// Copyright 2013 The Prometheus Authors // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package promql import ( "container/heap" "context" "fmt" "math" "regexp" "runtime" "sort" "strconv" "sync" "sync/atomic" "time" "github.com/go-kit/kit/log" "github.com/go-kit/kit/log/level" opentracing "github.com/opentracing/opentracing-go" "github.com/prometheus/client_golang/prometheus" "github.com/prometheus/common/model" "github.com/prometheus/prometheus/pkg/gate" "github.com/prometheus/prometheus/pkg/labels" "github.com/prometheus/prometheus/pkg/timestamp" "github.com/prometheus/prometheus/pkg/value" "github.com/prometheus/prometheus/storage" "github.com/prometheus/prometheus/util/stats" ) const ( namespace = "prometheus" subsystem = "engine" queryTag = "query" env = "query execution" // The largest SampleValue that can be converted to an int64 without overflow. maxInt64 = 9223372036854774784 // The smallest SampleValue that can be converted to an int64 without underflow. minInt64 = -9223372036854775808 ) var ( // LookbackDelta determines the time since the last sample after which a time // series is considered stale. LookbackDelta = 5 * time.Minute // DefaultEvaluationInterval is the default evaluation interval of // a subquery in milliseconds. DefaultEvaluationInterval int64 ) // SetDefaultEvaluationInterval sets DefaultEvaluationInterval. func SetDefaultEvaluationInterval(ev time.Duration) { atomic.StoreInt64(&DefaultEvaluationInterval, durationToInt64Millis(ev)) } // GetDefaultEvaluationInterval returns the DefaultEvaluationInterval as time.Duration. func GetDefaultEvaluationInterval() int64 { return atomic.LoadInt64(&DefaultEvaluationInterval) } type engineMetrics struct { currentQueries prometheus.Gauge maxConcurrentQueries prometheus.Gauge queryQueueTime prometheus.Summary queryPrepareTime prometheus.Summary queryInnerEval prometheus.Summary queryResultSort prometheus.Summary } // convertibleToInt64 returns true if v does not over-/underflow an int64. func convertibleToInt64(v float64) bool { return v <= maxInt64 && v >= minInt64 } type ( // ErrQueryTimeout is returned if a query timed out during processing. ErrQueryTimeout string // ErrQueryCanceled is returned if a query was canceled during processing. ErrQueryCanceled string // ErrTooManySamples is returned if a query would load more than the maximum allowed samples into memory. ErrTooManySamples string // ErrStorage is returned if an error was encountered in the storage layer // during query handling. ErrStorage struct{ Err error } ) func (e ErrQueryTimeout) Error() string { return fmt.Sprintf("query timed out in %s", string(e)) } func (e ErrQueryCanceled) Error() string { return fmt.Sprintf("query was canceled in %s", string(e)) } func (e ErrTooManySamples) Error() string { return fmt.Sprintf("query processing would load too many samples into memory in %s", string(e)) } func (e ErrStorage) Error() string { return e.Err.Error() } // A Query is derived from an a raw query string and can be run against an engine // it is associated with. type Query interface { // Exec processes the query. Can only be called once. Exec(ctx context.Context) *Result // Close recovers memory used by the query result. Close() // Statement returns the parsed statement of the query. Statement() Statement // Stats returns statistics about the lifetime of the query. Stats() *stats.QueryTimers // Cancel signals that a running query execution should be aborted. Cancel() } // query implements the Query interface. type query struct { // Underlying data provider. queryable storage.Queryable // The original query string. q string // Statement of the parsed query. stmt Statement // Timer stats for the query execution. stats *stats.QueryTimers // Result matrix for reuse. matrix Matrix // Cancellation function for the query. cancel func() // The engine against which the query is executed. ng *Engine } // Statement implements the Query interface. func (q *query) Statement() Statement { return q.stmt } // Stats implements the Query interface. func (q *query) Stats() *stats.QueryTimers { return q.stats } // Cancel implements the Query interface. func (q *query) Cancel() { if q.cancel != nil { q.cancel() } } // Close implements the Query interface. func (q *query) Close() { for _, s := range q.matrix { putPointSlice(s.Points) } } // Exec implements the Query interface. func (q *query) Exec(ctx context.Context) *Result { if span := opentracing.SpanFromContext(ctx); span != nil { span.SetTag(queryTag, q.stmt.String()) } res, warnings, err := q.ng.exec(ctx, q) return &Result{Err: err, Value: res, Warnings: warnings} } // contextDone returns an error if the context was canceled or timed out. func contextDone(ctx context.Context, env string) error { select { case <-ctx.Done(): return contextErr(ctx.Err(), env) default: return nil } } func contextErr(err error, env string) error { switch err { case context.Canceled: return ErrQueryCanceled(env) case context.DeadlineExceeded: return ErrQueryTimeout(env) default: return err } } // EngineOpts contains configuration options used when creating a new Engine. type EngineOpts struct { Logger log.Logger Reg prometheus.Registerer MaxConcurrent int MaxSamples int Timeout time.Duration } // Engine handles the lifetime of queries from beginning to end. // It is connected to a querier. type Engine struct { logger log.Logger metrics *engineMetrics timeout time.Duration gate *gate.Gate maxSamplesPerQuery int } // NewEngine returns a new engine. func NewEngine(opts EngineOpts) *Engine { if opts.Logger == nil { opts.Logger = log.NewNopLogger() } metrics := &engineMetrics{ currentQueries: prometheus.NewGauge(prometheus.GaugeOpts{ Namespace: namespace, Subsystem: subsystem, Name: "queries", Help: "The current number of queries being executed or waiting.", }), maxConcurrentQueries: prometheus.NewGauge(prometheus.GaugeOpts{ Namespace: namespace, Subsystem: subsystem, Name: "queries_concurrent_max", Help: "The max number of concurrent queries.", }), queryQueueTime: prometheus.NewSummary(prometheus.SummaryOpts{ Namespace: namespace, Subsystem: subsystem, Name: "query_duration_seconds", Help: "Query timings", ConstLabels: prometheus.Labels{"slice": "queue_time"}, }), queryPrepareTime: prometheus.NewSummary(prometheus.SummaryOpts{ Namespace: namespace, Subsystem: subsystem, Name: "query_duration_seconds", Help: "Query timings", ConstLabels: prometheus.Labels{"slice": "prepare_time"}, }), queryInnerEval: prometheus.NewSummary(prometheus.SummaryOpts{ Namespace: namespace, Subsystem: subsystem, Name: "query_duration_seconds", Help: "Query timings", ConstLabels: prometheus.Labels{"slice": "inner_eval"}, }), queryResultSort: prometheus.NewSummary(prometheus.SummaryOpts{ Namespace: namespace, Subsystem: subsystem, Name: "query_duration_seconds", Help: "Query timings", ConstLabels: prometheus.Labels{"slice": "result_sort"}, }), } metrics.maxConcurrentQueries.Set(float64(opts.MaxConcurrent)) if opts.Reg != nil { opts.Reg.MustRegister( metrics.currentQueries, metrics.maxConcurrentQueries, metrics.queryQueueTime, metrics.queryPrepareTime, metrics.queryInnerEval, metrics.queryResultSort, ) } return &Engine{ gate: gate.New(opts.MaxConcurrent), timeout: opts.Timeout, logger: opts.Logger, metrics: metrics, maxSamplesPerQuery: opts.MaxSamples, } } // NewInstantQuery returns an evaluation query for the given expression at the given time. func (ng *Engine) NewInstantQuery(q storage.Queryable, qs string, ts time.Time) (Query, error) { expr, err := ParseExpr(qs) if err != nil { return nil, err } qry := ng.newQuery(q, expr, ts, ts, 0) qry.q = qs return qry, nil } // NewRangeQuery returns an evaluation query for the given time range and with // the resolution set by the interval. func (ng *Engine) NewRangeQuery(q storage.Queryable, qs string, start, end time.Time, interval time.Duration) (Query, error) { expr, err := ParseExpr(qs) if err != nil { return nil, err } if expr.Type() != ValueTypeVector && expr.Type() != ValueTypeScalar { return nil, fmt.Errorf("invalid expression type %q for range query, must be Scalar or instant Vector", documentedType(expr.Type())) } qry := ng.newQuery(q, expr, start, end, interval) qry.q = qs return qry, nil } func (ng *Engine) newQuery(q storage.Queryable, expr Expr, start, end time.Time, interval time.Duration) *query { es := &EvalStmt{ Expr: expr, Start: start, End: end, Interval: interval, } qry := &query{ stmt: es, ng: ng, stats: stats.NewQueryTimers(), queryable: q, } return qry } // testStmt is an internal helper statement that allows execution // of an arbitrary function during handling. It is used to test the Engine. type testStmt func(context.Context) error func (testStmt) String() string { return "test statement" } func (testStmt) stmt() {} func (ng *Engine) newTestQuery(f func(context.Context) error) Query { qry := &query{ q: "test statement", stmt: testStmt(f), ng: ng, stats: stats.NewQueryTimers(), } return qry } // exec executes the query. // // At this point per query only one EvalStmt is evaluated. Alert and record // statements are not handled by the Engine. func (ng *Engine) exec(ctx context.Context, q *query) (Value, storage.Warnings, error) { ng.metrics.currentQueries.Inc() defer ng.metrics.currentQueries.Dec() ctx, cancel := context.WithTimeout(ctx, ng.timeout) q.cancel = cancel execSpanTimer, ctx := q.stats.GetSpanTimer(ctx, stats.ExecTotalTime) defer execSpanTimer.Finish() queueSpanTimer, _ := q.stats.GetSpanTimer(ctx, stats.ExecQueueTime, ng.metrics.queryQueueTime) if err := ng.gate.Start(ctx); err != nil { return nil, nil, contextErr(err, "query queue") } defer ng.gate.Done() queueSpanTimer.Finish() // Cancel when execution is done or an error was raised. defer q.cancel() const env = "query execution" evalSpanTimer, ctx := q.stats.GetSpanTimer(ctx, stats.EvalTotalTime) defer evalSpanTimer.Finish() // The base context might already be canceled on the first iteration (e.g. during shutdown). if err := contextDone(ctx, env); err != nil { return nil, nil, err } switch s := q.Statement().(type) { case *EvalStmt: return ng.execEvalStmt(ctx, q, s) case testStmt: return nil, nil, s(ctx) } panic(fmt.Errorf("promql.Engine.exec: unhandled statement of type %T", q.Statement())) } func timeMilliseconds(t time.Time) int64 { return t.UnixNano() / int64(time.Millisecond/time.Nanosecond) } func durationMilliseconds(d time.Duration) int64 { return int64(d / (time.Millisecond / time.Nanosecond)) } // execEvalStmt evaluates the expression of an evaluation statement for the given time range. func (ng *Engine) execEvalStmt(ctx context.Context, query *query, s *EvalStmt) (Value, storage.Warnings, error) { prepareSpanTimer, ctxPrepare := query.stats.GetSpanTimer(ctx, stats.QueryPreparationTime, ng.metrics.queryPrepareTime) querier, warnings, err := ng.populateSeries(ctxPrepare, query.queryable, s) prepareSpanTimer.Finish() // XXX(fabxc): the querier returned by populateSeries might be instantiated // we must not return without closing irrespective of the error. // TODO: make this semantically saner. if querier != nil { defer querier.Close() } if err != nil { return nil, warnings, err } evalSpanTimer, _ := query.stats.GetSpanTimer(ctx, stats.InnerEvalTime, ng.metrics.queryInnerEval) // Instant evaluation. This is executed as a range evaluation with one step. if s.Start == s.End && s.Interval == 0 { start := timeMilliseconds(s.Start) evaluator := &evaluator{ startTimestamp: start, endTimestamp: start, interval: 1, ctx: ctx, maxSamples: ng.maxSamplesPerQuery, defaultEvalInterval: GetDefaultEvaluationInterval(), logger: ng.logger, } val, err := evaluator.Eval(s.Expr) if err != nil { return nil, warnings, err } evalSpanTimer.Finish() mat, ok := val.(Matrix) if !ok { panic(fmt.Errorf("promql.Engine.exec: invalid expression type %q", val.Type())) } query.matrix = mat switch s.Expr.Type() { case ValueTypeVector: // Convert matrix with one value per series into vector. vector := make(Vector, len(mat)) for i, s := range mat { // Point might have a different timestamp, force it to the evaluation // timestamp as that is when we ran the evaluation. vector[i] = Sample{Metric: s.Metric, Point: Point{V: s.Points[0].V, T: start}} } return vector, warnings, nil case ValueTypeScalar: return Scalar{V: mat[0].Points[0].V, T: start}, warnings, nil case ValueTypeMatrix: return mat, warnings, nil default: panic(fmt.Errorf("promql.Engine.exec: unexpected expression type %q", s.Expr.Type())) } } // Range evaluation. evaluator := &evaluator{ startTimestamp: timeMilliseconds(s.Start), endTimestamp: timeMilliseconds(s.End), interval: durationMilliseconds(s.Interval), ctx: ctx, maxSamples: ng.maxSamplesPerQuery, defaultEvalInterval: GetDefaultEvaluationInterval(), logger: ng.logger, } val, err := evaluator.Eval(s.Expr) if err != nil { return nil, warnings, err } evalSpanTimer.Finish() mat, ok := val.(Matrix) if !ok { panic(fmt.Errorf("promql.Engine.exec: invalid expression type %q", val.Type())) } query.matrix = mat if err := contextDone(ctx, "expression evaluation"); err != nil { return nil, warnings, err } // TODO(fabxc): order ensured by storage? // TODO(fabxc): where to ensure metric labels are a copy from the storage internals. sortSpanTimer, _ := query.stats.GetSpanTimer(ctx, stats.ResultSortTime, ng.metrics.queryResultSort) sort.Sort(mat) sortSpanTimer.Finish() return mat, warnings, nil } // cumulativeSubqueryOffset returns the sum of range and offset of all subqueries in the path. func (ng *Engine) cumulativeSubqueryOffset(path []Node) time.Duration { var subqOffset time.Duration for _, node := range path { switch n := node.(type) { case *SubqueryExpr: subqOffset += n.Range + n.Offset } } return subqOffset } func (ng *Engine) populateSeries(ctx context.Context, q storage.Queryable, s *EvalStmt) (storage.Querier, storage.Warnings, error) { var maxOffset time.Duration Inspect(s.Expr, func(node Node, path []Node) error { subqOffset := ng.cumulativeSubqueryOffset(path) switch n := node.(type) { case *VectorSelector: if maxOffset < LookbackDelta+subqOffset { maxOffset = LookbackDelta + subqOffset } if n.Offset+LookbackDelta+subqOffset > maxOffset { maxOffset = n.Offset + LookbackDelta + subqOffset } case *MatrixSelector: if maxOffset < n.Range+subqOffset { maxOffset = n.Range + subqOffset } if n.Offset+n.Range+subqOffset > maxOffset { maxOffset = n.Offset + n.Range + subqOffset } } return nil }) mint := s.Start.Add(-maxOffset) querier, err := q.Querier(ctx, timestamp.FromTime(mint), timestamp.FromTime(s.End)) if err != nil { return nil, nil, err } var warnings storage.Warnings Inspect(s.Expr, func(node Node, path []Node) error { var set storage.SeriesSet var wrn storage.Warnings params := &storage.SelectParams{ Start: timestamp.FromTime(s.Start), End: timestamp.FromTime(s.End), Step: durationToInt64Millis(s.Interval), } switch n := node.(type) { case *VectorSelector: params.Start = params.Start - durationMilliseconds(LookbackDelta) params.Func = extractFuncFromPath(path) if n.Offset > 0 { offsetMilliseconds := durationMilliseconds(n.Offset) params.Start = params.Start - offsetMilliseconds params.End = params.End - offsetMilliseconds } set, wrn, err = querier.Select(params, n.LabelMatchers...) warnings = append(warnings, wrn...) if err != nil { level.Error(ng.logger).Log("msg", "error selecting series set", "err", err) return err } n.unexpandedSeriesSet = set case *MatrixSelector: params.Func = extractFuncFromPath(path) // For all matrix queries we want to ensure that we have (end-start) + range selected // this way we have `range` data before the start time params.Start = params.Start - durationMilliseconds(n.Range) if n.Offset > 0 { offsetMilliseconds := durationMilliseconds(n.Offset) params.Start = params.Start - offsetMilliseconds params.End = params.End - offsetMilliseconds } set, wrn, err = querier.Select(params, n.LabelMatchers...) warnings = append(warnings, wrn...) if err != nil { level.Error(ng.logger).Log("msg", "error selecting series set", "err", err) return err } n.unexpandedSeriesSet = set } return nil }) return querier, warnings, err } // extractFuncFromPath walks up the path and searches for the first instance of // a function or aggregation. func extractFuncFromPath(p []Node) string { if len(p) == 0 { return "" } switch n := p[len(p)-1].(type) { case *AggregateExpr: return n.Op.String() case *Call: return n.Func.Name case *BinaryExpr: // If we hit a binary expression we terminate since we only care about functions // or aggregations over a single metric. return "" } return extractFuncFromPath(p[:len(p)-1]) } func checkForSeriesSetExpansion(ctx context.Context, expr Expr) error { switch e := expr.(type) { case *MatrixSelector: if e.series == nil { series, err := expandSeriesSet(ctx, e.unexpandedSeriesSet) if err != nil { panic(err) } else { e.series = series } } case *VectorSelector: if e.series == nil { series, err := expandSeriesSet(ctx, e.unexpandedSeriesSet) if err != nil { panic(err) } else { e.series = series } } } return nil } func expandSeriesSet(ctx context.Context, it storage.SeriesSet) (res []storage.Series, err error) { for it.Next() { select { case <-ctx.Done(): return nil, ctx.Err() default: } res = append(res, it.At()) } return res, it.Err() } // An evaluator evaluates given expressions over given fixed timestamps. It // is attached to an engine through which it connects to a querier and reports // errors. On timeout or cancellation of its context it terminates. type evaluator struct { ctx context.Context startTimestamp int64 // Start time in milliseconds. endTimestamp int64 // End time in milliseconds. interval int64 // Interval in milliseconds. maxSamples int currentSamples int defaultEvalInterval int64 logger log.Logger } // errorf causes a panic with the input formatted into an error. func (ev *evaluator) errorf(format string, args ...interface{}) { ev.error(fmt.Errorf(format, args...)) } // error causes a panic with the given error. func (ev *evaluator) error(err error) { panic(err) } // recover is the handler that turns panics into returns from the top level of evaluation. func (ev *evaluator) recover(errp *error) { e := recover() if e == nil { return } if err, ok := e.(runtime.Error); ok { // Print the stack trace but do not inhibit the running application. buf := make([]byte, 64<<10) buf = buf[:runtime.Stack(buf, false)] level.Error(ev.logger).Log("msg", "runtime panic in parser", "err", e, "stacktrace", string(buf)) *errp = fmt.Errorf("unexpected error: %s", err) } else { *errp = e.(error) } } func (ev *evaluator) Eval(expr Expr) (v Value, err error) { defer ev.recover(&err) return ev.eval(expr), nil } // EvalNodeHelper stores extra information and caches for evaluating a single node across steps. type EvalNodeHelper struct { // Evaluation timestamp. ts int64 // Vector that can be used for output. out Vector // Caches. // dropMetricName and label_*. dmn map[uint64]labels.Labels // signatureFunc. sigf map[uint64]uint64 // funcHistogramQuantile. signatureToMetricWithBuckets map[uint64]*metricWithBuckets // label_replace. regex *regexp.Regexp // For binary vector matching. rightSigs map[uint64]Sample matchedSigs map[uint64]map[uint64]struct{} resultMetric map[uint64]labels.Labels } // dropMetricName is a cached version of dropMetricName. func (enh *EvalNodeHelper) dropMetricName(l labels.Labels) labels.Labels { if enh.dmn == nil { enh.dmn = make(map[uint64]labels.Labels, len(enh.out)) } h := l.Hash() ret, ok := enh.dmn[h] if ok { return ret } ret = dropMetricName(l) enh.dmn[h] = ret return ret } // signatureFunc is a cached version of signatureFunc. func (enh *EvalNodeHelper) signatureFunc(on bool, names ...string) func(labels.Labels) uint64 { if enh.sigf == nil { enh.sigf = make(map[uint64]uint64, len(enh.out)) } f := signatureFunc(on, names...) return func(l labels.Labels) uint64 { h := l.Hash() ret, ok := enh.sigf[h] if ok { return ret } ret = f(l) enh.sigf[h] = ret return ret } } // rangeEval evaluates the given expressions, and then for each step calls // the given function with the values computed for each expression at that // step. The return value is the combination into time series of all the // function call results. func (ev *evaluator) rangeEval(f func([]Value, *EvalNodeHelper) Vector, exprs ...Expr) Matrix { numSteps := int((ev.endTimestamp-ev.startTimestamp)/ev.interval) + 1 matrixes := make([]Matrix, len(exprs)) origMatrixes := make([]Matrix, len(exprs)) originalNumSamples := ev.currentSamples for i, e := range exprs { // Functions will take string arguments from the expressions, not the values. if e != nil && e.Type() != ValueTypeString { // ev.currentSamples will be updated to the correct value within the ev.eval call. matrixes[i] = ev.eval(e).(Matrix) // Keep a copy of the original point slices so that they // can be returned to the pool. origMatrixes[i] = make(Matrix, len(matrixes[i])) copy(origMatrixes[i], matrixes[i]) } } vectors := make([]Vector, len(exprs)) // Input vectors for the function. args := make([]Value, len(exprs)) // Argument to function. // Create an output vector that is as big as the input matrix with // the most time series. biggestLen := 1 for i := range exprs { vectors[i] = make(Vector, 0, len(matrixes[i])) if len(matrixes[i]) > biggestLen { biggestLen = len(matrixes[i]) } } enh := &EvalNodeHelper{out: make(Vector, 0, biggestLen)} seriess := make(map[uint64]Series, biggestLen) // Output series by series hash. tempNumSamples := ev.currentSamples for ts := ev.startTimestamp; ts <= ev.endTimestamp; ts += ev.interval { // Reset number of samples in memory after each timestamp. ev.currentSamples = tempNumSamples // Gather input vectors for this timestamp. for i := range exprs { vectors[i] = vectors[i][:0] for si, series := range matrixes[i] { for _, point := range series.Points { if point.T == ts { if ev.currentSamples < ev.maxSamples { vectors[i] = append(vectors[i], Sample{Metric: series.Metric, Point: point}) // Move input vectors forward so we don't have to re-scan the same // past points at the next step. matrixes[i][si].Points = series.Points[1:] ev.currentSamples++ } else { ev.error(ErrTooManySamples(env)) } } break } } args[i] = vectors[i] } // Make the function call. enh.ts = ts result := f(args, enh) if result.ContainsSameLabelset() { ev.errorf("vector cannot contain metrics with the same labelset") } enh.out = result[:0] // Reuse result vector. ev.currentSamples += len(result) // When we reset currentSamples to tempNumSamples during the next iteration of the loop it also // needs to include the samples from the result here, as they're still in memory. tempNumSamples += len(result) if ev.currentSamples > ev.maxSamples { ev.error(ErrTooManySamples(env)) } // If this could be an instant query, shortcut so as not to change sort order. if ev.endTimestamp == ev.startTimestamp { mat := make(Matrix, len(result)) for i, s := range result { s.Point.T = ts mat[i] = Series{Metric: s.Metric, Points: []Point{s.Point}} } ev.currentSamples = originalNumSamples + mat.TotalSamples() return mat } // Add samples in output vector to output series. for _, sample := range result { h := sample.Metric.Hash() ss, ok := seriess[h] if !ok { ss = Series{ Metric: sample.Metric, Points: getPointSlice(numSteps), } } sample.Point.T = ts ss.Points = append(ss.Points, sample.Point) seriess[h] = ss } } // Reuse the original point slices. for _, m := range origMatrixes { for _, s := range m { putPointSlice(s.Points) } } // Assemble the output matrix. By the time we get here we know we don't have too many samples. mat := make(Matrix, 0, len(seriess)) for _, ss := range seriess { mat = append(mat, ss) } ev.currentSamples = originalNumSamples + mat.TotalSamples() return mat } // evalSubquery evaluates given SubqueryExpr and returns an equivalent // evaluated MatrixSelector in its place. Note that the Name and LabelMatchers are not set. func (ev *evaluator) evalSubquery(subq *SubqueryExpr) *MatrixSelector { val := ev.eval(subq).(Matrix) ms := &MatrixSelector{ Range: subq.Range, Offset: subq.Offset, series: make([]storage.Series, 0, len(val)), } for _, s := range val { ms.series = append(ms.series, NewStorageSeries(s)) } return ms } // eval evaluates the given expression as the given AST expression node requires. func (ev *evaluator) eval(expr Expr) Value { // This is the top-level evaluation method. // Thus, we check for timeout/cancellation here. if err := contextDone(ev.ctx, "expression evaluation"); err != nil { ev.error(err) } numSteps := int((ev.endTimestamp-ev.startTimestamp)/ev.interval) + 1 switch e := expr.(type) { case *AggregateExpr: if s, ok := e.Param.(*StringLiteral); ok { return ev.rangeEval(func(v []Value, enh *EvalNodeHelper) Vector { return ev.aggregation(e.Op, e.Grouping, e.Without, s.Val, v[0].(Vector), enh) }, e.Expr) } return ev.rangeEval(func(v []Value, enh *EvalNodeHelper) Vector { var param float64 if e.Param != nil { param = v[0].(Vector)[0].V } return ev.aggregation(e.Op, e.Grouping, e.Without, param, v[1].(Vector), enh) }, e.Param, e.Expr) case *Call: if e.Func.Name == "timestamp" { // Matrix evaluation always returns the evaluation time, // so this function needs special handling when given // a vector selector. vs, ok := e.Args[0].(*VectorSelector) if ok { return ev.rangeEval(func(v []Value, enh *EvalNodeHelper) Vector { return e.Func.Call([]Value{ev.vectorSelector(vs, enh.ts)}, e.Args, enh) }) } } // Check if the function has a matrix argument. var matrixArgIndex int var matrixArg bool for i, a := range e.Args { if _, ok := a.(*MatrixSelector); ok { matrixArgIndex = i matrixArg = true break } // SubqueryExpr can be used in place of MatrixSelector. if subq, ok := a.(*SubqueryExpr); ok { matrixArgIndex = i matrixArg = true // Replacing SubqueryExpr with MatrixSelector. e.Args[i] = ev.evalSubquery(subq) break } } if !matrixArg { // Does not have a matrix argument. return ev.rangeEval(func(v []Value, enh *EvalNodeHelper) Vector { return e.Func.Call(v, e.Args, enh) }, e.Args...) } inArgs := make([]Value, len(e.Args)) // Evaluate any non-matrix arguments. otherArgs := make([]Matrix, len(e.Args)) otherInArgs := make([]Vector, len(e.Args)) for i, e := range e.Args { if i != matrixArgIndex { otherArgs[i] = ev.eval(e).(Matrix) otherInArgs[i] = Vector{Sample{}} inArgs[i] = otherInArgs[i] } } sel := e.Args[matrixArgIndex].(*MatrixSelector) if err := checkForSeriesSetExpansion(ev.ctx, sel); err != nil { ev.error(err) } mat := make(Matrix, 0, len(sel.series)) // Output matrix. offset := durationMilliseconds(sel.Offset) selRange := durationMilliseconds(sel.Range) stepRange := selRange if stepRange > ev.interval { stepRange = ev.interval } // Reuse objects across steps to save memory allocations. points := getPointSlice(16) inMatrix := make(Matrix, 1) inArgs[matrixArgIndex] = inMatrix enh := &EvalNodeHelper{out: make(Vector, 0, 1)} // Process all the calls for one time series at a time. it := storage.NewBuffer(selRange) for i, s := range sel.series { points = points[:0] it.Reset(s.Iterator()) ss := Series{ // For all range vector functions, the only change to the // output labels is dropping the metric name so just do // it once here. Metric: dropMetricName(sel.series[i].Labels()), Points: getPointSlice(numSteps), } inMatrix[0].Metric = sel.series[i].Labels() for ts, step := ev.startTimestamp, -1; ts <= ev.endTimestamp; ts += ev.interval { step++ // Set the non-matrix arguments. // They are scalar, so it is safe to use the step number // when looking up the argument, as there will be no gaps. for j := range e.Args { if j != matrixArgIndex { otherInArgs[j][0].V = otherArgs[j][0].Points[step].V } } maxt := ts - offset mint := maxt - selRange // Evaluate the matrix selector for this series for this step. points = ev.matrixIterSlice(it, mint, maxt, points) if len(points) == 0 { continue } inMatrix[0].Points = points enh.ts = ts // Make the function call. outVec := e.Func.Call(inArgs, e.Args, enh) enh.out = outVec[:0] if len(outVec) > 0 { ss.Points = append(ss.Points, Point{V: outVec[0].Point.V, T: ts}) } // Only buffer stepRange milliseconds from the second step on. it.ReduceDelta(stepRange) } if len(ss.Points) > 0 { if ev.currentSamples < ev.maxSamples { mat = append(mat, ss) ev.currentSamples += len(ss.Points) } else { ev.error(ErrTooManySamples(env)) } } } if mat.ContainsSameLabelset() { ev.errorf("vector cannot contain metrics with the same labelset") } putPointSlice(points) return mat case *ParenExpr: return ev.eval(e.Expr) case *UnaryExpr: mat := ev.eval(e.Expr).(Matrix) if e.Op == itemSUB { for i := range mat { mat[i].Metric = dropMetricName(mat[i].Metric) for j := range mat[i].Points { mat[i].Points[j].V = -mat[i].Points[j].V } } if mat.ContainsSameLabelset() { ev.errorf("vector cannot contain metrics with the same labelset") } } return mat case *BinaryExpr: switch lt, rt := e.LHS.Type(), e.RHS.Type(); { case lt == ValueTypeScalar && rt == ValueTypeScalar: return ev.rangeEval(func(v []Value, enh *EvalNodeHelper) Vector { val := scalarBinop(e.Op, v[0].(Vector)[0].Point.V, v[1].(Vector)[0].Point.V) return append(enh.out, Sample{Point: Point{V: val}}) }, e.LHS, e.RHS) case lt == ValueTypeVector && rt == ValueTypeVector: switch e.Op { case itemLAND: return ev.rangeEval(func(v []Value, enh *EvalNodeHelper) Vector { return ev.VectorAnd(v[0].(Vector), v[1].(Vector), e.VectorMatching, enh) }, e.LHS, e.RHS) case itemLOR: return ev.rangeEval(func(v []Value, enh *EvalNodeHelper) Vector { return ev.VectorOr(v[0].(Vector), v[1].(Vector), e.VectorMatching, enh) }, e.LHS, e.RHS) case itemLUnless: return ev.rangeEval(func(v []Value, enh *EvalNodeHelper) Vector { return ev.VectorUnless(v[0].(Vector), v[1].(Vector), e.VectorMatching, enh) }, e.LHS, e.RHS) default: return ev.rangeEval(func(v []Value, enh *EvalNodeHelper) Vector { return ev.VectorBinop(e.Op, v[0].(Vector), v[1].(Vector), e.VectorMatching, e.ReturnBool, enh) }, e.LHS, e.RHS) } case lt == ValueTypeVector && rt == ValueTypeScalar: return ev.rangeEval(func(v []Value, enh *EvalNodeHelper) Vector { return ev.VectorscalarBinop(e.Op, v[0].(Vector), Scalar{V: v[1].(Vector)[0].Point.V}, false, e.ReturnBool, enh) }, e.LHS, e.RHS) case lt == ValueTypeScalar && rt == ValueTypeVector: return ev.rangeEval(func(v []Value, enh *EvalNodeHelper) Vector { return ev.VectorscalarBinop(e.Op, v[1].(Vector), Scalar{V: v[0].(Vector)[0].Point.V}, true, e.ReturnBool, enh) }, e.LHS, e.RHS) } case *NumberLiteral: return ev.rangeEval(func(v []Value, enh *EvalNodeHelper) Vector { return append(enh.out, Sample{Point: Point{V: e.Val}}) }) case *VectorSelector: if err := checkForSeriesSetExpansion(ev.ctx, e); err != nil { ev.error(err) } mat := make(Matrix, 0, len(e.series)) it := storage.NewBuffer(durationMilliseconds(LookbackDelta)) for i, s := range e.series { it.Reset(s.Iterator()) ss := Series{ Metric: e.series[i].Labels(), Points: getPointSlice(numSteps), } for ts := ev.startTimestamp; ts <= ev.endTimestamp; ts += ev.interval { _, v, ok := ev.vectorSelectorSingle(it, e, ts) if ok { if ev.currentSamples < ev.maxSamples { ss.Points = append(ss.Points, Point{V: v, T: ts}) ev.currentSamples++ } else { ev.error(ErrTooManySamples(env)) } } } if len(ss.Points) > 0 { mat = append(mat, ss) } } return mat case *MatrixSelector: if ev.startTimestamp != ev.endTimestamp { panic(fmt.Errorf("cannot do range evaluation of matrix selector")) } return ev.matrixSelector(e) case *SubqueryExpr: offsetMillis := durationToInt64Millis(e.Offset) rangeMillis := durationToInt64Millis(e.Range) newEv := &evaluator{ endTimestamp: ev.endTimestamp - offsetMillis, interval: ev.defaultEvalInterval, ctx: ev.ctx, currentSamples: ev.currentSamples, maxSamples: ev.maxSamples, defaultEvalInterval: ev.defaultEvalInterval, logger: ev.logger, } if e.Step != 0 { newEv.interval = durationToInt64Millis(e.Step) } // Start with the first timestamp after (ev.startTimestamp - offset - range) // that is aligned with the step (multiple of 'newEv.interval'). newEv.startTimestamp = newEv.interval * ((ev.startTimestamp - offsetMillis - rangeMillis) / newEv.interval) if newEv.startTimestamp < (ev.startTimestamp - offsetMillis - rangeMillis) { newEv.startTimestamp += newEv.interval } res := newEv.eval(e.Expr) ev.currentSamples = newEv.currentSamples return res } panic(fmt.Errorf("unhandled expression of type: %T", expr)) } func durationToInt64Millis(d time.Duration) int64 { return int64(d / time.Millisecond) } // vectorSelector evaluates a *VectorSelector expression. func (ev *evaluator) vectorSelector(node *VectorSelector, ts int64) Vector { if err := checkForSeriesSetExpansion(ev.ctx, node); err != nil { ev.error(err) } var ( vec = make(Vector, 0, len(node.series)) ) it := storage.NewBuffer(durationMilliseconds(LookbackDelta)) for i, s := range node.series { it.Reset(s.Iterator()) t, v, ok := ev.vectorSelectorSingle(it, node, ts) if ok { vec = append(vec, Sample{ Metric: node.series[i].Labels(), Point: Point{V: v, T: t}, }) ev.currentSamples++ } if ev.currentSamples >= ev.maxSamples { ev.error(ErrTooManySamples(env)) } } return vec } // vectorSelectorSingle evaluates a instant vector for the iterator of one time series. func (ev *evaluator) vectorSelectorSingle(it *storage.BufferedSeriesIterator, node *VectorSelector, ts int64) (int64, float64, bool) { refTime := ts - durationMilliseconds(node.Offset) var t int64 var v float64 ok := it.Seek(refTime) if !ok { if it.Err() != nil { ev.error(it.Err()) } } if ok { t, v = it.Values() } if !ok || t > refTime { t, v, ok = it.PeekBack(1) if !ok || t < refTime-durationMilliseconds(LookbackDelta) { return 0, 0, false } } if value.IsStaleNaN(v) { return 0, 0, false } return t, v, true } var pointPool = sync.Pool{} func getPointSlice(sz int) []Point { p := pointPool.Get() if p != nil { return p.([]Point) } return make([]Point, 0, sz) } func putPointSlice(p []Point) { //lint:ignore SA6002 relax staticcheck verification. pointPool.Put(p[:0]) } // matrixSelector evaluates a *MatrixSelector expression. func (ev *evaluator) matrixSelector(node *MatrixSelector) Matrix { if err := checkForSeriesSetExpansion(ev.ctx, node); err != nil { ev.error(err) } var ( offset = durationMilliseconds(node.Offset) maxt = ev.startTimestamp - offset mint = maxt - durationMilliseconds(node.Range) matrix = make(Matrix, 0, len(node.series)) ) it := storage.NewBuffer(durationMilliseconds(node.Range)) for i, s := range node.series { if err := contextDone(ev.ctx, "expression evaluation"); err != nil { ev.error(err) } it.Reset(s.Iterator()) ss := Series{ Metric: node.series[i].Labels(), } ss.Points = ev.matrixIterSlice(it, mint, maxt, getPointSlice(16)) if len(ss.Points) > 0 { matrix = append(matrix, ss) } else { putPointSlice(ss.Points) } } return matrix } // matrixIterSlice populates a matrix vector covering the requested range for a // single time series, with points retrieved from an iterator. // // As an optimization, the matrix vector may already contain points of the same // time series from the evaluation of an earlier step (with lower mint and maxt // values). Any such points falling before mint are discarded; points that fall // into the [mint, maxt] range are retained; only points with later timestamps // are populated from the iterator. func (ev *evaluator) matrixIterSlice(it *storage.BufferedSeriesIterator, mint, maxt int64, out []Point) []Point { if len(out) > 0 && out[len(out)-1].T >= mint { // There is an overlap between previous and current ranges, retain common // points. In most such cases: // (a) the overlap is significantly larger than the eval step; and/or // (b) the number of samples is relatively small. // so a linear search will be as fast as a binary search. var drop int for drop = 0; out[drop].T < mint; drop++ { } copy(out, out[drop:]) out = out[:len(out)-drop] // Only append points with timestamps after the last timestamp we have. mint = out[len(out)-1].T + 1 } else { out = out[:0] } ok := it.Seek(maxt) if !ok { if it.Err() != nil { ev.error(it.Err()) } } buf := it.Buffer() for buf.Next() { t, v := buf.At() if value.IsStaleNaN(v) { continue } // Values in the buffer are guaranteed to be smaller than maxt. if t >= mint { if ev.currentSamples >= ev.maxSamples { ev.error(ErrTooManySamples(env)) } out = append(out, Point{T: t, V: v}) ev.currentSamples++ } } // The seeked sample might also be in the range. if ok { t, v := it.Values() if t == maxt && !value.IsStaleNaN(v) { if ev.currentSamples >= ev.maxSamples { ev.error(ErrTooManySamples(env)) } out = append(out, Point{T: t, V: v}) ev.currentSamples++ } } return out } func (ev *evaluator) VectorAnd(lhs, rhs Vector, matching *VectorMatching, enh *EvalNodeHelper) Vector { if matching.Card != CardManyToMany { panic("set operations must only use many-to-many matching") } sigf := enh.signatureFunc(matching.On, matching.MatchingLabels...) // The set of signatures for the right-hand side Vector. rightSigs := map[uint64]struct{}{} // Add all rhs samples to a map so we can easily find matches later. for _, rs := range rhs { rightSigs[sigf(rs.Metric)] = struct{}{} } for _, ls := range lhs { // If there's a matching entry in the right-hand side Vector, add the sample. if _, ok := rightSigs[sigf(ls.Metric)]; ok { enh.out = append(enh.out, ls) } } return enh.out } func (ev *evaluator) VectorOr(lhs, rhs Vector, matching *VectorMatching, enh *EvalNodeHelper) Vector { if matching.Card != CardManyToMany { panic("set operations must only use many-to-many matching") } sigf := enh.signatureFunc(matching.On, matching.MatchingLabels...) leftSigs := map[uint64]struct{}{} // Add everything from the left-hand-side Vector. for _, ls := range lhs { leftSigs[sigf(ls.Metric)] = struct{}{} enh.out = append(enh.out, ls) } // Add all right-hand side elements which have not been added from the left-hand side. for _, rs := range rhs { if _, ok := leftSigs[sigf(rs.Metric)]; !ok { enh.out = append(enh.out, rs) } } return enh.out } func (ev *evaluator) VectorUnless(lhs, rhs Vector, matching *VectorMatching, enh *EvalNodeHelper) Vector { if matching.Card != CardManyToMany { panic("set operations must only use many-to-many matching") } sigf := enh.signatureFunc(matching.On, matching.MatchingLabels...) rightSigs := map[uint64]struct{}{} for _, rs := range rhs { rightSigs[sigf(rs.Metric)] = struct{}{} } for _, ls := range lhs { if _, ok := rightSigs[sigf(ls.Metric)]; !ok { enh.out = append(enh.out, ls) } } return enh.out } // VectorBinop evaluates a binary operation between two Vectors, excluding set operators. func (ev *evaluator) VectorBinop(op ItemType, lhs, rhs Vector, matching *VectorMatching, returnBool bool, enh *EvalNodeHelper) Vector { if matching.Card == CardManyToMany { panic("many-to-many only allowed for set operators") } sigf := enh.signatureFunc(matching.On, matching.MatchingLabels...) // The control flow below handles one-to-one or many-to-one matching. // For one-to-many, swap sidedness and account for the swap when calculating // values. if matching.Card == CardOneToMany { lhs, rhs = rhs, lhs } // All samples from the rhs hashed by the matching label/values. if enh.rightSigs == nil { enh.rightSigs = make(map[uint64]Sample, len(enh.out)) } else { for k := range enh.rightSigs { delete(enh.rightSigs, k) } } rightSigs := enh.rightSigs // Add all rhs samples to a map so we can easily find matches later. for _, rs := range rhs { sig := sigf(rs.Metric) // The rhs is guaranteed to be the 'one' side. Having multiple samples // with the same signature means that the matching is many-to-many. if _, found := rightSigs[sig]; found { // Many-to-many matching not allowed. ev.errorf("many-to-many matching not allowed: matching labels must be unique on one side") } rightSigs[sig] = rs } // Tracks the match-signature. For one-to-one operations the value is nil. For many-to-one // the value is a set of signatures to detect duplicated result elements. if enh.matchedSigs == nil { enh.matchedSigs = make(map[uint64]map[uint64]struct{}, len(rightSigs)) } else { for k := range enh.matchedSigs { delete(enh.matchedSigs, k) } } matchedSigs := enh.matchedSigs // For all lhs samples find a respective rhs sample and perform // the binary operation. for _, ls := range lhs { sig := sigf(ls.Metric) rs, found := rightSigs[sig] // Look for a match in the rhs Vector. if !found { continue } // Account for potentially swapped sidedness. vl, vr := ls.V, rs.V if matching.Card == CardOneToMany { vl, vr = vr, vl } value, keep := vectorElemBinop(op, vl, vr) if returnBool { if keep { value = 1.0 } else { value = 0.0 } } else if !keep { continue } metric := resultMetric(ls.Metric, rs.Metric, op, matching, enh) insertedSigs, exists := matchedSigs[sig] if matching.Card == CardOneToOne { if exists { ev.errorf("multiple matches for labels: many-to-one matching must be explicit (group_left/group_right)") } matchedSigs[sig] = nil // Set existence to true. } else { // In many-to-one matching the grouping labels have to ensure a unique metric // for the result Vector. Check whether those labels have already been added for // the same matching labels. insertSig := metric.Hash() if !exists { insertedSigs = map[uint64]struct{}{} matchedSigs[sig] = insertedSigs } else if _, duplicate := insertedSigs[insertSig]; duplicate { ev.errorf("multiple matches for labels: grouping labels must ensure unique matches") } insertedSigs[insertSig] = struct{}{} } enh.out = append(enh.out, Sample{ Metric: metric, Point: Point{V: value}, }) } return enh.out } // signatureFunc returns a function that calculates the signature for a metric // ignoring the provided labels. If on, then the given labels are only used instead. func signatureFunc(on bool, names ...string) func(labels.Labels) uint64 { // TODO(fabxc): ensure names are sorted and then use that and sortedness // of labels by names to speed up the operations below. // Alternatively, inline the hashing and don't build new label sets. if on { return func(lset labels.Labels) uint64 { return lset.HashForLabels(names...) } } return func(lset labels.Labels) uint64 { return lset.HashWithoutLabels(names...) } } // resultMetric returns the metric for the given sample(s) based on the Vector // binary operation and the matching options. func resultMetric(lhs, rhs labels.Labels, op ItemType, matching *VectorMatching, enh *EvalNodeHelper) labels.Labels { if enh.resultMetric == nil { enh.resultMetric = make(map[uint64]labels.Labels, len(enh.out)) } // op and matching are always the same for a given node, so // there's no need to include them in the hash key. // If the lhs and rhs are the same then the xor would be 0, // so add in one side to protect against that. lh := lhs.Hash() h := (lh ^ rhs.Hash()) + lh if ret, ok := enh.resultMetric[h]; ok { return ret } lb := labels.NewBuilder(lhs) if shouldDropMetricName(op) { lb.Del(labels.MetricName) } if matching.Card == CardOneToOne { if matching.On { Outer: for _, l := range lhs { for _, n := range matching.MatchingLabels { if l.Name == n { continue Outer } } lb.Del(l.Name) } } else { lb.Del(matching.MatchingLabels...) } } for _, ln := range matching.Include { // Included labels from the `group_x` modifier are taken from the "one"-side. if v := rhs.Get(ln); v != "" { lb.Set(ln, v) } else { lb.Del(ln) } } ret := lb.Labels() enh.resultMetric[h] = ret return ret } // VectorscalarBinop evaluates a binary operation between a Vector and a Scalar. func (ev *evaluator) VectorscalarBinop(op ItemType, lhs Vector, rhs Scalar, swap, returnBool bool, enh *EvalNodeHelper) Vector { for _, lhsSample := range lhs { lv, rv := lhsSample.V, rhs.V // lhs always contains the Vector. If the original position was different // swap for calculating the value. if swap { lv, rv = rv, lv } value, keep := vectorElemBinop(op, lv, rv) if returnBool { if keep { value = 1.0 } else { value = 0.0 } keep = true } if keep { lhsSample.V = value if shouldDropMetricName(op) || returnBool { lhsSample.Metric = enh.dropMetricName(lhsSample.Metric) } enh.out = append(enh.out, lhsSample) } } return enh.out } func dropMetricName(l labels.Labels) labels.Labels { return labels.NewBuilder(l).Del(labels.MetricName).Labels() } // scalarBinop evaluates a binary operation between two Scalars. func scalarBinop(op ItemType, lhs, rhs float64) float64 { switch op { case itemADD: return lhs + rhs case itemSUB: return lhs - rhs case itemMUL: return lhs * rhs case itemDIV: return lhs / rhs case itemPOW: return math.Pow(lhs, rhs) case itemMOD: return math.Mod(lhs, rhs) case itemEQL: return btos(lhs == rhs) case itemNEQ: return btos(lhs != rhs) case itemGTR: return btos(lhs > rhs) case itemLSS: return btos(lhs < rhs) case itemGTE: return btos(lhs >= rhs) case itemLTE: return btos(lhs <= rhs) } panic(fmt.Errorf("operator %q not allowed for Scalar operations", op)) } // vectorElemBinop evaluates a binary operation between two Vector elements. func vectorElemBinop(op ItemType, lhs, rhs float64) (float64, bool) { switch op { case itemADD: return lhs + rhs, true case itemSUB: return lhs - rhs, true case itemMUL: return lhs * rhs, true case itemDIV: return lhs / rhs, true case itemPOW: return math.Pow(lhs, rhs), true case itemMOD: return math.Mod(lhs, rhs), true case itemEQL: return lhs, lhs == rhs case itemNEQ: return lhs, lhs != rhs case itemGTR: return lhs, lhs > rhs case itemLSS: return lhs, lhs < rhs case itemGTE: return lhs, lhs >= rhs case itemLTE: return lhs, lhs <= rhs } panic(fmt.Errorf("operator %q not allowed for operations between Vectors", op)) } type groupedAggregation struct { labels labels.Labels value float64 mean float64 groupCount int heap vectorByValueHeap reverseHeap vectorByReverseValueHeap } // aggregation evaluates an aggregation operation on a Vector. func (ev *evaluator) aggregation(op ItemType, grouping []string, without bool, param interface{}, vec Vector, enh *EvalNodeHelper) Vector { result := map[uint64]*groupedAggregation{} var k int64 if op == itemTopK || op == itemBottomK { f := param.(float64) if !convertibleToInt64(f) { ev.errorf("Scalar value %v overflows int64", f) } k = int64(f) if k < 1 { return Vector{} } } var q float64 if op == itemQuantile { q = param.(float64) } var valueLabel string if op == itemCountValues { valueLabel = param.(string) if !model.LabelName(valueLabel).IsValid() { ev.errorf("invalid label name %q", valueLabel) } if !without { grouping = append(grouping, valueLabel) } } for _, s := range vec { metric := s.Metric if op == itemCountValues { lb := labels.NewBuilder(metric) lb.Set(valueLabel, strconv.FormatFloat(s.V, 'f', -1, 64)) metric = lb.Labels() } var ( groupingKey uint64 ) if without { groupingKey = metric.HashWithoutLabels(grouping...) } else { groupingKey = metric.HashForLabels(grouping...) } group, ok := result[groupingKey] // Add a new group if it doesn't exist. if !ok { var m labels.Labels if without { lb := labels.NewBuilder(metric) lb.Del(grouping...) lb.Del(labels.MetricName) m = lb.Labels() } else { m = make(labels.Labels, 0, len(grouping)) for _, l := range metric { for _, n := range grouping { if l.Name == n { m = append(m, l) break } } } sort.Sort(m) } result[groupingKey] = &groupedAggregation{ labels: m, value: s.V, mean: s.V, groupCount: 1, } inputVecLen := int64(len(vec)) resultSize := k if k > inputVecLen { resultSize = inputVecLen } if op == itemStdvar || op == itemStddev { result[groupingKey].value = 0.0 } else if op == itemTopK || op == itemQuantile { result[groupingKey].heap = make(vectorByValueHeap, 0, resultSize) heap.Push(&result[groupingKey].heap, &Sample{ Point: Point{V: s.V}, Metric: s.Metric, }) } else if op == itemBottomK { result[groupingKey].reverseHeap = make(vectorByReverseValueHeap, 0, resultSize) heap.Push(&result[groupingKey].reverseHeap, &Sample{ Point: Point{V: s.V}, Metric: s.Metric, }) } continue } switch op { case itemSum: group.value += s.V case itemAvg: group.groupCount++ group.mean += (s.V - group.mean) / float64(group.groupCount) case itemMax: if group.value < s.V || math.IsNaN(group.value) { group.value = s.V } case itemMin: if group.value > s.V || math.IsNaN(group.value) { group.value = s.V } case itemCount, itemCountValues: group.groupCount++ case itemStdvar, itemStddev: group.groupCount++ delta := s.V - group.mean group.mean += delta / float64(group.groupCount) group.value += delta * (s.V - group.mean) case itemTopK: if int64(len(group.heap)) < k || group.heap[0].V < s.V || math.IsNaN(group.heap[0].V) { if int64(len(group.heap)) == k { heap.Pop(&group.heap) } heap.Push(&group.heap, &Sample{ Point: Point{V: s.V}, Metric: s.Metric, }) } case itemBottomK: if int64(len(group.reverseHeap)) < k || group.reverseHeap[0].V > s.V || math.IsNaN(group.reverseHeap[0].V) { if int64(len(group.reverseHeap)) == k { heap.Pop(&group.reverseHeap) } heap.Push(&group.reverseHeap, &Sample{ Point: Point{V: s.V}, Metric: s.Metric, }) } case itemQuantile: group.heap = append(group.heap, s) default: panic(fmt.Errorf("expected aggregation operator but got %q", op)) } } // Construct the result Vector from the aggregated groups. for _, aggr := range result { switch op { case itemAvg: aggr.value = aggr.mean case itemCount, itemCountValues: aggr.value = float64(aggr.groupCount) case itemStdvar: aggr.value = aggr.value / float64(aggr.groupCount) case itemStddev: aggr.value = math.Sqrt(aggr.value / float64(aggr.groupCount)) case itemTopK: // The heap keeps the lowest value on top, so reverse it. sort.Sort(sort.Reverse(aggr.heap)) for _, v := range aggr.heap { enh.out = append(enh.out, Sample{ Metric: v.Metric, Point: Point{V: v.V}, }) } continue // Bypass default append. case itemBottomK: // The heap keeps the lowest value on top, so reverse it. sort.Sort(sort.Reverse(aggr.reverseHeap)) for _, v := range aggr.reverseHeap { enh.out = append(enh.out, Sample{ Metric: v.Metric, Point: Point{V: v.V}, }) } continue // Bypass default append. case itemQuantile: aggr.value = quantile(q, aggr.heap) default: // For other aggregations, we already have the right value. } enh.out = append(enh.out, Sample{ Metric: aggr.labels, Point: Point{V: aggr.value}, }) } return enh.out } // btos returns 1 if b is true, 0 otherwise. func btos(b bool) float64 { if b { return 1 } return 0 } // shouldDropMetricName returns whether the metric name should be dropped in the // result of the op operation. func shouldDropMetricName(op ItemType) bool { switch op { case itemADD, itemSUB, itemDIV, itemMUL, itemMOD: return true default: return false } } // documentedType returns the internal type to the equivalent // user facing terminology as defined in the documentation. func documentedType(t ValueType) string { switch t { case "vector": return "instant vector" case "matrix": return "range vector" default: return string(t) } }