// Copyright 2017 The Prometheus Authors // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package storage import ( "fmt" "math" "github.com/prometheus/prometheus/model/histogram" "github.com/prometheus/prometheus/tsdb/chunkenc" "github.com/prometheus/prometheus/tsdb/chunks" ) // BufferedSeriesIterator wraps an iterator with a look-back buffer. type BufferedSeriesIterator struct { it chunkenc.Iterator buf *sampleRing delta int64 lastTime int64 valueType chunkenc.ValueType } // NewBuffer returns a new iterator that buffers the values within the time range // of the current element and the duration of delta before, initialized with an // empty iterator. Use Reset() to set an actual iterator to be buffered. func NewBuffer(delta int64) *BufferedSeriesIterator { return NewBufferIterator(chunkenc.NewNopIterator(), delta) } // NewBufferIterator returns a new iterator that buffers the values within the // time range of the current element and the duration of delta before. func NewBufferIterator(it chunkenc.Iterator, delta int64) *BufferedSeriesIterator { bit := &BufferedSeriesIterator{ buf: newSampleRing(delta, 0, chunkenc.ValNone), delta: delta, } bit.Reset(it) return bit } // Reset re-uses the buffer with a new iterator, resetting the buffered time // delta to its original value. func (b *BufferedSeriesIterator) Reset(it chunkenc.Iterator) { b.it = it b.lastTime = math.MinInt64 b.buf.reset() b.buf.delta = b.delta b.valueType = it.Next() } // ReduceDelta lowers the buffered time delta, for the current SeriesIterator only. func (b *BufferedSeriesIterator) ReduceDelta(delta int64) bool { return b.buf.reduceDelta(delta) } // PeekBack returns the nth previous element of the iterator. If there is none buffered, // ok is false. func (b *BufferedSeriesIterator) PeekBack(n int) (sample chunks.Sample, ok bool) { return b.buf.nthLast(n) } // Buffer returns an iterator over the buffered data. Invalidates previously // returned iterators. func (b *BufferedSeriesIterator) Buffer() *SampleRingIterator { return b.buf.iterator() } // Seek advances the iterator to the element at time t or greater. func (b *BufferedSeriesIterator) Seek(t int64) chunkenc.ValueType { t0 := t - b.buf.delta // If the delta would cause us to seek backwards, preserve the buffer // and just continue regular advancement while filling the buffer on the way. if b.valueType != chunkenc.ValNone && t0 > b.lastTime { b.buf.reset() b.valueType = b.it.Seek(t0) switch b.valueType { case chunkenc.ValNone: return chunkenc.ValNone case chunkenc.ValFloat, chunkenc.ValHistogram, chunkenc.ValFloatHistogram: b.lastTime = b.AtT() default: panic(fmt.Errorf("BufferedSeriesIterator: unknown value type %v", b.valueType)) } } if b.lastTime >= t { return b.valueType } for { if b.valueType = b.Next(); b.valueType == chunkenc.ValNone || b.lastTime >= t { return b.valueType } } } // Next advances the iterator to the next element. func (b *BufferedSeriesIterator) Next() chunkenc.ValueType { // Add current element to buffer before advancing. switch b.valueType { case chunkenc.ValNone: return chunkenc.ValNone case chunkenc.ValFloat: t, f := b.it.At() b.buf.addF(fSample{t: t, f: f}) case chunkenc.ValHistogram: t, h := b.it.AtHistogram() b.buf.addH(hSample{t: t, h: h}) case chunkenc.ValFloatHistogram: t, fh := b.it.AtFloatHistogram() b.buf.addFH(fhSample{t: t, fh: fh}) default: panic(fmt.Errorf("BufferedSeriesIterator: unknown value type %v", b.valueType)) } b.valueType = b.it.Next() if b.valueType != chunkenc.ValNone { b.lastTime = b.AtT() } return b.valueType } // At returns the current float element of the iterator. func (b *BufferedSeriesIterator) At() (int64, float64) { return b.it.At() } // AtHistogram returns the current histogram element of the iterator. func (b *BufferedSeriesIterator) AtHistogram() (int64, *histogram.Histogram) { return b.it.AtHistogram() } // AtFloatHistogram returns the current float-histogram element of the iterator. func (b *BufferedSeriesIterator) AtFloatHistogram() (int64, *histogram.FloatHistogram) { return b.it.AtFloatHistogram() } // AtT returns the current timestamp of the iterator. func (b *BufferedSeriesIterator) AtT() int64 { return b.it.AtT() } // Err returns the last encountered error. func (b *BufferedSeriesIterator) Err() error { return b.it.Err() } type fSample struct { t int64 f float64 } func (s fSample) T() int64 { return s.t } func (s fSample) F() float64 { return s.f } func (s fSample) H() *histogram.Histogram { panic("H() called for fSample") } func (s fSample) FH() *histogram.FloatHistogram { panic("FH() called for fSample") } func (s fSample) Type() chunkenc.ValueType { return chunkenc.ValFloat } type hSample struct { t int64 h *histogram.Histogram } func (s hSample) T() int64 { return s.t } func (s hSample) F() float64 { panic("F() called for hSample") } func (s hSample) H() *histogram.Histogram { return s.h } func (s hSample) FH() *histogram.FloatHistogram { return s.h.ToFloat(nil) } func (s hSample) Type() chunkenc.ValueType { return chunkenc.ValHistogram } type fhSample struct { t int64 fh *histogram.FloatHistogram } func (s fhSample) T() int64 { return s.t } func (s fhSample) F() float64 { panic("F() called for fhSample") } func (s fhSample) H() *histogram.Histogram { panic("H() called for fhSample") } func (s fhSample) FH() *histogram.FloatHistogram { return s.fh } func (s fhSample) Type() chunkenc.ValueType { return chunkenc.ValFloatHistogram } type sampleRing struct { delta int64 // Lookback buffers. We use iBuf for mixed samples, but one of the three // concrete ones for homogenous samples. (Only one of the four bufs is // allowed to be populated!) This avoids the overhead of the interface // wrapper for the happy (and by far most common) case of homogenous // samples. iBuf []chunks.Sample fBuf []fSample hBuf []hSample fhBuf []fhSample bufInUse bufType i int // Position of most recent element in ring buffer. f int // Position of first element in ring buffer. l int // Number of elements in buffer. it SampleRingIterator } type bufType int const ( noBuf bufType = iota // Nothing yet stored in sampleRing. iBuf fBuf hBuf fhBuf ) // newSampleRing creates a new sampleRing. If you do not know the prefereed // value type yet, use a size of 0 (in which case the provided typ doesn't // matter). On the first add, a buffer of size 16 will be allocated with the // preferred type being the type of the first added sample. func newSampleRing(delta int64, size int, typ chunkenc.ValueType) *sampleRing { r := &sampleRing{delta: delta} r.reset() if size <= 0 { // Will initialize on first add. return r } switch typ { case chunkenc.ValFloat: r.fBuf = make([]fSample, size) case chunkenc.ValHistogram: r.hBuf = make([]hSample, size) case chunkenc.ValFloatHistogram: r.fhBuf = make([]fhSample, size) default: // Do not initialize anything because the 1st sample will be // added to one of the other bufs anyway. } return r } func (r *sampleRing) reset() { r.l = 0 r.i = -1 r.f = 0 r.bufInUse = noBuf // The first sample after the reset will always go to a specialized // buffer. If we later need to change to the interface buffer, we'll // copy from the specialized buffer to the interface buffer. For that to // work properly, we have to reset the interface buffer here, too. r.iBuf = r.iBuf[:0] } // Returns the current iterator. Invalidates previously returned iterators. func (r *sampleRing) iterator() *SampleRingIterator { r.it.r = r r.it.i = -1 return &r.it } // SampleRingIterator is returned by BufferedSeriesIterator.Buffer() and can be // used to iterate samples buffered in the lookback window. type SampleRingIterator struct { r *sampleRing i int t int64 f float64 h *histogram.Histogram fh *histogram.FloatHistogram } func (it *SampleRingIterator) Next() chunkenc.ValueType { it.i++ if it.i >= it.r.l { return chunkenc.ValNone } switch it.r.bufInUse { case fBuf: s := it.r.atF(it.i) it.t = s.t it.f = s.f return chunkenc.ValFloat case hBuf: s := it.r.atH(it.i) it.t = s.t it.h = s.h return chunkenc.ValHistogram case fhBuf: s := it.r.atFH(it.i) it.t = s.t it.fh = s.fh return chunkenc.ValFloatHistogram } s := it.r.at(it.i) it.t = s.T() switch s.Type() { case chunkenc.ValHistogram: it.h = s.H() it.fh = nil return chunkenc.ValHistogram case chunkenc.ValFloatHistogram: it.fh = s.FH() it.h = nil return chunkenc.ValFloatHistogram default: it.f = s.F() return chunkenc.ValFloat } } // At returns the current float element of the iterator. func (it *SampleRingIterator) At() (int64, float64) { return it.t, it.f } // AtHistogram returns the current histogram element of the iterator. func (it *SampleRingIterator) AtHistogram() (int64, *histogram.Histogram) { return it.t, it.h } // AtFloatHistogram returns the current histogram element of the iterator. If the // current sample is an integer histogram, it will be converted to a float histogram. // An optional histogram.FloatHistogram can be provided to avoid allocating a new // object for the conversion. func (it *SampleRingIterator) AtFloatHistogram(fh *histogram.FloatHistogram) (int64, *histogram.FloatHistogram) { if it.fh == nil { return it.t, it.h.ToFloat(fh) } return it.t, it.fh } func (it *SampleRingIterator) AtT() int64 { return it.t } func (r *sampleRing) at(i int) chunks.Sample { j := (r.f + i) % len(r.iBuf) return r.iBuf[j] } func (r *sampleRing) atF(i int) fSample { j := (r.f + i) % len(r.fBuf) return r.fBuf[j] } func (r *sampleRing) atH(i int) hSample { j := (r.f + i) % len(r.hBuf) return r.hBuf[j] } func (r *sampleRing) atFH(i int) fhSample { j := (r.f + i) % len(r.fhBuf) return r.fhBuf[j] } // add adds a sample to the ring buffer and frees all samples that fall out of // the delta range. Note that this method works for any sample // implementation. If you know you are dealing with one of the implementations // from this package (fSample, hSample, fhSample), call one of the specialized // methods addF, addH, or addFH for better performance. func (r *sampleRing) add(s chunks.Sample) { if r.bufInUse == noBuf { // First sample. switch s := s.(type) { case fSample: r.bufInUse = fBuf r.fBuf = addF(s, r.fBuf, r) case hSample: r.bufInUse = hBuf r.hBuf = addH(s, r.hBuf, r) case fhSample: r.bufInUse = fhBuf r.fhBuf = addFH(s, r.fhBuf, r) } return } if r.bufInUse != iBuf { // Nothing added to the interface buf yet. Let's check if we can // stay specialized. switch s := s.(type) { case fSample: if r.bufInUse == fBuf { r.fBuf = addF(s, r.fBuf, r) return } case hSample: if r.bufInUse == hBuf { r.hBuf = addH(s, r.hBuf, r) return } case fhSample: if r.bufInUse == fhBuf { r.fhBuf = addFH(s, r.fhBuf, r) return } } // The new sample isn't a fit for the already existing // ones. Copy the latter into the interface buffer where needed. // The interface buffer is assumed to be of length zero at this point. switch r.bufInUse { case fBuf: for _, s := range r.fBuf { r.iBuf = append(r.iBuf, s) } r.fBuf = nil case hBuf: for _, s := range r.hBuf { r.iBuf = append(r.iBuf, s) } r.hBuf = nil case fhBuf: for _, s := range r.fhBuf { r.iBuf = append(r.iBuf, s) } r.fhBuf = nil } r.bufInUse = iBuf } r.iBuf = addSample(s, r.iBuf, r) } // addF is a version of the add method specialized for fSample. func (r *sampleRing) addF(s fSample) { switch r.bufInUse { case fBuf: // Add to existing fSamples. r.fBuf = addF(s, r.fBuf, r) case noBuf: // Add first sample. r.fBuf = addF(s, r.fBuf, r) r.bufInUse = fBuf case iBuf: // Already have interface samples. Add to the interface buf. r.iBuf = addSample(s, r.iBuf, r) default: // Already have specialized samples that are not fSamples. // Need to call the checked add method for conversion. r.add(s) } } // addH is a version of the add method specialized for hSample. func (r *sampleRing) addH(s hSample) { switch r.bufInUse { case hBuf: // Add to existing hSamples. r.hBuf = addH(s, r.hBuf, r) case noBuf: // Add first sample. r.hBuf = addH(s, r.hBuf, r) r.bufInUse = hBuf case iBuf: // Already have interface samples. Add to the interface buf. r.iBuf = addSample(s, r.iBuf, r) default: // Already have specialized samples that are not hSamples. // Need to call the checked add method for conversion. r.add(s) } } // addFH is a version of the add method specialized for fhSample. func (r *sampleRing) addFH(s fhSample) { switch r.bufInUse { case fhBuf: // Add to existing fhSamples. r.fhBuf = addFH(s, r.fhBuf, r) case noBuf: // Add first sample. r.fhBuf = addFH(s, r.fhBuf, r) r.bufInUse = fhBuf case iBuf: // Already have interface samples. Add to the interface buf. r.iBuf = addSample(s, r.iBuf, r) default: // Already have specialized samples that are not fhSamples. // Need to call the checked add method for conversion. r.add(s) } } // genericAdd is a generic implementation of adding a chunks.Sample // implementation to a buffer of a sample ring. However, the Go compiler // currently (go1.20) decides to not expand the code during compile time, but // creates dynamic code to handle the different types. That has a significant // overhead during runtime, noticeable in PromQL benchmarks. For example, the // "RangeQuery/expr=rate(a_hundred[1d]),steps=.*" benchmarks show about 7% // longer runtime, 9% higher allocation size, and 10% more allocations. // Therefore, genericAdd has been manually implemented for all the types // (addSample, addF, addH, addFH) below. // // func genericAdd[T chunks.Sample](s T, buf []T, r *sampleRing) []T { // l := len(buf) // // Grow the ring buffer if it fits no more elements. // if l == 0 { // buf = make([]T, 16) // l = 16 // } // if l == r.l { // newBuf := make([]T, 2*l) // copy(newBuf[l+r.f:], buf[r.f:]) // copy(newBuf, buf[:r.f]) // // buf = newBuf // r.i = r.f // r.f += l // l = 2 * l // } else { // r.i++ // if r.i >= l { // r.i -= l // } // } // // buf[r.i] = s // r.l++ // // // Free head of the buffer of samples that just fell out of the range. // tmin := s.T() - r.delta // for buf[r.f].T() < tmin { // r.f++ // if r.f >= l { // r.f -= l // } // r.l-- // } // return buf // } // addSample is a handcoded specialization of genericAdd (see above). func addSample(s chunks.Sample, buf []chunks.Sample, r *sampleRing) []chunks.Sample { l := len(buf) // Grow the ring buffer if it fits no more elements. if l == 0 { buf = make([]chunks.Sample, 16) l = 16 } if l == r.l { newBuf := make([]chunks.Sample, 2*l) copy(newBuf[l+r.f:], buf[r.f:]) copy(newBuf, buf[:r.f]) buf = newBuf r.i = r.f r.f += l l = 2 * l } else { r.i++ if r.i >= l { r.i -= l } } buf[r.i] = s r.l++ // Free head of the buffer of samples that just fell out of the range. tmin := s.T() - r.delta for buf[r.f].T() < tmin { r.f++ if r.f >= l { r.f -= l } r.l-- } return buf } // addF is a handcoded specialization of genericAdd (see above). func addF(s fSample, buf []fSample, r *sampleRing) []fSample { l := len(buf) // Grow the ring buffer if it fits no more elements. if l == 0 { buf = make([]fSample, 16) l = 16 } if l == r.l { newBuf := make([]fSample, 2*l) copy(newBuf[l+r.f:], buf[r.f:]) copy(newBuf, buf[:r.f]) buf = newBuf r.i = r.f r.f += l l = 2 * l } else { r.i++ if r.i >= l { r.i -= l } } buf[r.i] = s r.l++ // Free head of the buffer of samples that just fell out of the range. tmin := s.T() - r.delta for buf[r.f].T() < tmin { r.f++ if r.f >= l { r.f -= l } r.l-- } return buf } // addH is a handcoded specialization of genericAdd (see above). func addH(s hSample, buf []hSample, r *sampleRing) []hSample { l := len(buf) // Grow the ring buffer if it fits no more elements. if l == 0 { buf = make([]hSample, 16) l = 16 } if l == r.l { newBuf := make([]hSample, 2*l) copy(newBuf[l+r.f:], buf[r.f:]) copy(newBuf, buf[:r.f]) buf = newBuf r.i = r.f r.f += l l = 2 * l } else { r.i++ if r.i >= l { r.i -= l } } buf[r.i] = s r.l++ // Free head of the buffer of samples that just fell out of the range. tmin := s.T() - r.delta for buf[r.f].T() < tmin { r.f++ if r.f >= l { r.f -= l } r.l-- } return buf } // addFH is a handcoded specialization of genericAdd (see above). func addFH(s fhSample, buf []fhSample, r *sampleRing) []fhSample { l := len(buf) // Grow the ring buffer if it fits no more elements. if l == 0 { buf = make([]fhSample, 16) l = 16 } if l == r.l { newBuf := make([]fhSample, 2*l) copy(newBuf[l+r.f:], buf[r.f:]) copy(newBuf, buf[:r.f]) buf = newBuf r.i = r.f r.f += l l = 2 * l } else { r.i++ if r.i >= l { r.i -= l } } buf[r.i] = s r.l++ // Free head of the buffer of samples that just fell out of the range. tmin := s.T() - r.delta for buf[r.f].T() < tmin { r.f++ if r.f >= l { r.f -= l } r.l-- } return buf } // reduceDelta lowers the buffered time delta, dropping any samples that are // out of the new delta range. func (r *sampleRing) reduceDelta(delta int64) bool { if delta > r.delta { return false } r.delta = delta if r.l == 0 { return true } switch r.bufInUse { case fBuf: genericReduceDelta(r.fBuf, r) case hBuf: genericReduceDelta(r.hBuf, r) case fhBuf: genericReduceDelta(r.fhBuf, r) default: genericReduceDelta(r.iBuf, r) } return true } func genericReduceDelta[T chunks.Sample](buf []T, r *sampleRing) { // Free head of the buffer of samples that just fell out of the range. l := len(buf) tmin := buf[r.i].T() - r.delta for buf[r.f].T() < tmin { r.f++ if r.f >= l { r.f -= l } r.l-- } } // nthLast returns the nth most recent element added to the ring. func (r *sampleRing) nthLast(n int) (chunks.Sample, bool) { if n > r.l { return fSample{}, false } i := r.l - n switch r.bufInUse { case fBuf: return r.atF(i), true case hBuf: return r.atH(i), true case fhBuf: return r.atFH(i), true default: return r.at(i), true } } func (r *sampleRing) samples() []chunks.Sample { res := make([]chunks.Sample, r.l) k := r.f + r.l var j int switch r.bufInUse { case iBuf: if k > len(r.iBuf) { k = len(r.iBuf) j = r.l - k + r.f } n := copy(res, r.iBuf[r.f:k]) copy(res[n:], r.iBuf[:j]) case fBuf: if k > len(r.fBuf) { k = len(r.fBuf) j = r.l - k + r.f } resF := make([]fSample, r.l) n := copy(resF, r.fBuf[r.f:k]) copy(resF[n:], r.fBuf[:j]) for i, s := range resF { res[i] = s } case hBuf: if k > len(r.hBuf) { k = len(r.hBuf) j = r.l - k + r.f } resH := make([]hSample, r.l) n := copy(resH, r.hBuf[r.f:k]) copy(resH[n:], r.hBuf[:j]) for i, s := range resH { res[i] = s } case fhBuf: if k > len(r.fhBuf) { k = len(r.fhBuf) j = r.l - k + r.f } resFH := make([]fhSample, r.l) n := copy(resFH, r.fhBuf[r.f:k]) copy(resFH[n:], r.fhBuf[:j]) for i, s := range resFH { res[i] = s } } return res }