out, Sample{ Metric: outMetric, F: el.F, H: el.H, }) } return enh.Out, nil } // === Vector(s Scalar) (Vector, Annotations) === func funcVector(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { return append(enh.Out, Sample{ Metric: labels.Labels{}, F: vals[0].(Vector)[0].F, }), nil } // === label_join(vector model.ValVector, dest_labelname, separator, src_labelname...) (Vector, Annotations) === func funcLabelJoin(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { var ( vector = vals[0].(Vector) dst = stringFromArg(args[1]) sep = stringFromArg(args[2]) srcLabels = make([]string, len(args)-3) ) if enh.Dmn == nil { enh.Dmn = make(map[uint64]labels.Labels, len(enh.Out)) } for i := 3; i < len(args); i++ { src := stringFromArg(args[i]) if !model.LabelName(src).IsValid() { panic(fmt.Errorf("invalid source label name in label_join(): %s", src)) } srcLabels[i-3] = src } if !model.LabelName(dst).IsValid() { panic(fmt.Errorf("invalid destination label name in label_join(): %s", dst)) } srcVals := make([]string, len(srcLabels)) for _, el := range vector { h := el.Metric.Hash() var outMetric labels.Labels if l, ok := enh.Dmn[h]; ok { outMetric = l } else { for i, src := range srcLabels { srcVals[i] = el.Metric.Get(src) } lb := labels.NewBuilder(el.Metric) strval := strings.Join(srcVals, sep) if strval == "" { lb.Del(dst) } else { lb.Set(dst, strval) } outMetric = lb.Labels() enh.Dmn[h] = outMetric } enh.Out = append(enh.Out, Sample{ Metric: outMetric, F: el.F, H: el.H, }) } return enh.Out, nil } // Common code for date related functions. func dateWrapper(vals []parser.Value, enh *EvalNodeHelper, f func(time.Time) float64) Vector { if len(vals) == 0 { return append(enh.Out, Sample{ Metric: labels.Labels{}, F: f(time.Unix(enh.Ts/1000, 0).UTC()), }) } for _, el := range vals[0].(Vector) { t := time.Unix(int64(el.F), 0).UTC() enh.Out = append(enh.Out, Sample{ Metric: enh.DropMetricName(el.Metric), F: f(t), }) } return enh.Out } // === days_in_month(v Vector) Scalar === func funcDaysInMonth(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { return dateWrapper(vals, enh, func(t time.Time) float64 { return float64(32 - time.Date(t.Year(), t.Month(), 32, 0, 0, 0, 0, time.UTC).Day()) }), nil } // === day_of_month(v Vector) Scalar === func funcDayOfMonth(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { return dateWrapper(vals, enh, func(t time.Time) float64 { return float64(t.Day()) }), nil } // === day_of_week(v Vector) Scalar === func funcDayOfWeek(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { return dateWrapper(vals, enh, func(t time.Time) float64 { return float64(t.Weekday()) }), nil } // === day_of_year(v Vector) Scalar === func funcDayOfYear(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { return dateWrapper(vals, enh, func(t time.Time) float64 { return float64(t.YearDay()) }), nil } // === hour(v Vector) Scalar === func funcHour(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { return dateWrapper(vals, enh, func(t time.Time) float64 { return float64(t.Hour()) }), nil } // === minute(v Vector) Scalar === func funcMinute(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { return dateWrapper(vals, enh, func(t time.Time) float64 { return float64(t.Minute()) }), nil } // === month(v Vector) Scalar === func funcMonth(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { return dateWrapper(vals, enh, func(t time.Time) float64 { return float64(t.Month()) }), nil } // === year(v Vector) Scalar === func funcYear(vals []parser.Value, args parser.Expressions, enh *EvalNodeHelper) (Vector, annotations.Annotations) { return dateWrapper(vals, enh, func(t time.Time) float64 { return float64(t.Year()) }), nil } // FunctionCalls is a list of all functions supported by PromQL, including their types. var FunctionCalls = map[string]FunctionCall{ "abs": funcAbs, "absent": funcAbsent, "absent_over_time": funcAbsentOverTime, "acos": funcAcos, "acosh": funcAcosh, "asin": funcAsin, "asinh": funcAsinh, "atan": funcAtan, "atanh": funcAtanh, "avg_over_time": funcAvgOverTime, "ceil": funcCeil, "changes": funcChanges, "clamp": funcClamp, "clamp_max": funcClampMax, "clamp_min": funcClampMin, "cos": funcCos, "cosh": funcCosh, "count_over_time": funcCountOverTime, "days_in_month": funcDaysInMonth, "day_of_month": funcDayOfMonth, "day_of_week": funcDayOfWeek, "day_of_year": funcDayOfYear, "deg": funcDeg, "delta": funcDelta, "deriv": funcDeriv, "exp": funcExp, "floor": funcFloor, "histogram_count": funcHistogramCount, "histogram_fraction": funcHistogramFraction, "histogram_quantile": funcHistogramQuantile, "histogram_sum": funcHistogramSum, "histogram_stddev": funcHistogramStdDev, "histogram_stdvar": funcHistogramStdVar, "holt_winters": funcHoltWinters, "hour": funcHour, "idelta": funcIdelta, "increase": funcIncrease, "irate": funcIrate, "label_replace": funcLabelReplace, "label_join": funcLabelJoin, "ln": funcLn, "log10": funcLog10, "log2": funcLog2, "last_over_time": funcLastOverTime, "max_over_time": funcMaxOverTime, "min_over_time": funcMinOverTime, "minute": funcMinute, "month": funcMonth, "pi": funcPi, "predict_linear": funcPredictLinear, "present_over_time": funcPresentOverTime, "quantile_over_time": funcQuantileOverTime, "rad": funcRad, "rate": funcRate, "resets": funcResets, "round": funcRound, "scalar": funcScalar, "sgn": funcSgn, "sin": funcSin, "sinh": funcSinh, "sort": funcSort, "sort_desc": funcSortDesc, "sort_by_label": funcSortByLabel, "sort_by_label_desc": funcSortByLabelDesc, "sqrt": funcSqrt, "stddev_over_time": funcStddevOverTime, "stdvar_over_time": funcStdvarOverTime, "sum_over_time": funcSumOverTime, "tan": funcTan, "tanh": funcTanh, "time": funcTime, "timestamp": funcTimestamp, "vector": funcVector, "year": funcYear, } // AtModifierUnsafeFunctions are the functions whose result // can vary if evaluation time is changed when the arguments are // step invariant. It also includes functions that use the timestamps // of the passed instant vector argument to calculate a result since // that can also change with change in eval time. var AtModifierUnsafeFunctions = map[string]struct{}{ // Step invariant functions. "days_in_month": {}, "day_of_month": {}, "day_of_week": {}, "day_of_year": {}, "hour": {}, "minute": {}, "month": {}, "year": {}, "predict_linear": {}, "time": {}, // Uses timestamp of the argument for the result, // hence unsafe to use with @ modifier. "timestamp": {}, } type vectorByValueHeap Vector func (s vectorByValueHeap) Len() int { return len(s) } func (s vectorByValueHeap) Less(i, j int) bool { // We compare histograms based on their sum of observations. // TODO(beorn7): Is that what we want? vi, vj := s[i].F, s[j].F if s[i].H != nil { vi = s[i].H.Sum } if s[j].H != nil { vj = s[j].H.Sum } if math.IsNaN(vi) { return true } return vi < vj } func (s vectorByValueHeap) Swap(i, j int) { s[i], s[j] = s[j], s[i] } func (s *vectorByValueHeap) Push(x interface{}) { *s = append(*s, *(x.(*Sample))) } func (s *vectorByValueHeap) Pop() interface{} { old := *s n := len(old) el := old[n-1] *s = old[0 : n-1] return el } type vectorByReverseValueHeap Vector func (s vectorByReverseValueHeap) Len() int { return len(s) } func (s vectorByReverseValueHeap) Less(i, j int) bool { // We compare histograms based on their sum of observations. // TODO(beorn7): Is that what we want? vi, vj := s[i].F, s[j].F if s[i].H != nil { vi = s[i].H.Sum } if s[j].H != nil { vj = s[j].H.Sum } if math.IsNaN(vi) { return true } return vi > vj } func (s vectorByReverseValueHeap) Swap(i, j int) { s[i], s[j] = s[j], s[i] } func (s *vectorByReverseValueHeap) Push(x interface{}) { *s = append(*s, *(x.(*Sample))) } func (s *vectorByReverseValueHeap) Pop() interface{} { old := *s n := len(old) el := old[n-1] *s = old[0 : n-1] return el } // createLabelsForAbsentFunction returns the labels that are uniquely and exactly matched // in a given expression. It is used in the absent functions. func createLabelsForAbsentFunction(expr parser.Expr) labels.Labels { b := labels.NewBuilder(labels.EmptyLabels()) var lm []*labels.Matcher switch n := expr.(type) { case *parser.VectorSelector: lm = n.LabelMatchers case *parser.MatrixSelector: lm = n.VectorSelector.(*parser.VectorSelector).LabelMatchers default: return labels.EmptyLabels() } // The 'has' map implements backwards-compatibility for historic behaviour: // e.g. in `absent(x{job="a",job="b",foo="bar"})` then `job` is removed from the output. // Note this gives arguably wrong behaviour for `absent(x{job="a",job="a",foo="bar"})`. has := make(map[string]bool, len(lm)) for _, ma := range lm { if ma.Name == labels.MetricName { continue } if ma.Type == labels.MatchEqual && !has[ma.Name] { b.Set(ma.Name, ma.Value) has[ma.Name] = true } else { b.Del(ma.Name) } } return b.Labels() } func stringFromArg(e parser.Expr) string { tmp := unwrapStepInvariantExpr(e) // Unwrap StepInvariant unwrapParenExpr(&tmp) // Optionally unwrap ParenExpr return tmp.(*parser.StringLiteral).Val } func stringSliceFromArgs(args parser.Expressions) []string { tmp := make([]string, len(args)) for i := 0; i < len(args); i++ { tmp[i] = stringFromArg(args[i]) } return tmp }