// Copyright 2015 The Prometheus Authors // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package parser import ( "errors" "fmt" "math" "os" "runtime" "strconv" "strings" "sync" "time" "github.com/prometheus/common/model" "github.com/prometheus/prometheus/model/histogram" "github.com/prometheus/prometheus/model/labels" "github.com/prometheus/prometheus/model/timestamp" "github.com/prometheus/prometheus/promql/parser/posrange" "github.com/prometheus/prometheus/util/strutil" ) var parserPool = sync.Pool{ New: func() interface{} { return &parser{} }, } type Parser interface { ParseExpr() (Expr, error) Close() } type parser struct { lex Lexer inject ItemType injecting bool // functions contains all functions supported by the parser instance. functions map[string]*Function // Everytime an Item is lexed that could be the end // of certain expressions its end position is stored here. lastClosing posrange.Pos yyParser yyParserImpl generatedParserResult interface{} parseErrors ParseErrors } type Opt func(p *parser) func WithFunctions(functions map[string]*Function) Opt { return func(p *parser) { p.functions = functions } } // NewParser returns a new parser. func NewParser(input string, opts ...Opt) *parser { //nolint:revive // unexported-return. p := parserPool.Get().(*parser) p.functions = Functions p.injecting = false p.parseErrors = nil p.generatedParserResult = nil // Clear lexer struct before reusing. p.lex = Lexer{ input: input, state: lexStatements, } // Apply user define options. for _, opt := range opts { opt(p) } return p } func (p *parser) ParseExpr() (expr Expr, err error) { defer p.recover(&err) parseResult := p.parseGenerated(START_EXPRESSION) if parseResult != nil { expr = parseResult.(Expr) } // Only typecheck when there are no syntax errors. if len(p.parseErrors) == 0 { p.checkAST(expr) } if len(p.parseErrors) != 0 { err = p.parseErrors } return expr, err } func (p *parser) Close() { defer parserPool.Put(p) } // ParseErr wraps a parsing error with line and position context. type ParseErr struct { PositionRange posrange.PositionRange Err error Query string // LineOffset is an additional line offset to be added. Only used inside unit tests. LineOffset int } func (e *ParseErr) Error() string { return fmt.Sprintf("%s: parse error: %s", e.PositionRange.StartPosInput(e.Query, e.LineOffset), e.Err) } type ParseErrors []ParseErr // Since producing multiple error messages might look weird when combined with error wrapping, // only the first error produced by the parser is included in the error string. // If getting the full error list is desired, it is recommended to typecast the error returned // by the parser to ParseErrors and work with the underlying slice. func (errs ParseErrors) Error() string { if len(errs) != 0 { return errs[0].Error() } // Should never happen // Panicking while printing an error seems like a bad idea, so the // situation is explained in the error message instead. return "error contains no error message" } // EnrichParseError enriches a single or list of parse errors (used for unit tests and promtool). func EnrichParseError(err error, enrich func(parseErr *ParseErr)) { var parseErr *ParseErr if errors.As(err, &parseErr) { enrich(parseErr) } var parseErrors ParseErrors if errors.As(err, &parseErrors) { for i, e := range parseErrors { enrich(&e) parseErrors[i] = e } } } // ParseExpr returns the expression parsed from the input. func ParseExpr(input string) (expr Expr, err error) { p := NewParser(input) defer p.Close() return p.ParseExpr() } // ParseMetric parses the input into a metric. func ParseMetric(input string) (m labels.Labels, err error) { p := NewParser(input) defer p.Close() defer p.recover(&err) parseResult := p.parseGenerated(START_METRIC) if parseResult != nil { m = parseResult.(labels.Labels) } if len(p.parseErrors) != 0 { err = p.parseErrors } return m, err } // ParseMetricSelector parses the provided textual metric selector into a list of // label matchers. func ParseMetricSelector(input string) (m []*labels.Matcher, err error) { p := NewParser(input) defer p.Close() defer p.recover(&err) parseResult := p.parseGenerated(START_METRIC_SELECTOR) if parseResult != nil { m = parseResult.(*VectorSelector).LabelMatchers } if len(p.parseErrors) != 0 { err = p.parseErrors } return m, err } // ParseMetricSelectors parses a list of provided textual metric selectors into lists of // label matchers. func ParseMetricSelectors(matchers []string) (m [][]*labels.Matcher, err error) { var matcherSets [][]*labels.Matcher for _, s := range matchers { matchers, err := ParseMetricSelector(s) if err != nil { return nil, err } matcherSets = append(matcherSets, matchers) } return matcherSets, nil } // SequenceValue is an omittable value in a sequence of time series values. type SequenceValue struct { Value float64 Omitted bool Histogram *histogram.FloatHistogram } func (v SequenceValue) String() string { if v.Omitted { return "_" } if v.Histogram != nil { return v.Histogram.String() } return fmt.Sprintf("%f", v.Value) } type seriesDescription struct { labels labels.Labels values []SequenceValue } // ParseSeriesDesc parses the description of a time series. func ParseSeriesDesc(input string) (labels labels.Labels, values []SequenceValue, err error) { p := NewParser(input) p.lex.seriesDesc = true defer p.Close() defer p.recover(&err) parseResult := p.parseGenerated(START_SERIES_DESCRIPTION) if parseResult != nil { result := parseResult.(*seriesDescription) labels = result.labels values = result.values } if len(p.parseErrors) != 0 { err = p.parseErrors } return labels, values, err } // addParseErrf formats the error and appends it to the list of parsing errors. func (p *parser) addParseErrf(positionRange posrange.PositionRange, format string, args ...interface{}) { p.addParseErr(positionRange, fmt.Errorf(format, args...)) } // addParseErr appends the provided error to the list of parsing errors. func (p *parser) addParseErr(positionRange posrange.PositionRange, err error) { perr := ParseErr{ PositionRange: positionRange, Err: err, Query: p.lex.input, } p.parseErrors = append(p.parseErrors, perr) } func (p *parser) addSemanticError(err error) { p.addParseErr(p.yyParser.lval.item.PositionRange(), err) } // unexpected creates a parser error complaining about an unexpected lexer item. // The item that is presented as unexpected is always the last item produced // by the lexer. func (p *parser) unexpected(context, expected string) { var errMsg strings.Builder // Do not report lexer errors twice if p.yyParser.lval.item.Typ == ERROR { return } errMsg.WriteString("unexpected ") errMsg.WriteString(p.yyParser.lval.item.desc()) if context != "" { errMsg.WriteString(" in ") errMsg.WriteString(context) } if expected != "" { errMsg.WriteString(", expected ") errMsg.WriteString(expected) } p.addParseErr(p.yyParser.lval.item.PositionRange(), errors.New(errMsg.String())) } var errUnexpected = errors.New("unexpected error") // recover is the handler that turns panics into returns from the top level of Parse. func (p *parser) recover(errp *error) { e := recover() switch _, ok := e.(runtime.Error); { case ok: // Print the stack trace but do not inhibit the running application. buf := make([]byte, 64<<10) buf = buf[:runtime.Stack(buf, false)] fmt.Fprintf(os.Stderr, "parser panic: %v\n%s", e, buf) *errp = errUnexpected case e != nil: *errp = e.(error) } } // Lex is expected by the yyLexer interface of the yacc generated parser. // It writes the next Item provided by the lexer to the provided pointer address. // Comments are skipped. // // The yyLexer interface is currently implemented by the parser to allow // the generated and non-generated parts to work together with regards to lookahead // and error handling. // // For more information, see https://pkg.go.dev/golang.org/x/tools/cmd/goyacc. func (p *parser) Lex(lval *yySymType) int { var typ ItemType if p.injecting { p.injecting = false return int(p.inject) } // Skip comments. for { p.lex.NextItem(&lval.item) typ = lval.item.Typ if typ != COMMENT { break } } switch typ { case ERROR: pos := posrange.PositionRange{ Start: p.lex.start, End: posrange.Pos(len(p.lex.input)), } p.addParseErr(pos, errors.New(p.yyParser.lval.item.Val)) // Tells yacc that this is the end of input. return 0 case EOF: lval.item.Typ = EOF p.InjectItem(0) case RIGHT_BRACE, RIGHT_PAREN, RIGHT_BRACKET, DURATION, NUMBER: p.lastClosing = lval.item.Pos + posrange.Pos(len(lval.item.Val)) } return int(typ) } // Error is expected by the yyLexer interface of the yacc generated parser. // // It is a no-op since the parsers error routines are triggered // by mechanisms that allow more fine-grained control // For more information, see https://pkg.go.dev/golang.org/x/tools/cmd/goyacc. func (p *parser) Error(string) { } // InjectItem allows injecting a single Item at the beginning of the token stream // consumed by the generated parser. // This allows having multiple start symbols as described in // https://www.gnu.org/software/bison/manual/html_node/Multiple-start_002dsymbols.html . // Only the Lex function used by the generated parser is affected by this injected Item. // Trying to inject when a previously injected Item has not yet been consumed will panic. // Only Item types that are supposed to be used as start symbols are allowed as an argument. func (p *parser) InjectItem(typ ItemType) { if p.injecting { panic("cannot inject multiple Items into the token stream") } if typ != 0 && (typ <= startSymbolsStart || typ >= startSymbolsEnd) { panic("cannot inject symbol that isn't start symbol") } p.inject = typ p.injecting = true } func (p *parser) newBinaryExpression(lhs Node, op Item, modifiers, rhs Node) *BinaryExpr { ret := modifiers.(*BinaryExpr) ret.LHS = lhs.(Expr) ret.RHS = rhs.(Expr) ret.Op = op.Typ return ret } func (p *parser) assembleVectorSelector(vs *VectorSelector) { // If the metric name was set outside the braces, add a matcher for it. // If the metric name was inside the braces we don't need to do anything. if vs.Name != "" { nameMatcher, err := labels.NewMatcher(labels.MatchEqual, labels.MetricName, vs.Name) if err != nil { panic(err) // Must not happen with labels.MatchEqual } vs.LabelMatchers = append(vs.LabelMatchers, nameMatcher) } } func (p *parser) newAggregateExpr(op Item, modifier, args Node) (ret *AggregateExpr) { ret = modifier.(*AggregateExpr) arguments := args.(Expressions) ret.PosRange = posrange.PositionRange{ Start: op.Pos, End: p.lastClosing, } ret.Op = op.Typ if len(arguments) == 0 { p.addParseErrf(ret.PositionRange(), "no arguments for aggregate expression provided") // Prevents invalid array accesses. return } desiredArgs := 1 if ret.Op.IsAggregatorWithParam() { if !EnableExperimentalFunctions && (ret.Op == LIMITK || ret.Op == LIMIT_RATIO) { p.addParseErrf(ret.PositionRange(), "limitk() and limit_ratio() are experimental and must be enabled with --enable-feature=promql-experimental-functions") return } desiredArgs = 2 ret.Param = arguments[0] } if len(arguments) != desiredArgs { p.addParseErrf(ret.PositionRange(), "wrong number of arguments for aggregate expression provided, expected %d, got %d", desiredArgs, len(arguments)) return } ret.Expr = arguments[desiredArgs-1] return ret } // newMap is used when building the FloatHistogram from a map. func (p *parser) newMap() (ret map[string]interface{}) { return map[string]interface{}{} } // mergeMaps is used to combine maps as they're used to later build the Float histogram. // This will merge the right map into the left map. func (p *parser) mergeMaps(left, right *map[string]interface{}) (ret *map[string]interface{}) { for key, value := range *right { if _, ok := (*left)[key]; ok { p.addParseErrf(posrange.PositionRange{}, "duplicate key \"%s\" in histogram", key) continue } (*left)[key] = value } return left } func (p *parser) histogramsIncreaseSeries(base, inc *histogram.FloatHistogram, times uint64) ([]SequenceValue, error) { return p.histogramsSeries(base, inc, times, func(a, b *histogram.FloatHistogram) (*histogram.FloatHistogram, error) { return a.Add(b) }) } func (p *parser) histogramsDecreaseSeries(base, inc *histogram.FloatHistogram, times uint64) ([]SequenceValue, error) { return p.histogramsSeries(base, inc, times, func(a, b *histogram.FloatHistogram) (*histogram.FloatHistogram, error) { return a.Sub(b) }) } func (p *parser) histogramsSeries(base, inc *histogram.FloatHistogram, times uint64, combine func(*histogram.FloatHistogram, *histogram.FloatHistogram) (*histogram.FloatHistogram, error), ) ([]SequenceValue, error) { ret := make([]SequenceValue, times+1) // Add an additional value (the base) for time 0, which we ignore in tests. ret[0] = SequenceValue{Histogram: base} cur := base for i := uint64(1); i <= times; i++ { if cur.Schema > inc.Schema { return nil, fmt.Errorf("error combining histograms: cannot merge from schema %d to %d", inc.Schema, cur.Schema) } var err error cur, err = combine(cur.Copy(), inc) if err != nil { return ret, err } ret[i] = SequenceValue{Histogram: cur} } return ret, nil } // buildHistogramFromMap is used in the grammar to take then individual parts of the histogram and complete it. func (p *parser) buildHistogramFromMap(desc *map[string]interface{}) *histogram.FloatHistogram { output := &histogram.FloatHistogram{} val, ok := (*desc)["schema"] if ok { schema, ok := val.(int64) if ok { output.Schema = int32(schema) } else { p.addParseErrf(p.yyParser.lval.item.PositionRange(), "error parsing schema number: %v", val) } } val, ok = (*desc)["sum"] if ok { sum, ok := val.(float64) if ok { output.Sum = sum } else { p.addParseErrf(p.yyParser.lval.item.PositionRange(), "error parsing sum number: %v", val) } } val, ok = (*desc)["count"] if ok { count, ok := val.(float64) if ok { output.Count = count } else { p.addParseErrf(p.yyParser.lval.item.PositionRange(), "error parsing count number: %v", val) } } val, ok = (*desc)["z_bucket"] if ok { bucket, ok := val.(float64) if ok { output.ZeroCount = bucket } else { p.addParseErrf(p.yyParser.lval.item.PositionRange(), "error parsing z_bucket number: %v", val) } } val, ok = (*desc)["z_bucket_w"] if ok { bucketWidth, ok := val.(float64) if ok { output.ZeroThreshold = bucketWidth } else { p.addParseErrf(p.yyParser.lval.item.PositionRange(), "error parsing z_bucket_w number: %v", val) } } val, ok = (*desc)["custom_values"] if ok { customValues, ok := val.([]float64) if ok { output.CustomValues = customValues } else { p.addParseErrf(p.yyParser.lval.item.PositionRange(), "error parsing custom_values: %v", val) } } val, ok = (*desc)["counter_reset_hint"] if ok { resetHint, ok := val.(Item) if ok { switch resetHint.Typ { case UNKNOWN_COUNTER_RESET: output.CounterResetHint = histogram.UnknownCounterReset case COUNTER_RESET: output.CounterResetHint = histogram.CounterReset case NOT_COUNTER_RESET: output.CounterResetHint = histogram.NotCounterReset case GAUGE_TYPE: output.CounterResetHint = histogram.GaugeType default: p.addParseErrf(p.yyParser.lval.item.PositionRange(), "error parsing counter_reset_hint: unknown value %v", resetHint.Typ) } } else { p.addParseErrf(p.yyParser.lval.item.PositionRange(), "error parsing counter_reset_hint: %v", val) } } buckets, spans := p.buildHistogramBucketsAndSpans(desc, "buckets", "offset") output.PositiveBuckets = buckets output.PositiveSpans = spans buckets, spans = p.buildHistogramBucketsAndSpans(desc, "n_buckets", "n_offset") output.NegativeBuckets = buckets output.NegativeSpans = spans return output } func (p *parser) buildHistogramBucketsAndSpans(desc *map[string]interface{}, bucketsKey, offsetKey string, ) (buckets []float64, spans []histogram.Span) { bucketCount := 0 val, ok := (*desc)[bucketsKey] if ok { val, ok := val.([]float64) if ok { buckets = val bucketCount = len(buckets) } else { p.addParseErrf(p.yyParser.lval.item.PositionRange(), "error parsing %s float array: %v", bucketsKey, val) } } offset := int32(0) val, ok = (*desc)[offsetKey] if ok { val, ok := val.(int64) if ok { offset = int32(val) } else { p.addParseErrf(p.yyParser.lval.item.PositionRange(), "error parsing %s number: %v", offsetKey, val) } } if bucketCount > 0 { spans = []histogram.Span{{Offset: offset, Length: uint32(bucketCount)}} } return } // number parses a number. func (p *parser) number(val string) float64 { n, err := strconv.ParseInt(val, 0, 64) f := float64(n) if err != nil { f, err = strconv.ParseFloat(val, 64) } if err != nil { p.addParseErrf(p.yyParser.lval.item.PositionRange(), "error parsing number: %s", err) } return f } // expectType checks the type of the node and raises an error if it // is not of the expected type. func (p *parser) expectType(node Node, want ValueType, context string) { t := p.checkAST(node) if t != want { p.addParseErrf(node.PositionRange(), "expected type %s in %s, got %s", DocumentedType(want), context, DocumentedType(t)) } } // checkAST checks the validity of the provided AST. This includes type checking. func (p *parser) checkAST(node Node) (typ ValueType) { // For expressions the type is determined by their Type function. // Lists do not have a type but are not invalid either. switch n := node.(type) { case Expressions: typ = ValueTypeNone case Expr: typ = n.Type() default: p.addParseErrf(node.PositionRange(), "unknown node type: %T", node) } // Recursively check correct typing for child nodes and raise // errors in case of bad typing. switch n := node.(type) { case *EvalStmt: ty := p.checkAST(n.Expr) if ty == ValueTypeNone { p.addParseErrf(n.Expr.PositionRange(), "evaluation statement must have a valid expression type but got %s", DocumentedType(ty)) } case Expressions: for _, e := range n { ty := p.checkAST(e) if ty == ValueTypeNone { p.addParseErrf(e.PositionRange(), "expression must have a valid expression type but got %s", DocumentedType(ty)) } } case *AggregateExpr: if !n.Op.IsAggregator() { p.addParseErrf(n.PositionRange(), "aggregation operator expected in aggregation expression but got %q", n.Op) } p.expectType(n.Expr, ValueTypeVector, "aggregation expression") if n.Op == TOPK || n.Op == BOTTOMK || n.Op == QUANTILE || n.Op == LIMITK || n.Op == LIMIT_RATIO { p.expectType(n.Param, ValueTypeScalar, "aggregation parameter") } if n.Op == COUNT_VALUES { p.expectType(n.Param, ValueTypeString, "aggregation parameter") } case *BinaryExpr: lt := p.checkAST(n.LHS) rt := p.checkAST(n.RHS) // opRange returns the PositionRange of the operator part of the BinaryExpr. // This is made a function instead of a variable, so it is lazily evaluated on demand. opRange := func() (r posrange.PositionRange) { // Remove whitespace at the beginning and end of the range. for r.Start = n.LHS.PositionRange().End; isSpace(rune(p.lex.input[r.Start])); r.Start++ { } for r.End = n.RHS.PositionRange().Start - 1; isSpace(rune(p.lex.input[r.End])); r.End-- { } return } if n.ReturnBool && !n.Op.IsComparisonOperator() { p.addParseErrf(opRange(), "bool modifier can only be used on comparison operators") } if n.Op.IsComparisonOperator() && !n.ReturnBool && n.RHS.Type() == ValueTypeScalar && n.LHS.Type() == ValueTypeScalar { p.addParseErrf(opRange(), "comparisons between scalars must use BOOL modifier") } if n.Op.IsSetOperator() && n.VectorMatching.Card == CardOneToOne { n.VectorMatching.Card = CardManyToMany } for _, l1 := range n.VectorMatching.MatchingLabels { for _, l2 := range n.VectorMatching.Include { if l1 == l2 && n.VectorMatching.On { p.addParseErrf(opRange(), "label %q must not occur in ON and GROUP clause at once", l1) } } } if !n.Op.IsOperator() { p.addParseErrf(n.PositionRange(), "binary expression does not support operator %q", n.Op) } if lt != ValueTypeScalar && lt != ValueTypeVector { p.addParseErrf(n.LHS.PositionRange(), "binary expression must contain only scalar and instant vector types") } if rt != ValueTypeScalar && rt != ValueTypeVector { p.addParseErrf(n.RHS.PositionRange(), "binary expression must contain only scalar and instant vector types") } switch { case (lt != ValueTypeVector || rt != ValueTypeVector) && n.VectorMatching != nil: if len(n.VectorMatching.MatchingLabels) > 0 { p.addParseErrf(n.PositionRange(), "vector matching only allowed between instant vectors") } n.VectorMatching = nil case n.Op.IsSetOperator(): // Both operands are Vectors. if n.VectorMatching.Card == CardOneToMany || n.VectorMatching.Card == CardManyToOne { p.addParseErrf(n.PositionRange(), "no grouping allowed for %q operation", n.Op) } if n.VectorMatching.Card != CardManyToMany { p.addParseErrf(n.PositionRange(), "set operations must always be many-to-many") } } if (lt == ValueTypeScalar || rt == ValueTypeScalar) && n.Op.IsSetOperator() { p.addParseErrf(n.PositionRange(), "set operator %q not allowed in binary scalar expression", n.Op) } case *Call: nargs := len(n.Func.ArgTypes) if n.Func.Variadic == 0 { if nargs != len(n.Args) { p.addParseErrf(n.PositionRange(), "expected %d argument(s) in call to %q, got %d", nargs, n.Func.Name, len(n.Args)) } } else { na := nargs - 1 if na > len(n.Args) { p.addParseErrf(n.PositionRange(), "expected at least %d argument(s) in call to %q, got %d", na, n.Func.Name, len(n.Args)) } else if nargsmax := na + n.Func.Variadic; n.Func.Variadic > 0 && nargsmax < len(n.Args) { p.addParseErrf(n.PositionRange(), "expected at most %d argument(s) in call to %q, got %d", nargsmax, n.Func.Name, len(n.Args)) } } for i, arg := range n.Args { if i >= len(n.Func.ArgTypes) { if n.Func.Variadic == 0 { // This is not a vararg function so we should not check the // type of the extra arguments. break } i = len(n.Func.ArgTypes) - 1 } p.expectType(arg, n.Func.ArgTypes[i], fmt.Sprintf("call to function %q", n.Func.Name)) } case *ParenExpr: p.checkAST(n.Expr) case *UnaryExpr: if n.Op != ADD && n.Op != SUB { p.addParseErrf(n.PositionRange(), "only + and - operators allowed for unary expressions") } if t := p.checkAST(n.Expr); t != ValueTypeScalar && t != ValueTypeVector { p.addParseErrf(n.PositionRange(), "unary expression only allowed on expressions of type scalar or instant vector, got %q", DocumentedType(t)) } case *SubqueryExpr: ty := p.checkAST(n.Expr) if ty != ValueTypeVector { p.addParseErrf(n.PositionRange(), "subquery is only allowed on instant vector, got %s instead", ty) } case *MatrixSelector: p.checkAST(n.VectorSelector) case *VectorSelector: if n.Name != "" { // In this case the last LabelMatcher is checking for the metric name // set outside the braces. This checks if the name has already been set // previously. for _, m := range n.LabelMatchers[0 : len(n.LabelMatchers)-1] { if m != nil && m.Name == labels.MetricName { p.addParseErrf(n.PositionRange(), "metric name must not be set twice: %q or %q", n.Name, m.Value) } } // Skip the check for non-empty matchers because an explicit // metric name is a non-empty matcher. break } // A Vector selector must contain at least one non-empty matcher to prevent // implicit selection of all metrics (e.g. by a typo). notEmpty := false for _, lm := range n.LabelMatchers { if lm != nil && !lm.Matches("") { notEmpty = true break } } if !notEmpty { p.addParseErrf(n.PositionRange(), "vector selector must contain at least one non-empty matcher") } case *NumberLiteral, *StringLiteral: // Nothing to do for terminals. default: p.addParseErrf(n.PositionRange(), "unknown node type: %T", node) } return } func (p *parser) unquoteString(s string) string { unquoted, err := strutil.Unquote(s) if err != nil { p.addParseErrf(p.yyParser.lval.item.PositionRange(), "error unquoting string %q: %s", s, err) } return unquoted } func parseDuration(ds string) (time.Duration, error) { dur, err := model.ParseDuration(ds) if err != nil { return 0, err } if dur == 0 { return 0, errors.New("duration must be greater than 0") } return time.Duration(dur), nil } // parseGenerated invokes the yacc generated parser. // The generated parser gets the provided startSymbol injected into // the lexer stream, based on which grammar will be used. func (p *parser) parseGenerated(startSymbol ItemType) interface{} { p.InjectItem(startSymbol) p.yyParser.Parse(p) return p.generatedParserResult } func (p *parser) newLabelMatcher(label, operator, value Item) *labels.Matcher { op := operator.Typ val := p.unquoteString(value.Val) // Map the Item to the respective match type. var matchType labels.MatchType switch op { case EQL: matchType = labels.MatchEqual case NEQ: matchType = labels.MatchNotEqual case EQL_REGEX: matchType = labels.MatchRegexp case NEQ_REGEX: matchType = labels.MatchNotRegexp default: // This should never happen, since the error should have been caught // by the generated parser. panic("invalid operator") } m, err := labels.NewMatcher(matchType, label.Val, val) if err != nil { p.addParseErr(mergeRanges(&label, &value), err) } return m } func (p *parser) newMetricNameMatcher(value Item) *labels.Matcher { m, err := labels.NewMatcher(labels.MatchEqual, labels.MetricName, value.Val) if err != nil { p.addParseErr(value.PositionRange(), err) } return m } // addOffset is used to set the offset in the generated parser. func (p *parser) addOffset(e Node, offset time.Duration) { var orgoffsetp *time.Duration var endPosp *posrange.Pos switch s := e.(type) { case *VectorSelector: orgoffsetp = &s.OriginalOffset endPosp = &s.PosRange.End case *MatrixSelector: vs, ok := s.VectorSelector.(*VectorSelector) if !ok { p.addParseErrf(e.PositionRange(), "ranges only allowed for vector selectors") return } orgoffsetp = &vs.OriginalOffset endPosp = &s.EndPos case *SubqueryExpr: orgoffsetp = &s.OriginalOffset endPosp = &s.EndPos default: p.addParseErrf(e.PositionRange(), "offset modifier must be preceded by an instant vector selector or range vector selector or a subquery") return } // it is already ensured by parseDuration func that there never will be a zero offset modifier switch { case *orgoffsetp != 0: p.addParseErrf(e.PositionRange(), "offset may not be set multiple times") case orgoffsetp != nil: *orgoffsetp = offset } *endPosp = p.lastClosing } // setTimestamp is used to set the timestamp from the @ modifier in the generated parser. func (p *parser) setTimestamp(e Node, ts float64) { if math.IsInf(ts, -1) || math.IsInf(ts, 1) || math.IsNaN(ts) || ts >= float64(math.MaxInt64) || ts <= float64(math.MinInt64) { p.addParseErrf(e.PositionRange(), "timestamp out of bounds for @ modifier: %f", ts) } var timestampp **int64 var endPosp *posrange.Pos timestampp, _, endPosp, ok := p.getAtModifierVars(e) if !ok { return } if timestampp != nil { *timestampp = new(int64) **timestampp = timestamp.FromFloatSeconds(ts) } *endPosp = p.lastClosing } // setAtModifierPreprocessor is used to set the preprocessor for the @ modifier. func (p *parser) setAtModifierPreprocessor(e Node, op Item) { _, preprocp, endPosp, ok := p.getAtModifierVars(e) if !ok { return } if preprocp != nil { *preprocp = op.Typ } *endPosp = p.lastClosing } func (p *parser) getAtModifierVars(e Node) (**int64, *ItemType, *posrange.Pos, bool) { var ( timestampp **int64 preprocp *ItemType endPosp *posrange.Pos ) switch s := e.(type) { case *VectorSelector: timestampp = &s.Timestamp preprocp = &s.StartOrEnd endPosp = &s.PosRange.End case *MatrixSelector: vs, ok := s.VectorSelector.(*VectorSelector) if !ok { p.addParseErrf(e.PositionRange(), "ranges only allowed for vector selectors") return nil, nil, nil, false } preprocp = &vs.StartOrEnd timestampp = &vs.Timestamp endPosp = &s.EndPos case *SubqueryExpr: preprocp = &s.StartOrEnd timestampp = &s.Timestamp endPosp = &s.EndPos default: p.addParseErrf(e.PositionRange(), "@ modifier must be preceded by an instant vector selector or range vector selector or a subquery") return nil, nil, nil, false } if *timestampp != nil || (*preprocp) == START || (*preprocp) == END { p.addParseErrf(e.PositionRange(), "@ may not be set multiple times") return nil, nil, nil, false } return timestampp, preprocp, endPosp, true } func MustLabelMatcher(mt labels.MatchType, name, val string) *labels.Matcher { m, err := labels.NewMatcher(mt, name, val) if err != nil { panic(err) } return m } func MustGetFunction(name string) *Function { f, ok := getFunction(name, Functions) if !ok { panic(fmt.Errorf("function %q does not exist", name)) } return f }