// Copyright 2017 The Prometheus Authors // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package index import ( "bufio" "bytes" "context" "encoding/binary" "fmt" "hash" "hash/crc32" "io" "math" "os" "path/filepath" "sort" "unsafe" "golang.org/x/exp/slices" "github.com/prometheus/prometheus/model/labels" "github.com/prometheus/prometheus/storage" "github.com/prometheus/prometheus/tsdb/chunks" "github.com/prometheus/prometheus/tsdb/encoding" tsdb_errors "github.com/prometheus/prometheus/tsdb/errors" "github.com/prometheus/prometheus/tsdb/fileutil" ) const ( // MagicIndex 4 bytes at the head of an index file. MagicIndex = 0xBAAAD700 // HeaderLen represents number of bytes reserved of index for header. HeaderLen = 5 // FormatV1 represents 1 version of index. FormatV1 = 1 // FormatV2 represents 2 version of index. FormatV2 = 2 indexFilename = "index" seriesByteAlign = 16 ) type indexWriterSeries struct { labels labels.Labels chunks []chunks.Meta // series file offset of chunks } type indexWriterSeriesSlice []*indexWriterSeries func (s indexWriterSeriesSlice) Len() int { return len(s) } func (s indexWriterSeriesSlice) Swap(i, j int) { s[i], s[j] = s[j], s[i] } func (s indexWriterSeriesSlice) Less(i, j int) bool { return labels.Compare(s[i].labels, s[j].labels) < 0 } type indexWriterStage uint8 const ( idxStageNone indexWriterStage = iota idxStageSymbols idxStageSeries idxStageDone ) func (s indexWriterStage) String() string { switch s { case idxStageNone: return "none" case idxStageSymbols: return "symbols" case idxStageSeries: return "series" case idxStageDone: return "done" } return "" } // The table gets initialized with sync.Once but may still cause a race // with any other use of the crc32 package anywhere. Thus we initialize it // before. var castagnoliTable *crc32.Table func init() { castagnoliTable = crc32.MakeTable(crc32.Castagnoli) } // newCRC32 initializes a CRC32 hash with a preconfigured polynomial, so the // polynomial may be easily changed in one location at a later time, if necessary. func newCRC32() hash.Hash32 { return crc32.New(castagnoliTable) } type symbolCacheEntry struct { index uint32 lastValueIndex uint32 lastValue string } type PostingsEncoder func(*encoding.Encbuf, []uint32) error // Writer implements the IndexWriter interface for the standard // serialization format. type Writer struct { ctx context.Context // For the main index file. f *FileWriter // Temporary file for postings. fP *FileWriter // Temporary file for posting offsets table. fPO *FileWriter cntPO uint64 toc TOC stage indexWriterStage postingsStart uint64 // Due to padding, can differ from TOC entry. // Reusable memory. buf1 encoding.Encbuf buf2 encoding.Encbuf numSymbols int symbols *Symbols symbolFile *fileutil.MmapFile lastSymbol string symbolCache map[string]symbolCacheEntry labelIndexes []labelIndexHashEntry // Label index offsets. labelNames map[string]uint64 // Label names, and their usage. // Hold last series to validate that clients insert new series in order. lastSeries labels.Labels lastSeriesRef storage.SeriesRef // Hold last added chunk reference to make sure that chunks are ordered properly. lastChunkRef chunks.ChunkRef crc32 hash.Hash Version int postingsEncoder PostingsEncoder } // TOC represents index Table Of Content that states where each section of index starts. type TOC struct { Symbols uint64 Series uint64 LabelIndices uint64 LabelIndicesTable uint64 Postings uint64 PostingsTable uint64 } // NewTOCFromByteSlice return parsed TOC from given index byte slice. func NewTOCFromByteSlice(bs ByteSlice) (*TOC, error) { if bs.Len() < indexTOCLen { return nil, encoding.ErrInvalidSize } b := bs.Range(bs.Len()-indexTOCLen, bs.Len()) expCRC := binary.BigEndian.Uint32(b[len(b)-4:]) d := encoding.Decbuf{B: b[:len(b)-4]} if d.Crc32(castagnoliTable) != expCRC { return nil, fmt.Errorf("read TOC: %w", encoding.ErrInvalidChecksum) } toc := &TOC{ Symbols: d.Be64(), Series: d.Be64(), LabelIndices: d.Be64(), LabelIndicesTable: d.Be64(), Postings: d.Be64(), PostingsTable: d.Be64(), } return toc, d.Err() } // NewWriter returns a new Writer to the given filename. It serializes data in format version 2. // It uses the given encoder to encode each postings list. func NewWriterWithEncoder(ctx context.Context, fn string, encoder PostingsEncoder) (*Writer, error) { dir := filepath.Dir(fn) df, err := fileutil.OpenDir(dir) if err != nil { return nil, err } defer df.Close() // Close for platform windows. if err := os.RemoveAll(fn); err != nil { return nil, fmt.Errorf("remove any existing index at path: %w", err) } // Main index file we are building. f, err := NewFileWriter(fn) if err != nil { return nil, err } // Temporary file for postings. fP, err := NewFileWriter(fn + "_tmp_p") if err != nil { return nil, err } // Temporary file for posting offset table. fPO, err := NewFileWriter(fn + "_tmp_po") if err != nil { return nil, err } if err := df.Sync(); err != nil { return nil, fmt.Errorf("sync dir: %w", err) } iw := &Writer{ ctx: ctx, f: f, fP: fP, fPO: fPO, stage: idxStageNone, // Reusable memory. buf1: encoding.Encbuf{B: make([]byte, 0, 1<<22)}, buf2: encoding.Encbuf{B: make([]byte, 0, 1<<22)}, symbolCache: make(map[string]symbolCacheEntry, 1<<8), labelNames: make(map[string]uint64, 1<<8), crc32: newCRC32(), postingsEncoder: encoder, } if err := iw.writeMeta(); err != nil { return nil, err } return iw, nil } // NewWriter creates a new index writer using the default encoder. See // NewWriterWithEncoder. func NewWriter(ctx context.Context, fn string) (*Writer, error) { return NewWriterWithEncoder(ctx, fn, EncodePostingsRaw) } func (w *Writer) write(bufs ...[]byte) error { return w.f.Write(bufs...) } func (w *Writer) writeAt(buf []byte, pos uint64) error { return w.f.WriteAt(buf, pos) } func (w *Writer) addPadding(size int) error { return w.f.AddPadding(size) } type FileWriter struct { f *os.File fbuf *bufio.Writer pos uint64 name string } func NewFileWriter(name string) (*FileWriter, error) { f, err := os.OpenFile(name, os.O_CREATE|os.O_RDWR, 0o666) if err != nil { return nil, err } return &FileWriter{ f: f, fbuf: bufio.NewWriterSize(f, 1<<22), pos: 0, name: name, }, nil } func (fw *FileWriter) Pos() uint64 { return fw.pos } func (fw *FileWriter) Write(bufs ...[]byte) error { for _, b := range bufs { n, err := fw.fbuf.Write(b) fw.pos += uint64(n) if err != nil { return err } // For now the index file must not grow beyond 64GiB. Some of the fixed-sized // offset references in v1 are only 4 bytes large. // Once we move to compressed/varint representations in those areas, this limitation // can be lifted. if fw.pos > 16*math.MaxUint32 { return fmt.Errorf("%q exceeding max size of 64GiB", fw.name) } } return nil } func (fw *FileWriter) Flush() error { return fw.fbuf.Flush() } func (fw *FileWriter) WriteAt(buf []byte, pos uint64) error { if err := fw.Flush(); err != nil { return err } _, err := fw.f.WriteAt(buf, int64(pos)) return err } // AddPadding adds zero byte padding until the file size is a multiple size. func (fw *FileWriter) AddPadding(size int) error { p := fw.pos % uint64(size) if p == 0 { return nil } p = uint64(size) - p if err := fw.Write(make([]byte, p)); err != nil { return fmt.Errorf("add padding: %w", err) } return nil } func (fw *FileWriter) Close() error { if err := fw.Flush(); err != nil { return err } if err := fw.f.Sync(); err != nil { return err } return fw.f.Close() } func (fw *FileWriter) Remove() error { return os.Remove(fw.name) } // ensureStage handles transitions between write stages and ensures that IndexWriter // methods are called in an order valid for the implementation. func (w *Writer) ensureStage(s indexWriterStage) error { select { case <-w.ctx.Done(): return w.ctx.Err() default: } if w.stage == s { return nil } if w.stage < s-1 { // A stage has been skipped. if err := w.ensureStage(s - 1); err != nil { return err } } if w.stage > s { return fmt.Errorf("invalid stage %q, currently at %q", s, w.stage) } // Mark start of sections in table of contents. switch s { case idxStageSymbols: w.toc.Symbols = w.f.pos if err := w.startSymbols(); err != nil { return err } case idxStageSeries: if err := w.finishSymbols(); err != nil { return err } w.toc.Series = w.f.pos case idxStageDone: w.toc.LabelIndices = w.f.pos // LabelIndices generation depends on the posting offset // table produced at this stage. if err := w.writePostingsToTmpFiles(); err != nil { return err } if err := w.writeLabelIndices(); err != nil { return err } w.toc.Postings = w.f.pos if err := w.writePostings(); err != nil { return err } w.toc.LabelIndicesTable = w.f.pos if err := w.writeLabelIndexesOffsetTable(); err != nil { return err } w.toc.PostingsTable = w.f.pos if err := w.writePostingsOffsetTable(); err != nil { return err } if err := w.writeTOC(); err != nil { return err } } w.stage = s return nil } func (w *Writer) writeMeta() error { w.buf1.Reset() w.buf1.PutBE32(MagicIndex) w.buf1.PutByte(FormatV2) return w.write(w.buf1.Get()) } // AddSeries adds the series one at a time along with its chunks. func (w *Writer) AddSeries(ref storage.SeriesRef, lset labels.Labels, chunks ...chunks.Meta) error { if err := w.ensureStage(idxStageSeries); err != nil { return err } if labels.Compare(lset, w.lastSeries) <= 0 { return fmt.Errorf("out-of-order series added with label set %q", lset) } if ref < w.lastSeriesRef && !w.lastSeries.IsEmpty() { return fmt.Errorf("series with reference greater than %d already added", ref) } lastChunkRef := w.lastChunkRef lastMaxT := int64(0) for ix, c := range chunks { if c.Ref < lastChunkRef { return fmt.Errorf("unsorted chunk reference: %d, previous: %d", c.Ref, lastChunkRef) } lastChunkRef = c.Ref if ix > 0 && c.MinTime <= lastMaxT { return fmt.Errorf("chunk minT %d is not higher than previous chunk maxT %d", c.MinTime, lastMaxT) } if c.MaxTime < c.MinTime { return fmt.Errorf("chunk maxT %d is less than minT %d", c.MaxTime, c.MinTime) } lastMaxT = c.MaxTime } // We add padding to 16 bytes to increase the addressable space we get through 4 byte // series references. if err := w.addPadding(seriesByteAlign); err != nil { return fmt.Errorf("failed to write padding bytes: %w", err) } if w.f.pos%seriesByteAlign != 0 { return fmt.Errorf("series write not 16-byte aligned at %d", w.f.pos) } w.buf2.Reset() w.buf2.PutUvarint(lset.Len()) if err := lset.Validate(func(l labels.Label) error { var err error cacheEntry, ok := w.symbolCache[l.Name] nameIndex := cacheEntry.index if !ok { nameIndex, err = w.symbols.ReverseLookup(l.Name) if err != nil { return fmt.Errorf("symbol entry for %q does not exist, %w", l.Name, err) } } w.labelNames[l.Name]++ w.buf2.PutUvarint32(nameIndex) valueIndex := cacheEntry.lastValueIndex if !ok || cacheEntry.lastValue != l.Value { valueIndex, err = w.symbols.ReverseLookup(l.Value) if err != nil { return fmt.Errorf("symbol entry for %q does not exist, %w", l.Value, err) } w.symbolCache[l.Name] = symbolCacheEntry{ index: nameIndex, lastValueIndex: valueIndex, lastValue: l.Value, } } w.buf2.PutUvarint32(valueIndex) return nil }); err != nil { return err } w.buf2.PutUvarint(len(chunks)) if len(chunks) > 0 { c := chunks[0] w.buf2.PutVarint64(c.MinTime) w.buf2.PutUvarint64(uint64(c.MaxTime - c.MinTime)) w.buf2.PutUvarint64(uint64(c.Ref)) t0 := c.MaxTime ref0 := int64(c.Ref) for _, c := range chunks[1:] { w.buf2.PutUvarint64(uint64(c.MinTime - t0)) w.buf2.PutUvarint64(uint64(c.MaxTime - c.MinTime)) t0 = c.MaxTime w.buf2.PutVarint64(int64(c.Ref) - ref0) ref0 = int64(c.Ref) } } w.buf1.Reset() w.buf1.PutUvarint(w.buf2.Len()) w.buf2.PutHash(w.crc32) if err := w.write(w.buf1.Get(), w.buf2.Get()); err != nil { return fmt.Errorf("write series data: %w", err) } w.lastSeries.CopyFrom(lset) w.lastSeriesRef = ref w.lastChunkRef = lastChunkRef return nil } func (w *Writer) startSymbols() error { // We are at w.toc.Symbols. // Leave 4 bytes of space for the length, and another 4 for the number of symbols // which will both be calculated later. return w.write([]byte("alenblen")) } func (w *Writer) AddSymbol(sym string) error { if err := w.ensureStage(idxStageSymbols); err != nil { return err } if w.numSymbols != 0 && sym <= w.lastSymbol { return fmt.Errorf("symbol %q out-of-order", sym) } w.lastSymbol = sym w.numSymbols++ w.buf1.Reset() w.buf1.PutUvarintStr(sym) return w.write(w.buf1.Get()) } func (w *Writer) finishSymbols() error { symbolTableSize := w.f.pos - w.toc.Symbols - 4 // The symbol table's part is 4 bytes. So the total symbol table size must be less than or equal to 2^32-1 if symbolTableSize > math.MaxUint32 { return fmt.Errorf("symbol table size exceeds %d bytes: %d", uint32(math.MaxUint32), symbolTableSize) } // Write out the length and symbol count. w.buf1.Reset() w.buf1.PutBE32int(int(symbolTableSize)) w.buf1.PutBE32int(w.numSymbols) if err := w.writeAt(w.buf1.Get(), w.toc.Symbols); err != nil { return err } hashPos := w.f.pos // Leave space for the hash. We can only calculate it // now that the number of symbols is known, so mmap and do it from there. if err := w.write([]byte("hash")); err != nil { return err } if err := w.f.Flush(); err != nil { return err } sf, err := fileutil.OpenMmapFile(w.f.name) if err != nil { return err } w.symbolFile = sf hash := crc32.Checksum(w.symbolFile.Bytes()[w.toc.Symbols+4:hashPos], castagnoliTable) w.buf1.Reset() w.buf1.PutBE32(hash) if err := w.writeAt(w.buf1.Get(), hashPos); err != nil { return err } // Load in the symbol table efficiently for the rest of the index writing. w.symbols, err = NewSymbols(realByteSlice(w.symbolFile.Bytes()), FormatV2, int(w.toc.Symbols)) if err != nil { return fmt.Errorf("read symbols: %w", err) } return nil } func (w *Writer) writeLabelIndices() error { if err := w.fPO.Flush(); err != nil { return err } // Find all the label values in the tmp posting offset table. f, err := fileutil.OpenMmapFile(w.fPO.name) if err != nil { return err } defer f.Close() d := encoding.NewDecbufRaw(realByteSlice(f.Bytes()), int(w.fPO.pos)) cnt := w.cntPO current := []byte{} values := []uint32{} for d.Err() == nil && cnt > 0 { cnt-- d.Uvarint() // Keycount. name := d.UvarintBytes() // Label name. value := yoloString(d.UvarintBytes()) // Label value. d.Uvarint64() // Offset. if len(name) == 0 { continue // All index is ignored. } if !bytes.Equal(name, current) && len(values) > 0 { // We've reached a new label name. if err := w.writeLabelIndex(string(current), values); err != nil { return err } values = values[:0] } current = name sid, err := w.symbols.ReverseLookup(value) if err != nil { return err } values = append(values, sid) } if d.Err() != nil { return d.Err() } // Handle the last label. if len(values) > 0 { if err := w.writeLabelIndex(string(current), values); err != nil { return err } } return nil } func (w *Writer) writeLabelIndex(name string, values []uint32) error { // Align beginning to 4 bytes for more efficient index list scans. if err := w.addPadding(4); err != nil { return err } w.labelIndexes = append(w.labelIndexes, labelIndexHashEntry{ keys: []string{name}, offset: w.f.pos, }) startPos := w.f.pos // Leave 4 bytes of space for the length, which will be calculated later. if err := w.write([]byte("alen")); err != nil { return err } w.crc32.Reset() w.buf1.Reset() w.buf1.PutBE32int(1) // Number of names. w.buf1.PutBE32int(len(values)) w.buf1.WriteToHash(w.crc32) if err := w.write(w.buf1.Get()); err != nil { return err } for _, v := range values { w.buf1.Reset() w.buf1.PutBE32(v) w.buf1.WriteToHash(w.crc32) if err := w.write(w.buf1.Get()); err != nil { return err } } // Write out the length. w.buf1.Reset() l := w.f.pos - startPos - 4 if l > math.MaxUint32 { return fmt.Errorf("label index size exceeds 4 bytes: %d", l) } w.buf1.PutBE32int(int(l)) if err := w.writeAt(w.buf1.Get(), startPos); err != nil { return err } w.buf1.Reset() w.buf1.PutHashSum(w.crc32) return w.write(w.buf1.Get()) } // writeLabelIndexesOffsetTable writes the label indices offset table. func (w *Writer) writeLabelIndexesOffsetTable() error { startPos := w.f.pos // Leave 4 bytes of space for the length, which will be calculated later. if err := w.write([]byte("alen")); err != nil { return err } w.crc32.Reset() w.buf1.Reset() w.buf1.PutBE32int(len(w.labelIndexes)) w.buf1.WriteToHash(w.crc32) if err := w.write(w.buf1.Get()); err != nil { return err } for _, e := range w.labelIndexes { w.buf1.Reset() w.buf1.PutUvarint(len(e.keys)) for _, k := range e.keys { w.buf1.PutUvarintStr(k) } w.buf1.PutUvarint64(e.offset) w.buf1.WriteToHash(w.crc32) if err := w.write(w.buf1.Get()); err != nil { return err } } // Write out the length. err := w.writeLengthAndHash(startPos) if err != nil { return fmt.Errorf("label indexes offset table length/crc32 write error: %w", err) } return nil } // writePostingsOffsetTable writes the postings offset table. func (w *Writer) writePostingsOffsetTable() error { // Ensure everything is in the temporary file. if err := w.fPO.Flush(); err != nil { return err } startPos := w.f.pos // Leave 4 bytes of space for the length, which will be calculated later. if err := w.write([]byte("alen")); err != nil { return err } // Copy over the tmp posting offset table, however we need to // adjust the offsets. adjustment := w.postingsStart w.buf1.Reset() w.crc32.Reset() w.buf1.PutBE32int(int(w.cntPO)) // Count. w.buf1.WriteToHash(w.crc32) if err := w.write(w.buf1.Get()); err != nil { return err } f, err := fileutil.OpenMmapFile(w.fPO.name) if err != nil { return err } defer func() { if f != nil { f.Close() } }() d := encoding.NewDecbufRaw(realByteSlice(f.Bytes()), int(w.fPO.pos)) cnt := w.cntPO for d.Err() == nil && cnt > 0 { w.buf1.Reset() w.buf1.PutUvarint(d.Uvarint()) // Keycount. w.buf1.PutUvarintStr(yoloString(d.UvarintBytes())) // Label name. w.buf1.PutUvarintStr(yoloString(d.UvarintBytes())) // Label value. w.buf1.PutUvarint64(d.Uvarint64() + adjustment) // Offset. w.buf1.WriteToHash(w.crc32) if err := w.write(w.buf1.Get()); err != nil { return err } cnt-- } if d.Err() != nil { return d.Err() } // Cleanup temporary file. if err := f.Close(); err != nil { return err } f = nil if err := w.fPO.Close(); err != nil { return err } if err := w.fPO.Remove(); err != nil { return err } w.fPO = nil err = w.writeLengthAndHash(startPos) if err != nil { return fmt.Errorf("postings offset table length/crc32 write error: %w", err) } return nil } func (w *Writer) writeLengthAndHash(startPos uint64) error { w.buf1.Reset() l := w.f.pos - startPos - 4 if l > math.MaxUint32 { return fmt.Errorf("length size exceeds 4 bytes: %d", l) } w.buf1.PutBE32int(int(l)) if err := w.writeAt(w.buf1.Get(), startPos); err != nil { return fmt.Errorf("write length from buffer error: %w", err) } // Write out the hash. w.buf1.Reset() w.buf1.PutHashSum(w.crc32) if err := w.write(w.buf1.Get()); err != nil { return fmt.Errorf("write buffer's crc32 error: %w", err) } return nil } const indexTOCLen = 6*8 + crc32.Size func (w *Writer) writeTOC() error { w.buf1.Reset() w.buf1.PutBE64(w.toc.Symbols) w.buf1.PutBE64(w.toc.Series) w.buf1.PutBE64(w.toc.LabelIndices) w.buf1.PutBE64(w.toc.LabelIndicesTable) w.buf1.PutBE64(w.toc.Postings) w.buf1.PutBE64(w.toc.PostingsTable) w.buf1.PutHash(w.crc32) return w.write(w.buf1.Get()) } func (w *Writer) writePostingsToTmpFiles() error { names := make([]string, 0, len(w.labelNames)) for n := range w.labelNames { names = append(names, n) } slices.Sort(names) if err := w.f.Flush(); err != nil { return err } f, err := fileutil.OpenMmapFile(w.f.name) if err != nil { return err } defer f.Close() // Write out the special all posting. offsets := []uint32{} d := encoding.NewDecbufRaw(realByteSlice(f.Bytes()), int(w.toc.LabelIndices)) d.Skip(int(w.toc.Series)) for d.Len() > 0 { d.ConsumePadding() startPos := w.toc.LabelIndices - uint64(d.Len()) if startPos%seriesByteAlign != 0 { return fmt.Errorf("series not 16-byte aligned at %d", startPos) } offsets = append(offsets, uint32(startPos/seriesByteAlign)) // Skip to next series. x := d.Uvarint() d.Skip(x + crc32.Size) if err := d.Err(); err != nil { return err } } if err := w.writePosting("", "", offsets); err != nil { return err } maxPostings := uint64(len(offsets)) // No label name can have more postings than this. for len(names) > 0 { batchNames := []string{} var c uint64 // Try to bunch up label names into one loop, but avoid // using more memory than a single label name can. for len(names) > 0 { if w.labelNames[names[0]]+c > maxPostings { if c > 0 { break } return fmt.Errorf("corruption detected when writing postings to index: label %q has %d uses, but maxPostings is %d", names[0], w.labelNames[names[0]], maxPostings) } batchNames = append(batchNames, names[0]) c += w.labelNames[names[0]] names = names[1:] } nameSymbols := map[uint32]string{} for _, name := range batchNames { sid, err := w.symbols.ReverseLookup(name) if err != nil { return err } nameSymbols[sid] = name } // Label name -> label value -> positions. postings := map[uint32]map[uint32][]uint32{} d := encoding.NewDecbufRaw(realByteSlice(f.Bytes()), int(w.toc.LabelIndices)) d.Skip(int(w.toc.Series)) for d.Len() > 0 { d.ConsumePadding() startPos := w.toc.LabelIndices - uint64(d.Len()) l := d.Uvarint() // Length of this series in bytes. startLen := d.Len() // See if label names we want are in the series. numLabels := d.Uvarint() for i := 0; i < numLabels; i++ { lno := uint32(d.Uvarint()) lvo := uint32(d.Uvarint()) if _, ok := nameSymbols[lno]; ok { if _, ok := postings[lno]; !ok { postings[lno] = map[uint32][]uint32{} } postings[lno][lvo] = append(postings[lno][lvo], uint32(startPos/seriesByteAlign)) } } // Skip to next series. d.Skip(l - (startLen - d.Len()) + crc32.Size) if err := d.Err(); err != nil { return err } } for _, name := range batchNames { // Write out postings for this label name. sid, err := w.symbols.ReverseLookup(name) if err != nil { return err } values := make([]uint32, 0, len(postings[sid])) for v := range postings[sid] { values = append(values, v) } // Symbol numbers are in order, so the strings will also be in order. slices.Sort(values) for _, v := range values { value, err := w.symbols.Lookup(v) if err != nil { return err } if err := w.writePosting(name, value, postings[sid][v]); err != nil { return err } } } select { case <-w.ctx.Done(): return w.ctx.Err() default: } } return nil } // EncodePostingsRaw uses the "basic" postings list encoding format with no compression: // .... func EncodePostingsRaw(e *encoding.Encbuf, offs []uint32) error { e.PutBE32int(len(offs)) for _, off := range offs { if off > (1<<32)-1 { return fmt.Errorf("series offset %d exceeds 4 bytes", off) } e.PutBE32(off) } return nil } func (w *Writer) writePosting(name, value string, offs []uint32) error { // Align beginning to 4 bytes for more efficient postings list scans. if err := w.fP.AddPadding(4); err != nil { return err } // Write out postings offset table to temporary file as we go. w.buf1.Reset() w.buf1.PutUvarint(2) w.buf1.PutUvarintStr(name) w.buf1.PutUvarintStr(value) w.buf1.PutUvarint64(w.fP.pos) // This is relative to the postings tmp file, not the final index file. if err := w.fPO.Write(w.buf1.Get()); err != nil { return err } w.cntPO++ w.buf1.Reset() if err := w.postingsEncoder(&w.buf1, offs); err != nil { return err } w.buf2.Reset() l := w.buf1.Len() // We convert to uint to make code compile on 32-bit systems, as math.MaxUint32 doesn't fit into int there. if uint(l) > math.MaxUint32 { return fmt.Errorf("posting size exceeds 4 bytes: %d", l) } w.buf2.PutBE32int(l) w.buf1.PutHash(w.crc32) return w.fP.Write(w.buf2.Get(), w.buf1.Get()) } func (w *Writer) writePostings() error { // There's padding in the tmp file, make sure it actually works. if err := w.f.AddPadding(4); err != nil { return err } w.postingsStart = w.f.pos // Copy temporary file into main index. if err := w.fP.Flush(); err != nil { return err } if _, err := w.fP.f.Seek(0, 0); err != nil { return err } // Don't need to calculate a checksum, so can copy directly. n, err := io.CopyBuffer(w.f.fbuf, w.fP.f, make([]byte, 1<<20)) if err != nil { return err } if uint64(n) != w.fP.pos { return fmt.Errorf("wrote %d bytes to posting temporary file, but only read back %d", w.fP.pos, n) } w.f.pos += uint64(n) if err := w.fP.Close(); err != nil { return err } if err := w.fP.Remove(); err != nil { return err } w.fP = nil return nil } type labelIndexHashEntry struct { keys []string offset uint64 } func (w *Writer) Close() error { // Even if this fails, we need to close all the files. ensureErr := w.ensureStage(idxStageDone) if w.symbolFile != nil { if err := w.symbolFile.Close(); err != nil { return err } } if w.fP != nil { if err := w.fP.Close(); err != nil { return err } } if w.fPO != nil { if err := w.fPO.Close(); err != nil { return err } } if err := w.f.Close(); err != nil { return err } return ensureErr } // StringIter iterates over a sorted list of strings. type StringIter interface { // Next advances the iterator and returns true if another value was found. Next() bool // At returns the value at the current iterator position. At() string // Err returns the last error of the iterator. Err() error } type Reader struct { b ByteSlice toc *TOC // Close that releases the underlying resources of the byte slice. c io.Closer // Map of LabelName to a list of some LabelValues's position in the offset table. // The first and last values for each name are always present. postings map[string][]postingOffset // For the v1 format, labelname -> labelvalue -> offset. postingsV1 map[string]map[string]uint64 symbols *Symbols nameSymbols map[uint32]string // Cache of the label name symbol lookups, // as there are not many and they are half of all lookups. st *labels.SymbolTable // TODO: see if we can merge this with nameSymbols. dec *Decoder version int } type postingOffset struct { value string off int } // ByteSlice abstracts a byte slice. type ByteSlice interface { Len() int Range(start, end int) []byte } type realByteSlice []byte func (b realByteSlice) Len() int { return len(b) } func (b realByteSlice) Range(start, end int) []byte { return b[start:end] } func (b realByteSlice) Sub(start, end int) ByteSlice { return b[start:end] } // NewReader returns a new index reader on the given byte slice. It automatically // handles different format versions. func NewReader(b ByteSlice) (*Reader, error) { return newReader(b, io.NopCloser(nil)) } // NewFileReader returns a new index reader against the given index file. func NewFileReader(path string) (*Reader, error) { f, err := fileutil.OpenMmapFile(path) if err != nil { return nil, err } r, err := newReader(realByteSlice(f.Bytes()), f) if err != nil { return nil, tsdb_errors.NewMulti( err, f.Close(), ).Err() } return r, nil } func newReader(b ByteSlice, c io.Closer) (*Reader, error) { r := &Reader{ b: b, c: c, postings: map[string][]postingOffset{}, st: labels.NewSymbolTable(), } // Verify header. if r.b.Len() < HeaderLen { return nil, fmt.Errorf("index header: %w", encoding.ErrInvalidSize) } if m := binary.BigEndian.Uint32(r.b.Range(0, 4)); m != MagicIndex { return nil, fmt.Errorf("invalid magic number %x", m) } r.version = int(r.b.Range(4, 5)[0]) if r.version != FormatV1 && r.version != FormatV2 { return nil, fmt.Errorf("unknown index file version %d", r.version) } var err error r.toc, err = NewTOCFromByteSlice(b) if err != nil { return nil, fmt.Errorf("read TOC: %w", err) } r.symbols, err = NewSymbols(r.b, r.version, int(r.toc.Symbols)) if err != nil { return nil, fmt.Errorf("read symbols: %w", err) } if r.version == FormatV1 { // Earlier V1 formats don't have a sorted postings offset table, so // load the whole offset table into memory. r.postingsV1 = map[string]map[string]uint64{} if err := ReadPostingsOffsetTable(r.b, r.toc.PostingsTable, func(name, value []byte, off uint64, _ int) error { if _, ok := r.postingsV1[string(name)]; !ok { r.postingsV1[string(name)] = map[string]uint64{} r.postings[string(name)] = nil // Used to get a list of labelnames in places. } r.postingsV1[string(name)][string(value)] = off return nil }); err != nil { return nil, fmt.Errorf("read postings table: %w", err) } } else { var lastName, lastValue []byte lastOff := 0 valueCount := 0 // For the postings offset table we keep every label name but only every nth // label value (plus the first and last one), to save memory. if err := ReadPostingsOffsetTable(r.b, r.toc.PostingsTable, func(name, value []byte, _ uint64, off int) error { if _, ok := r.postings[string(name)]; !ok { // Next label name. r.postings[string(name)] = []postingOffset{} if lastName != nil { // Always include last value for each label name. r.postings[string(lastName)] = append(r.postings[string(lastName)], postingOffset{value: string(lastValue), off: lastOff}) } valueCount = 0 } if valueCount%symbolFactor == 0 { r.postings[string(name)] = append(r.postings[string(name)], postingOffset{value: string(value), off: off}) lastName, lastValue = nil, nil } else { lastName, lastValue = name, value lastOff = off } valueCount++ return nil }); err != nil { return nil, fmt.Errorf("read postings table: %w", err) } if lastName != nil { r.postings[string(lastName)] = append(r.postings[string(lastName)], postingOffset{value: string(lastValue), off: lastOff}) } // Trim any extra space in the slices. for k, v := range r.postings { l := make([]postingOffset, len(v)) copy(l, v) r.postings[k] = l } } r.nameSymbols = make(map[uint32]string, len(r.postings)) for k := range r.postings { if k == "" { continue } off, err := r.symbols.ReverseLookup(k) if err != nil { return nil, fmt.Errorf("reverse symbol lookup: %w", err) } r.nameSymbols[off] = k } r.dec = &Decoder{LookupSymbol: r.lookupSymbol} return r, nil } // Version returns the file format version of the underlying index. func (r *Reader) Version() int { return r.version } // Range marks a byte range. type Range struct { Start, End int64 } // PostingsRanges returns a new map of byte range in the underlying index file // for all postings lists. func (r *Reader) PostingsRanges() (map[labels.Label]Range, error) { m := map[labels.Label]Range{} if err := ReadPostingsOffsetTable(r.b, r.toc.PostingsTable, func(name, value []byte, off uint64, _ int) error { d := encoding.NewDecbufAt(r.b, int(off), castagnoliTable) if d.Err() != nil { return d.Err() } m[labels.Label{Name: string(name), Value: string(value)}] = Range{ Start: int64(off) + 4, End: int64(off) + 4 + int64(d.Len()), } return nil }); err != nil { return nil, fmt.Errorf("read postings table: %w", err) } return m, nil } type Symbols struct { bs ByteSlice version int off int offsets []int seen int } const symbolFactor = 32 // NewSymbols returns a Symbols object for symbol lookups. func NewSymbols(bs ByteSlice, version, off int) (*Symbols, error) { s := &Symbols{ bs: bs, version: version, off: off, } d := encoding.NewDecbufAt(bs, off, castagnoliTable) var ( origLen = d.Len() cnt = d.Be32int() basePos = off + 4 ) s.offsets = make([]int, 0, 1+cnt/symbolFactor) for d.Err() == nil && s.seen < cnt { if s.seen%symbolFactor == 0 { s.offsets = append(s.offsets, basePos+origLen-d.Len()) } d.UvarintBytes() // The symbol. s.seen++ } if d.Err() != nil { return nil, d.Err() } return s, nil } func (s Symbols) Lookup(o uint32) (string, error) { d := encoding.Decbuf{ B: s.bs.Range(0, s.bs.Len()), } if s.version == FormatV2 { if int(o) >= s.seen { return "", fmt.Errorf("unknown symbol offset %d", o) } d.Skip(s.offsets[int(o/symbolFactor)]) // Walk until we find the one we want. for i := o - (o / symbolFactor * symbolFactor); i > 0; i-- { d.UvarintBytes() } } else { d.Skip(int(o)) } sym := d.UvarintStr() if d.Err() != nil { return "", d.Err() } return sym, nil } func (s Symbols) ReverseLookup(sym string) (uint32, error) { if len(s.offsets) == 0 { return 0, fmt.Errorf("unknown symbol %q - no symbols", sym) } i := sort.Search(len(s.offsets), func(i int) bool { // Any decoding errors here will be lost, however // we already read through all of this at startup. d := encoding.Decbuf{ B: s.bs.Range(0, s.bs.Len()), } d.Skip(s.offsets[i]) return yoloString(d.UvarintBytes()) > sym }) d := encoding.Decbuf{ B: s.bs.Range(0, s.bs.Len()), } if i > 0 { i-- } d.Skip(s.offsets[i]) res := i * symbolFactor var lastLen int var lastSymbol string for d.Err() == nil && res <= s.seen { lastLen = d.Len() lastSymbol = yoloString(d.UvarintBytes()) if lastSymbol >= sym { break } res++ } if d.Err() != nil { return 0, d.Err() } if lastSymbol != sym { return 0, fmt.Errorf("unknown symbol %q", sym) } if s.version == FormatV2 { return uint32(res), nil } return uint32(s.bs.Len() - lastLen), nil } func (s Symbols) Size() int { return len(s.offsets) * 8 } func (s Symbols) Iter() StringIter { d := encoding.NewDecbufAt(s.bs, s.off, castagnoliTable) cnt := d.Be32int() return &symbolsIter{ d: d, cnt: cnt, } } // symbolsIter implements StringIter. type symbolsIter struct { d encoding.Decbuf cnt int cur string err error } func (s *symbolsIter) Next() bool { if s.cnt == 0 || s.err != nil { return false } s.cur = yoloString(s.d.UvarintBytes()) s.cnt-- if s.d.Err() != nil { s.err = s.d.Err() return false } return true } func (s symbolsIter) At() string { return s.cur } func (s symbolsIter) Err() error { return s.err } // ReadPostingsOffsetTable reads the postings offset table and at the given position calls f for each // found entry. // The name and value parameters passed to f reuse the backing memory of the underlying byte slice, // so they shouldn't be persisted without previously copying them. // If f returns an error it stops decoding and returns the received error. func ReadPostingsOffsetTable(bs ByteSlice, off uint64, f func(name, value []byte, postingsOffset uint64, labelOffset int) error) error { d := encoding.NewDecbufAt(bs, int(off), castagnoliTable) startLen := d.Len() cnt := d.Be32() for d.Err() == nil && d.Len() > 0 && cnt > 0 { offsetPos := startLen - d.Len() if keyCount := d.Uvarint(); keyCount != 2 { return fmt.Errorf("unexpected number of keys for postings offset table %d", keyCount) } name := d.UvarintBytes() value := d.UvarintBytes() o := d.Uvarint64() if d.Err() != nil { break } if err := f(name, value, o, offsetPos); err != nil { return err } cnt-- } return d.Err() } // Close the reader and its underlying resources. func (r *Reader) Close() error { return r.c.Close() } func (r *Reader) lookupSymbol(ctx context.Context, o uint32) (string, error) { if s, ok := r.nameSymbols[o]; ok { return s, nil } return r.symbols.Lookup(o) } // Symbols returns an iterator over the symbols that exist within the index. func (r *Reader) Symbols() StringIter { return r.symbols.Iter() } // SymbolTableSize returns the symbol table size in bytes. func (r *Reader) SymbolTableSize() uint64 { return uint64(r.symbols.Size()) } // SortedLabelValues returns value tuples that exist for the given label name. // It is not safe to use the return value beyond the lifetime of the byte slice // passed into the Reader. func (r *Reader) SortedLabelValues(ctx context.Context, name string, matchers ...*labels.Matcher) ([]string, error) { values, err := r.LabelValues(ctx, name, matchers...) if err == nil && r.version == FormatV1 { slices.Sort(values) } return values, err } // LabelValues returns value tuples that exist for the given label name. // It is not safe to use the return value beyond the lifetime of the byte slice // passed into the Reader. // TODO(replay): Support filtering by matchers. func (r *Reader) LabelValues(ctx context.Context, name string, matchers ...*labels.Matcher) ([]string, error) { if len(matchers) > 0 { return nil, fmt.Errorf("matchers parameter is not implemented: %+v", matchers) } if r.version == FormatV1 { e, ok := r.postingsV1[name] if !ok { return nil, nil } values := make([]string, 0, len(e)) for k := range e { values = append(values, k) } return values, nil } e, ok := r.postings[name] if !ok { return nil, nil } if len(e) == 0 { return nil, nil } values := make([]string, 0, len(e)*symbolFactor) d := encoding.NewDecbufAt(r.b, int(r.toc.PostingsTable), nil) d.Skip(e[0].off) lastVal := e[len(e)-1].value skip := 0 for d.Err() == nil && ctx.Err() == nil { if skip == 0 { // These are always the same number of bytes, // and it's faster to skip than parse. skip = d.Len() d.Uvarint() // Keycount. d.UvarintBytes() // Label name. skip -= d.Len() } else { d.Skip(skip) } s := yoloString(d.UvarintBytes()) // Label value. values = append(values, s) if s == lastVal { break } d.Uvarint64() // Offset. } if d.Err() != nil { return nil, fmt.Errorf("get postings offset entry: %w", d.Err()) } return values, ctx.Err() } // LabelNamesFor returns all the label names for the series referred to by IDs. // The names returned are sorted. func (r *Reader) LabelNamesFor(ctx context.Context, ids ...storage.SeriesRef) ([]string, error) { // Gather offsetsMap the name offsetsMap in the symbol table first offsetsMap := make(map[uint32]struct{}) for _, id := range ids { if ctx.Err() != nil { return nil, ctx.Err() } offset := id // In version 2 series IDs are no longer exact references but series are 16-byte padded // and the ID is the multiple of 16 of the actual position. if r.version == FormatV2 { offset = id * seriesByteAlign } d := encoding.NewDecbufUvarintAt(r.b, int(offset), castagnoliTable) buf := d.Get() if d.Err() != nil { return nil, fmt.Errorf("get buffer for series: %w", d.Err()) } offsets, err := r.dec.LabelNamesOffsetsFor(buf) if err != nil { return nil, fmt.Errorf("get label name offsets: %w", err) } for _, off := range offsets { offsetsMap[off] = struct{}{} } } // Lookup the unique symbols. names := make([]string, 0, len(offsetsMap)) for off := range offsetsMap { name, err := r.lookupSymbol(ctx, off) if err != nil { return nil, fmt.Errorf("lookup symbol in LabelNamesFor: %w", err) } names = append(names, name) } slices.Sort(names) return names, nil } // LabelValueFor returns label value for the given label name in the series referred to by ID. func (r *Reader) LabelValueFor(ctx context.Context, id storage.SeriesRef, label string) (string, error) { offset := id // In version 2 series IDs are no longer exact references but series are 16-byte padded // and the ID is the multiple of 16 of the actual position. if r.version == FormatV2 { offset = id * seriesByteAlign } d := encoding.NewDecbufUvarintAt(r.b, int(offset), castagnoliTable) buf := d.Get() if d.Err() != nil { return "", fmt.Errorf("label values for: %w", d.Err()) } value, err := r.dec.LabelValueFor(ctx, buf, label) if err != nil { return "", storage.ErrNotFound } if value == "" { return "", storage.ErrNotFound } return value, nil } // Series reads the series with the given ID and writes its labels and chunks into builder and chks. func (r *Reader) Series(id storage.SeriesRef, builder *labels.ScratchBuilder, chks *[]chunks.Meta) error { offset := id // In version 2 series IDs are no longer exact references but series are 16-byte padded // and the ID is the multiple of 16 of the actual position. if r.version == FormatV2 { offset = id * seriesByteAlign } d := encoding.NewDecbufUvarintAt(r.b, int(offset), castagnoliTable) if d.Err() != nil { return d.Err() } builder.SetSymbolTable(r.st) builder.Reset() err := r.dec.Series(d.Get(), builder, chks) if err != nil { return fmt.Errorf("read series: %w", err) } return nil } func (r *Reader) Postings(ctx context.Context, name string, values ...string) (Postings, error) { if r.version == FormatV1 { e, ok := r.postingsV1[name] if !ok { return EmptyPostings(), nil } res := make([]Postings, 0, len(values)) for _, v := range values { postingsOff, ok := e[v] if !ok { continue } // Read from the postings table. d := encoding.NewDecbufAt(r.b, int(postingsOff), castagnoliTable) _, p, err := r.dec.Postings(d.Get()) if err != nil { return nil, fmt.Errorf("decode postings: %w", err) } res = append(res, p) } return Merge(ctx, res...), nil } e, ok := r.postings[name] if !ok { return EmptyPostings(), nil } if len(values) == 0 { return EmptyPostings(), nil } slices.Sort(values) // Values must be in order so we can step through the table on disk. res := make([]Postings, 0, len(values)) skip := 0 valueIndex := 0 for valueIndex < len(values) && values[valueIndex] < e[0].value { // Discard values before the start. valueIndex++ } for valueIndex < len(values) { value := values[valueIndex] i := sort.Search(len(e), func(i int) bool { return e[i].value >= value }) if i == len(e) { // We're past the end. break } if i > 0 && e[i].value != value { // Need to look from previous entry. i-- } // Don't Crc32 the entire postings offset table, this is very slow // so hope any issues were caught at startup. d := encoding.NewDecbufAt(r.b, int(r.toc.PostingsTable), nil) d.Skip(e[i].off) // Iterate on the offset table. var postingsOff uint64 // The offset into the postings table. for d.Err() == nil && ctx.Err() == nil { if skip == 0 { // These are always the same number of bytes, // and it's faster to skip than parse. skip = d.Len() d.Uvarint() // Keycount. d.UvarintBytes() // Label name. skip -= d.Len() } else { d.Skip(skip) } v := d.UvarintBytes() // Label value. postingsOff = d.Uvarint64() // Offset. for string(v) >= value { if string(v) == value { // Read from the postings table. d2 := encoding.NewDecbufAt(r.b, int(postingsOff), castagnoliTable) _, p, err := r.dec.Postings(d2.Get()) if err != nil { return nil, fmt.Errorf("decode postings: %w", err) } res = append(res, p) } valueIndex++ if valueIndex == len(values) { break } value = values[valueIndex] } if i+1 == len(e) || value >= e[i+1].value || valueIndex == len(values) { // Need to go to a later postings offset entry, if there is one. break } } if d.Err() != nil { return nil, fmt.Errorf("get postings offset entry: %w", d.Err()) } if ctx.Err() != nil { return nil, fmt.Errorf("get postings offset entry: %w", ctx.Err()) } } return Merge(ctx, res...), nil } // SortedPostings returns the given postings list reordered so that the backing series // are sorted. func (r *Reader) SortedPostings(p Postings) Postings { return p } // ShardedPostings returns a postings list filtered by the provided shardIndex out of shardCount. func (r *Reader) ShardedPostings(p Postings, shardIndex, shardCount uint64) Postings { var ( out = make([]storage.SeriesRef, 0, 128) bufLbls = labels.ScratchBuilder{} ) for p.Next() { id := p.At() // Get the series labels (no chunks). err := r.Series(id, &bufLbls, nil) if err != nil { return ErrPostings(fmt.Errorf("series %d not found", id)) } // Check if the series belong to the shard. if labels.StableHash(bufLbls.Labels())%shardCount != shardIndex { continue } out = append(out, id) } return NewListPostings(out) } // Size returns the size of an index file. func (r *Reader) Size() int64 { return int64(r.b.Len()) } // LabelNames returns all the unique label names present in the index. // TODO(twilkie) implement support for matchers. func (r *Reader) LabelNames(_ context.Context, matchers ...*labels.Matcher) ([]string, error) { if len(matchers) > 0 { return nil, fmt.Errorf("matchers parameter is not implemented: %+v", matchers) } labelNames := make([]string, 0, len(r.postings)) for name := range r.postings { if name == allPostingsKey.Name { // This is not from any metric. continue } labelNames = append(labelNames, name) } slices.Sort(labelNames) return labelNames, nil } // NewStringListIter returns a StringIter for the given sorted list of strings. func NewStringListIter(s []string) StringIter { return &stringListIter{l: s} } // symbolsIter implements StringIter. type stringListIter struct { l []string cur string } func (s *stringListIter) Next() bool { if len(s.l) == 0 { return false } s.cur = s.l[0] s.l = s.l[1:] return true } func (s stringListIter) At() string { return s.cur } func (s stringListIter) Err() error { return nil } // Decoder provides decoding methods for the v1 and v2 index file format. // // It currently does not contain decoding methods for all entry types but can be extended // by them if there's demand. type Decoder struct { LookupSymbol func(context.Context, uint32) (string, error) } // Postings returns a postings list for b and its number of elements. func (dec *Decoder) Postings(b []byte) (int, Postings, error) { d := encoding.Decbuf{B: b} n := d.Be32int() l := d.Get() if d.Err() != nil { return 0, nil, d.Err() } if len(l) != 4*n { return 0, nil, fmt.Errorf("unexpected postings length, should be %d bytes for %d postings, got %d bytes", 4*n, n, len(l)) } return n, newBigEndianPostings(l), nil } // LabelNamesOffsetsFor decodes the offsets of the name symbols for a given series. // They are returned in the same order they're stored, which should be sorted lexicographically. func (dec *Decoder) LabelNamesOffsetsFor(b []byte) ([]uint32, error) { d := encoding.Decbuf{B: b} k := d.Uvarint() offsets := make([]uint32, k) for i := 0; i < k; i++ { offsets[i] = uint32(d.Uvarint()) _ = d.Uvarint() // skip the label value if d.Err() != nil { return nil, fmt.Errorf("read series label offsets: %w", d.Err()) } } return offsets, d.Err() } // LabelValueFor decodes a label for a given series. func (dec *Decoder) LabelValueFor(ctx context.Context, b []byte, label string) (string, error) { d := encoding.Decbuf{B: b} k := d.Uvarint() for i := 0; i < k; i++ { lno := uint32(d.Uvarint()) lvo := uint32(d.Uvarint()) if d.Err() != nil { return "", fmt.Errorf("read series label offsets: %w", d.Err()) } ln, err := dec.LookupSymbol(ctx, lno) if err != nil { return "", fmt.Errorf("lookup label name: %w", err) } if ln == label { lv, err := dec.LookupSymbol(ctx, lvo) if err != nil { return "", fmt.Errorf("lookup label value: %w", err) } return lv, nil } } return "", d.Err() } // Series decodes a series entry from the given byte slice into builder and chks. // Previous contents of builder can be overwritten - make sure you copy before retaining. // Skips reading chunks metadata if chks is nil. func (dec *Decoder) Series(b []byte, builder *labels.ScratchBuilder, chks *[]chunks.Meta) error { builder.Reset() if chks != nil { *chks = (*chks)[:0] } d := encoding.Decbuf{B: b} k := d.Uvarint() for i := 0; i < k; i++ { lno := uint32(d.Uvarint()) lvo := uint32(d.Uvarint()) if d.Err() != nil { return fmt.Errorf("read series label offsets: %w", d.Err()) } ln, err := dec.LookupSymbol(context.TODO(), lno) if err != nil { return fmt.Errorf("lookup label name: %w", err) } lv, err := dec.LookupSymbol(context.TODO(), lvo) if err != nil { return fmt.Errorf("lookup label value: %w", err) } builder.Add(ln, lv) } // Skip reading chunks metadata if chks is nil. if chks == nil { return d.Err() } // Read the chunks meta data. k = d.Uvarint() if k == 0 { return d.Err() } t0 := d.Varint64() maxt := int64(d.Uvarint64()) + t0 ref0 := int64(d.Uvarint64()) *chks = append(*chks, chunks.Meta{ Ref: chunks.ChunkRef(ref0), MinTime: t0, MaxTime: maxt, }) t0 = maxt for i := 1; i < k; i++ { mint := int64(d.Uvarint64()) + t0 maxt := int64(d.Uvarint64()) + mint ref0 += d.Varint64() t0 = maxt if d.Err() != nil { return fmt.Errorf("read meta for chunk %d: %w", i, d.Err()) } *chks = append(*chks, chunks.Meta{ Ref: chunks.ChunkRef(ref0), MinTime: mint, MaxTime: maxt, }) } return d.Err() } func yoloString(b []byte) string { return *((*string)(unsafe.Pointer(&b))) }