// Copyright 2021 The Prometheus Authors // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package agent import ( "sync" "github.com/prometheus/prometheus/model/exemplar" "github.com/prometheus/prometheus/model/labels" "github.com/prometheus/prometheus/tsdb/chunks" ) // memSeries is a chunkless version of tsdb.memSeries. type memSeries struct { sync.Mutex ref chunks.HeadSeriesRef lset labels.Labels // Last recorded timestamp. Used by Storage.gc to determine if a series is // stale. lastTs int64 } // updateTimestamp obtains the lock on s and will attempt to update lastTs. // fails if newTs < lastTs. func (m *memSeries) updateTimestamp(newTs int64) bool { m.Lock() defer m.Unlock() if newTs >= m.lastTs { m.lastTs = newTs return true } return false } // seriesHashmap lets agent find a memSeries by its label set, via a 64-bit hash. // There is one map for the common case where the hash value is unique, and a // second map for the case that two series have the same hash value. // Each series is in only one of the maps. Its methods require the hash to be submitted // with the label set to avoid re-computing hash throughout the code. type seriesHashmap struct { unique map[uint64]*memSeries conflicts map[uint64][]*memSeries } func (m *seriesHashmap) Get(hash uint64, lset labels.Labels) *memSeries { if s, found := m.unique[hash]; found { if labels.Equal(s.lset, lset) { return s } } for _, s := range m.conflicts[hash] { if labels.Equal(s.lset, lset) { return s } } return nil } func (m *seriesHashmap) Set(hash uint64, s *memSeries) { if existing, found := m.unique[hash]; !found || labels.Equal(existing.lset, s.lset) { m.unique[hash] = s return } if m.conflicts == nil { m.conflicts = make(map[uint64][]*memSeries) } seriesSet := m.conflicts[hash] for i, prev := range seriesSet { if labels.Equal(prev.lset, s.lset) { seriesSet[i] = s return } } m.conflicts[hash] = append(seriesSet, s) } func (m *seriesHashmap) Delete(hash uint64, ref chunks.HeadSeriesRef) { var rem []*memSeries unique, found := m.unique[hash] switch { case !found: // Supplied hash is not stored. return case unique.ref == ref: conflicts := m.conflicts[hash] if len(conflicts) == 0 { // Exactly one series with this hash was stored delete(m.unique, hash) return } m.unique[hash] = conflicts[0] // First remaining series goes in 'unique'. rem = conflicts[1:] // Keep the rest. default: // The series to delete is somewhere in 'conflicts'. Keep all the ones that don't match. for _, s := range m.conflicts[hash] { if s.ref != ref { rem = append(rem, s) } } } if len(rem) == 0 { delete(m.conflicts, hash) } else { m.conflicts[hash] = rem } } // stripeSeries locks modulo ranges of IDs and hashes to reduce lock // contention. The locks are padded to not be on the same cache line. // Filling the padded space with the maps was profiled to be slower - // likely due to the additional pointer dereferences. type stripeSeries struct { size int series []map[chunks.HeadSeriesRef]*memSeries hashes []seriesHashmap exemplars []map[chunks.HeadSeriesRef]*exemplar.Exemplar locks []stripeLock gcMut sync.Mutex } type stripeLock struct { sync.RWMutex // Padding to avoid multiple locks being on the same cache line. _ [40]byte } func newStripeSeries(stripeSize int) *stripeSeries { s := &stripeSeries{ size: stripeSize, series: make([]map[chunks.HeadSeriesRef]*memSeries, stripeSize), hashes: make([]seriesHashmap, stripeSize), exemplars: make([]map[chunks.HeadSeriesRef]*exemplar.Exemplar, stripeSize), locks: make([]stripeLock, stripeSize), } for i := range s.series { s.series[i] = map[chunks.HeadSeriesRef]*memSeries{} } for i := range s.hashes { s.hashes[i] = seriesHashmap{ unique: map[uint64]*memSeries{}, conflicts: nil, // Initialized on demand in set(). } } for i := range s.exemplars { s.exemplars[i] = map[chunks.HeadSeriesRef]*exemplar.Exemplar{} } return s } // GC garbage collects old series that have not received a sample after mint // and will fully delete them. func (s *stripeSeries) GC(mint int64) map[chunks.HeadSeriesRef]struct{} { // NOTE(rfratto): GC will grab two locks, one for the hash and the other for // series. It's not valid for any other function to grab both locks, // otherwise a deadlock might occur when running GC in parallel with // appending. s.gcMut.Lock() defer s.gcMut.Unlock() deleted := map[chunks.HeadSeriesRef]struct{}{} // For one series, truncate old chunks and check if any chunks left. If not, mark as deleted and collect the ID. check := func(hashLock int, hash uint64, series *memSeries) { series.Lock() // Any series that has received a write since mint is still alive. if series.lastTs >= mint { series.Unlock() return } // The series is stale. We need to obtain a second lock for the // ref if it's different than the hash lock. refLock := int(series.ref) & (s.size - 1) if hashLock != refLock { s.locks[refLock].Lock() } deleted[series.ref] = struct{}{} delete(s.series[refLock], series.ref) s.hashes[hashLock].Delete(hash, series.ref) // Since the series is gone, we'll also delete // the latest stored exemplar. delete(s.exemplars[refLock], series.ref) if hashLock != refLock { s.locks[refLock].Unlock() } series.Unlock() } for hashLock := 0; hashLock < s.size; hashLock++ { s.locks[hashLock].Lock() for hash, all := range s.hashes[hashLock].conflicts { for _, series := range all { check(hashLock, hash, series) } } for hash, series := range s.hashes[hashLock].unique { check(hashLock, hash, series) } s.locks[hashLock].Unlock() } return deleted } func (s *stripeSeries) GetByID(id chunks.HeadSeriesRef) *memSeries { refLock := uint64(id) & uint64(s.size-1) s.locks[refLock].RLock() defer s.locks[refLock].RUnlock() return s.series[refLock][id] } func (s *stripeSeries) GetByHash(hash uint64, lset labels.Labels) *memSeries { hashLock := hash & uint64(s.size-1) s.locks[hashLock].RLock() defer s.locks[hashLock].RUnlock() return s.hashes[hashLock].Get(hash, lset) } func (s *stripeSeries) Set(hash uint64, series *memSeries) { var ( hashLock = hash & uint64(s.size-1) refLock = uint64(series.ref) & uint64(s.size-1) ) // We can't hold both locks at once otherwise we might deadlock with a // simultaneous call to GC. // // We update s.series first because GC expects anything in s.hashes to // already exist in s.series. s.locks[refLock].Lock() s.series[refLock][series.ref] = series s.locks[refLock].Unlock() s.locks[hashLock].Lock() s.hashes[hashLock].Set(hash, series) s.locks[hashLock].Unlock() } func (s *stripeSeries) GetLatestExemplar(ref chunks.HeadSeriesRef) *exemplar.Exemplar { i := uint64(ref) & uint64(s.size-1) s.locks[i].RLock() exemplar := s.exemplars[i][ref] s.locks[i].RUnlock() return exemplar } func (s *stripeSeries) SetLatestExemplar(ref chunks.HeadSeriesRef, exemplar *exemplar.Exemplar) { i := uint64(ref) & uint64(s.size-1) // Make sure that's a valid series id and record its latest exemplar s.locks[i].Lock() if s.series[i][ref] != nil { s.exemplars[i][ref] = exemplar } s.locks[i].Unlock() }