// Copyright 2017 The Prometheus Authors // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package main import ( "bufio" "context" "fmt" "io" "io/ioutil" "math" "os" "path/filepath" "runtime" "runtime/pprof" "sort" "strconv" "strings" "sync" "text/tabwriter" "time" "github.com/prometheus/prometheus/storage" "github.com/prometheus/prometheus/tsdb/chunkenc" "github.com/prometheus/prometheus/tsdb/index" "github.com/alecthomas/units" "github.com/go-kit/log" "github.com/pkg/errors" "github.com/prometheus/prometheus/model/labels" "github.com/prometheus/prometheus/tsdb" "github.com/prometheus/prometheus/tsdb/chunks" tsdb_errors "github.com/prometheus/prometheus/tsdb/errors" "github.com/prometheus/prometheus/tsdb/fileutil" ) const timeDelta = 30000 type writeBenchmark struct { outPath string samplesFile string cleanup bool numMetrics int storage *tsdb.DB cpuprof *os.File memprof *os.File blockprof *os.File mtxprof *os.File logger log.Logger } func benchmarkWrite(outPath, samplesFile string, numMetrics, numScrapes int) error { b := &writeBenchmark{ outPath: outPath, samplesFile: samplesFile, numMetrics: numMetrics, logger: log.NewLogfmtLogger(log.NewSyncWriter(os.Stderr)), } if b.outPath == "" { dir, err := ioutil.TempDir("", "tsdb_bench") if err != nil { return err } b.outPath = dir b.cleanup = true } if err := os.RemoveAll(b.outPath); err != nil { return err } if err := os.MkdirAll(b.outPath, 0o777); err != nil { return err } dir := filepath.Join(b.outPath, "storage") l := log.With(b.logger, "ts", log.DefaultTimestampUTC, "caller", log.DefaultCaller) st, err := tsdb.Open(dir, l, nil, &tsdb.Options{ RetentionDuration: int64(15 * 24 * time.Hour / time.Millisecond), MinBlockDuration: int64(2 * time.Hour / time.Millisecond), }, tsdb.NewDBStats()) if err != nil { return err } st.DisableCompactions() b.storage = st var lbs []labels.Labels if _, err = measureTime("readData", func() error { f, err := os.Open(b.samplesFile) if err != nil { return err } defer f.Close() lbs, err = readPrometheusLabels(f, b.numMetrics) if err != nil { return err } return nil }); err != nil { return err } var total uint64 dur, err := measureTime("ingestScrapes", func() error { if err := b.startProfiling(); err != nil { return err } total, err = b.ingestScrapes(lbs, numScrapes) if err != nil { return err } return nil }) if err != nil { return err } fmt.Println(" > total samples:", total) fmt.Println(" > samples/sec:", float64(total)/dur.Seconds()) if _, err = measureTime("stopStorage", func() error { if err := b.storage.Close(); err != nil { return err } return b.stopProfiling() }); err != nil { return err } return nil } func (b *writeBenchmark) ingestScrapes(lbls []labels.Labels, scrapeCount int) (uint64, error) { var mu sync.Mutex var total uint64 for i := 0; i < scrapeCount; i += 100 { var wg sync.WaitGroup lbls := lbls for len(lbls) > 0 { l := 1000 if len(lbls) < 1000 { l = len(lbls) } batch := lbls[:l] lbls = lbls[l:] wg.Add(1) go func() { n, err := b.ingestScrapesShard(batch, 100, int64(timeDelta*i)) if err != nil { // exitWithError(err) fmt.Println(" err", err) } mu.Lock() total += n mu.Unlock() wg.Done() }() } wg.Wait() } fmt.Println("ingestion completed") return total, nil } func (b *writeBenchmark) ingestScrapesShard(lbls []labels.Labels, scrapeCount int, baset int64) (uint64, error) { ts := baset type sample struct { labels labels.Labels value int64 ref *storage.SeriesRef } scrape := make([]*sample, 0, len(lbls)) for _, m := range lbls { scrape = append(scrape, &sample{ labels: m, value: 123456789, }) } total := uint64(0) for i := 0; i < scrapeCount; i++ { app := b.storage.Appender(context.TODO()) ts += timeDelta for _, s := range scrape { s.value += 1000 var ref storage.SeriesRef if s.ref != nil { ref = *s.ref } ref, err := app.Append(ref, s.labels, ts, float64(s.value)) if err != nil { panic(err) } if s.ref == nil { s.ref = &ref } total++ } if err := app.Commit(); err != nil { return total, err } } return total, nil } func (b *writeBenchmark) startProfiling() error { var err error // Start CPU profiling. b.cpuprof, err = os.Create(filepath.Join(b.outPath, "cpu.prof")) if err != nil { return fmt.Errorf("bench: could not create cpu profile: %v", err) } if err := pprof.StartCPUProfile(b.cpuprof); err != nil { return fmt.Errorf("bench: could not start CPU profile: %v", err) } // Start memory profiling. b.memprof, err = os.Create(filepath.Join(b.outPath, "mem.prof")) if err != nil { return fmt.Errorf("bench: could not create memory profile: %v", err) } runtime.MemProfileRate = 64 * 1024 // Start fatal profiling. b.blockprof, err = os.Create(filepath.Join(b.outPath, "block.prof")) if err != nil { return fmt.Errorf("bench: could not create block profile: %v", err) } runtime.SetBlockProfileRate(20) b.mtxprof, err = os.Create(filepath.Join(b.outPath, "mutex.prof")) if err != nil { return fmt.Errorf("bench: could not create mutex profile: %v", err) } runtime.SetMutexProfileFraction(20) return nil } func (b *writeBenchmark) stopProfiling() error { if b.cpuprof != nil { pprof.StopCPUProfile() b.cpuprof.Close() b.cpuprof = nil } if b.memprof != nil { if err := pprof.Lookup("heap").WriteTo(b.memprof, 0); err != nil { return fmt.Errorf("error writing mem profile: %v", err) } b.memprof.Close() b.memprof = nil } if b.blockprof != nil { if err := pprof.Lookup("block").WriteTo(b.blockprof, 0); err != nil { return fmt.Errorf("error writing block profile: %v", err) } b.blockprof.Close() b.blockprof = nil runtime.SetBlockProfileRate(0) } if b.mtxprof != nil { if err := pprof.Lookup("mutex").WriteTo(b.mtxprof, 0); err != nil { return fmt.Errorf("error writing mutex profile: %v", err) } b.mtxprof.Close() b.mtxprof = nil runtime.SetMutexProfileFraction(0) } return nil } func measureTime(stage string, f func() error) (time.Duration, error) { fmt.Printf(">> start stage=%s\n", stage) start := time.Now() if err := f(); err != nil { return 0, err } fmt.Printf(">> completed stage=%s duration=%s\n", stage, time.Since(start)) return time.Since(start), nil } func readPrometheusLabels(r io.Reader, n int) ([]labels.Labels, error) { scanner := bufio.NewScanner(r) var mets []labels.Labels hashes := map[uint64]struct{}{} i := 0 for scanner.Scan() && i < n { m := make(labels.Labels, 0, 10) r := strings.NewReplacer("\"", "", "{", "", "}", "") s := r.Replace(scanner.Text()) labelChunks := strings.Split(s, ",") for _, labelChunk := range labelChunks { split := strings.Split(labelChunk, ":") m = append(m, labels.Label{Name: split[0], Value: split[1]}) } // Order of the k/v labels matters, don't assume we'll always receive them already sorted. sort.Sort(m) h := m.Hash() if _, ok := hashes[h]; ok { continue } mets = append(mets, m) hashes[h] = struct{}{} i++ } return mets, nil } func listBlocks(path string, humanReadable bool) error { db, err := tsdb.OpenDBReadOnly(path, nil) if err != nil { return err } defer func() { err = tsdb_errors.NewMulti(err, db.Close()).Err() }() blocks, err := db.Blocks() if err != nil { return err } printBlocks(blocks, true, humanReadable) return nil } func printBlocks(blocks []tsdb.BlockReader, writeHeader, humanReadable bool) { tw := tabwriter.NewWriter(os.Stdout, 13, 0, 2, ' ', 0) defer tw.Flush() if writeHeader { fmt.Fprintln(tw, "BLOCK ULID\tMIN TIME\tMAX TIME\tDURATION\tNUM SAMPLES\tNUM CHUNKS\tNUM SERIES\tSIZE") } for _, b := range blocks { meta := b.Meta() fmt.Fprintf(tw, "%v\t%v\t%v\t%v\t%v\t%v\t%v\t%v\n", meta.ULID, getFormatedTime(meta.MinTime, humanReadable), getFormatedTime(meta.MaxTime, humanReadable), time.Duration(meta.MaxTime-meta.MinTime)*time.Millisecond, meta.Stats.NumSamples, meta.Stats.NumChunks, meta.Stats.NumSeries, getFormatedBytes(b.Size(), humanReadable), ) } } func getFormatedTime(timestamp int64, humanReadable bool) string { if humanReadable { return time.Unix(timestamp/1000, 0).UTC().String() } return strconv.FormatInt(timestamp, 10) } func getFormatedBytes(bytes int64, humanReadable bool) string { if humanReadable { return units.Base2Bytes(bytes).String() } return strconv.FormatInt(bytes, 10) } func openBlock(path, blockID string) (*tsdb.DBReadOnly, tsdb.BlockReader, error) { db, err := tsdb.OpenDBReadOnly(path, nil) if err != nil { return nil, nil, err } blocks, err := db.Blocks() if err != nil { return nil, nil, err } var block tsdb.BlockReader if blockID != "" { for _, b := range blocks { if b.Meta().ULID.String() == blockID { block = b break } } } else if len(blocks) > 0 { block = blocks[len(blocks)-1] } if block == nil { return nil, nil, fmt.Errorf("block %s not found", blockID) } return db, block, nil } func analyzeBlock(path, blockID string, limit int, runExtended bool) error { db, block, err := openBlock(path, blockID) if err != nil { return err } defer func() { err = tsdb_errors.NewMulti(err, db.Close()).Err() }() meta := block.Meta() fmt.Printf("Block ID: %s\n", meta.ULID) // Presume 1ms resolution that Prometheus uses. fmt.Printf("Duration: %s\n", (time.Duration(meta.MaxTime-meta.MinTime) * 1e6).String()) fmt.Printf("Series: %d\n", meta.Stats.NumSeries) ir, err := block.Index() if err != nil { return err } defer ir.Close() allLabelNames, err := ir.LabelNames() if err != nil { return err } fmt.Printf("Label names: %d\n", len(allLabelNames)) type postingInfo struct { key string metric uint64 } postingInfos := []postingInfo{} printInfo := func(postingInfos []postingInfo) { sort.Slice(postingInfos, func(i, j int) bool { return postingInfos[i].metric > postingInfos[j].metric }) for i, pc := range postingInfos { if i >= limit { break } fmt.Printf("%d %s\n", pc.metric, pc.key) } } labelsUncovered := map[string]uint64{} labelpairsUncovered := map[string]uint64{} labelpairsCount := map[string]uint64{} entries := 0 p, err := ir.Postings("", "") // The special all key. if err != nil { return err } lbls := labels.Labels{} chks := []chunks.Meta{} for p.Next() { if err = ir.Series(p.At(), &lbls, &chks); err != nil { return err } // Amount of the block time range not covered by this series. uncovered := uint64(meta.MaxTime-meta.MinTime) - uint64(chks[len(chks)-1].MaxTime-chks[0].MinTime) for _, lbl := range lbls { key := lbl.Name + "=" + lbl.Value labelsUncovered[lbl.Name] += uncovered labelpairsUncovered[key] += uncovered labelpairsCount[key]++ entries++ } } if p.Err() != nil { return p.Err() } fmt.Printf("Postings (unique label pairs): %d\n", len(labelpairsUncovered)) fmt.Printf("Postings entries (total label pairs): %d\n", entries) postingInfos = postingInfos[:0] for k, m := range labelpairsUncovered { postingInfos = append(postingInfos, postingInfo{k, uint64(float64(m) / float64(meta.MaxTime-meta.MinTime))}) } fmt.Printf("\nLabel pairs most involved in churning:\n") printInfo(postingInfos) postingInfos = postingInfos[:0] for k, m := range labelsUncovered { postingInfos = append(postingInfos, postingInfo{k, uint64(float64(m) / float64(meta.MaxTime-meta.MinTime))}) } fmt.Printf("\nLabel names most involved in churning:\n") printInfo(postingInfos) postingInfos = postingInfos[:0] for k, m := range labelpairsCount { postingInfos = append(postingInfos, postingInfo{k, m}) } fmt.Printf("\nMost common label pairs:\n") printInfo(postingInfos) postingInfos = postingInfos[:0] for _, n := range allLabelNames { values, err := ir.SortedLabelValues(n) if err != nil { return err } var cumulativeLength uint64 for _, str := range values { cumulativeLength += uint64(len(str)) } postingInfos = append(postingInfos, postingInfo{n, cumulativeLength}) } fmt.Printf("\nLabel names with highest cumulative label value length:\n") printInfo(postingInfos) postingInfos = postingInfos[:0] for _, n := range allLabelNames { lv, err := ir.SortedLabelValues(n) if err != nil { return err } postingInfos = append(postingInfos, postingInfo{n, uint64(len(lv))}) } fmt.Printf("\nHighest cardinality labels:\n") printInfo(postingInfos) postingInfos = postingInfos[:0] lv, err := ir.SortedLabelValues("__name__") if err != nil { return err } for _, n := range lv { postings, err := ir.Postings("__name__", n) if err != nil { return err } count := 0 for postings.Next() { count++ } if postings.Err() != nil { return postings.Err() } postingInfos = append(postingInfos, postingInfo{n, uint64(count)}) } fmt.Printf("\nHighest cardinality metric names:\n") printInfo(postingInfos) if runExtended { return analyzeCompaction(block, ir) } return nil } func analyzeCompaction(block tsdb.BlockReader, indexr tsdb.IndexReader) (err error) { postingsr, err := indexr.Postings(index.AllPostingsKey()) if err != nil { return err } chunkr, err := block.Chunks() if err != nil { return err } defer func() { err = tsdb_errors.NewMulti(err, chunkr.Close()).Err() }() const maxSamplesPerChunk = 120 nBuckets := 10 histogram := make([]int, nBuckets) totalChunks := 0 for postingsr.Next() { lbsl := labels.Labels{} var chks []chunks.Meta if err := indexr.Series(postingsr.At(), &lbsl, &chks); err != nil { return err } for _, chk := range chks { // Load the actual data of the chunk. chk, err := chunkr.Chunk(chk.Ref) if err != nil { return err } chunkSize := math.Min(float64(chk.NumSamples()), maxSamplesPerChunk) // Calculate the bucket for the chunk and increment it in the histogram. bucket := int(math.Ceil(float64(nBuckets)*chunkSize/maxSamplesPerChunk)) - 1 histogram[bucket]++ totalChunks++ } } fmt.Printf("\nCompaction analysis:\n") fmt.Println("Fullness: Amount of samples in chunks (100% is 120 samples)") // Normalize absolute counts to percentages and print them out. for bucket, count := range histogram { percentage := 100.0 * count / totalChunks fmt.Printf("%7d%%: ", (bucket+1)*10) for j := 0; j < percentage; j++ { fmt.Printf("#") } fmt.Println() } return nil } func dumpSamples(path string, mint, maxt int64) (err error) { db, err := tsdb.OpenDBReadOnly(path, nil) if err != nil { return err } defer func() { err = tsdb_errors.NewMulti(err, db.Close()).Err() }() q, err := db.Querier(context.TODO(), mint, maxt) if err != nil { return err } defer q.Close() ss := q.Select(false, nil, labels.MustNewMatcher(labels.MatchRegexp, "", ".*")) for ss.Next() { series := ss.At() lbs := series.Labels() it := series.Iterator() for it.Next() == chunkenc.ValFloat { ts, val := it.At() fmt.Printf("%s %g %d\n", lbs, val, ts) } if it.Err() != nil { return ss.Err() } } if ws := ss.Warnings(); len(ws) > 0 { return tsdb_errors.NewMulti(ws...).Err() } if ss.Err() != nil { return ss.Err() } return nil } func checkErr(err error) int { if err != nil { fmt.Fprintln(os.Stderr, err) return 1 } return 0 } func backfillOpenMetrics(path, outputDir string, humanReadable, quiet bool, maxBlockDuration time.Duration) int { inputFile, err := fileutil.OpenMmapFile(path) if err != nil { return checkErr(err) } defer inputFile.Close() if err := os.MkdirAll(outputDir, 0o777); err != nil { return checkErr(errors.Wrap(err, "create output dir")) } return checkErr(backfill(5000, inputFile.Bytes(), outputDir, humanReadable, quiet, maxBlockDuration)) }