// Copyright 2013 The Prometheus Authors // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package promql import ( "encoding/json" "fmt" "math" "runtime" "sort" "strconv" "time" "github.com/prometheus/log" "golang.org/x/net/context" clientmodel "github.com/prometheus/client_golang/model" "github.com/prometheus/prometheus/storage/local" "github.com/prometheus/prometheus/storage/metric" "github.com/prometheus/prometheus/util/stats" ) // SampleStream is a stream of Values belonging to an attached COWMetric. type SampleStream struct { Metric clientmodel.COWMetric `json:"metric"` Values metric.Values `json:"values"` } // Sample is a single sample belonging to a COWMetric. type Sample struct { Metric clientmodel.COWMetric `json:"metric"` Value clientmodel.SampleValue `json:"value"` Timestamp clientmodel.Timestamp `json:"timestamp"` } // MarshalJSON implements json.Marshaler. func (s *Sample) MarshalJSON() ([]byte, error) { v := struct { Metric clientmodel.COWMetric `json:"metric"` Value metric.SamplePair `json:"value"` }{ Metric: s.Metric, Value: metric.SamplePair{ Timestamp: s.Timestamp, Value: s.Value, }, } return json.Marshal(&v) } // Scalar is a scalar value evaluated at the set timestamp. type Scalar struct { Value clientmodel.SampleValue `json:"value"` Timestamp clientmodel.Timestamp `json:"timestamp"` } func (s *Scalar) String() string { return fmt.Sprintf("scalar: %v @[%v]", s.Value, s.Timestamp) } // MarshalJSON implements json.Marshaler. func (s *Scalar) MarshalJSON() ([]byte, error) { v := strconv.FormatFloat(float64(s.Value), 'f', -1, 64) return json.Marshal([]interface{}{s.Timestamp, string(v)}) } // String is a string value evaluated at the set timestamp. type String struct { Value string `json:"value"` Timestamp clientmodel.Timestamp `json:"timestamp"` } // MarshalJSON implements json.Marshaler. func (s *String) MarshalJSON() ([]byte, error) { return json.Marshal([]interface{}{s.Timestamp, s.Value}) } func (s *String) String() string { return s.Value } // Vector is basically only an alias for clientmodel.Samples, but the // contract is that in a Vector, all Samples have the same timestamp. type Vector []*Sample // Matrix is a slice of SampleStreams that implements sort.Interface and // has a String method. type Matrix []*SampleStream // Len implements sort.Interface. func (matrix Matrix) Len() int { return len(matrix) } // Less implements sort.Interface. func (matrix Matrix) Less(i, j int) bool { return matrix[i].Metric.String() < matrix[j].Metric.String() } // Swap implements sort.Interface. func (matrix Matrix) Swap(i, j int) { matrix[i], matrix[j] = matrix[j], matrix[i] } // Value is a generic interface for values resulting from a query evaluation. type Value interface { Type() ExprType String() string } func (Matrix) Type() ExprType { return ExprMatrix } func (Vector) Type() ExprType { return ExprVector } func (*Scalar) Type() ExprType { return ExprScalar } func (*String) Type() ExprType { return ExprString } // Result holds the resulting value of an execution or an error // if any occurred. type Result struct { Err error Value Value } // Vector returns a vector if the result value is one. An error is returned if // the result was an error or the result value is not a vector. func (r *Result) Vector() (Vector, error) { if r.Err != nil { return nil, r.Err } v, ok := r.Value.(Vector) if !ok { return nil, fmt.Errorf("query result is not a vector") } return v, nil } // Matrix returns a matrix. An error is returned if // the result was an error or the result value is not a matrix. func (r *Result) Matrix() (Matrix, error) { if r.Err != nil { return nil, r.Err } v, ok := r.Value.(Matrix) if !ok { return nil, fmt.Errorf("query result is not a matrix") } return v, nil } // Scalar returns a scalar value. An error is returned if // the result was an error or the result value is not a scalar. func (r *Result) Scalar() (*Scalar, error) { if r.Err != nil { return nil, r.Err } v, ok := r.Value.(*Scalar) if !ok { return nil, fmt.Errorf("query result is not a scalar") } return v, nil } func (r *Result) String() string { if r.Err != nil { return r.Err.Error() } if r.Value == nil { return "" } return r.Value.String() } type ( // ErrQueryTimeout is returned if a query timed out during processing. ErrQueryTimeout string // ErrQueryCanceled is returned if a query was canceled during processing. ErrQueryCanceled string ) func (e ErrQueryTimeout) Error() string { return fmt.Sprintf("query timed out in %s", string(e)) } func (e ErrQueryCanceled) Error() string { return fmt.Sprintf("query was canceled in %s", string(e)) } // A Query is derived from an a raw query string and can be run against an engine // it is associated with. type Query interface { // Exec processes the query and Exec() *Result // Statement returns the parsed statement of the query. Statement() Statement // Stats returns statistics about the lifetime of the query. Stats() *stats.TimerGroup // Cancel signals that a running query execution should be aborted. Cancel() } // query implements the Query interface. type query struct { // The original query string. q string // Statement of the parsed query. stmt Statement // Timer stats for the query execution. stats *stats.TimerGroup // Cancelation function for the query. cancel func() // The engine against which the query is executed. ng *Engine } // Statement implements the Query interface. func (q *query) Statement() Statement { return q.stmt } // Stats implements the Query interface. func (q *query) Stats() *stats.TimerGroup { return q.stats } // Cancel implements the Query interface. func (q *query) Cancel() { if q.cancel != nil { q.cancel() } } // Exec implements the Query interface. func (q *query) Exec() *Result { res, err := q.ng.exec(q) return &Result{Err: err, Value: res} } // contextDone returns an error if the context was canceled or timed out. func contextDone(ctx context.Context, env string) error { select { case <-ctx.Done(): err := ctx.Err() switch err { case context.Canceled: return ErrQueryCanceled(env) case context.DeadlineExceeded: return ErrQueryTimeout(env) default: return err } default: return nil } } // Engine handles the lifetime of queries from beginning to end. // It is connected to a storage. type Engine struct { // The storage on which the engine operates. storage local.Storage // The base context for all queries and its cancellation function. baseCtx context.Context cancelQueries func() // The gate limiting the maximum number of concurrent and waiting queries. gate *queryGate options *EngineOptions } // NewEngine returns a new engine. func NewEngine(storage local.Storage, o *EngineOptions) *Engine { if o == nil { o = DefaultEngineOptions } ctx, cancel := context.WithCancel(context.Background()) return &Engine{ storage: storage, baseCtx: ctx, cancelQueries: cancel, gate: newQueryGate(o.MaxConcurrentQueries), options: o, } } // EngineOptions contains configuration parameters for an Engine. type EngineOptions struct { MaxConcurrentQueries int Timeout time.Duration } // DefaultEngineOptions are the default engine options. var DefaultEngineOptions = &EngineOptions{ MaxConcurrentQueries: 20, Timeout: 2 * time.Minute, } // Stop the engine and cancel all running queries. func (ng *Engine) Stop() { ng.cancelQueries() } // NewInstantQuery returns an evaluation query for the given expression at the given time. func (ng *Engine) NewInstantQuery(qs string, ts clientmodel.Timestamp) (Query, error) { expr, err := ParseExpr(qs) if err != nil { return nil, err } qry := ng.newQuery(expr, ts, ts, 0) qry.q = qs return qry, nil } // NewRangeQuery returns an evaluation query for the given time range and with // the resolution set by the interval. func (ng *Engine) NewRangeQuery(qs string, start, end clientmodel.Timestamp, interval time.Duration) (Query, error) { expr, err := ParseExpr(qs) if err != nil { return nil, err } if expr.Type() != ExprVector && expr.Type() != ExprScalar { return nil, fmt.Errorf("invalid expression type %q for range query, must be scalar or vector", expr.Type()) } qry := ng.newQuery(expr, start, end, interval) qry.q = qs return qry, nil } func (ng *Engine) newQuery(expr Expr, start, end clientmodel.Timestamp, interval time.Duration) *query { es := &EvalStmt{ Expr: expr, Start: start, End: end, Interval: interval, } qry := &query{ stmt: es, ng: ng, stats: stats.NewTimerGroup(), } return qry } // testStmt is an internal helper statement that allows execution // of an arbitrary function during handling. It is used to test the Engine. type testStmt func(context.Context) error func (testStmt) String() string { return "test statement" } func (testStmt) DotGraph() string { return "test statement" } func (testStmt) stmt() {} func (ng *Engine) newTestQuery(f func(context.Context) error) Query { qry := &query{ q: "test statement", stmt: testStmt(f), ng: ng, stats: stats.NewTimerGroup(), } return qry } // exec executes the query. // // At this point per query only one EvalStmt is evaluated. Alert and record // statements are not handled by the Engine. func (ng *Engine) exec(q *query) (Value, error) { ctx, cancel := context.WithTimeout(q.ng.baseCtx, ng.options.Timeout) q.cancel = cancel queueTimer := q.stats.GetTimer(stats.ExecQueueTime).Start() if err := ng.gate.Start(ctx); err != nil { return nil, err } defer ng.gate.Done() queueTimer.Stop() // Cancel when execution is done or an error was raised. defer q.cancel() const env = "query execution" evalTimer := q.stats.GetTimer(stats.TotalEvalTime).Start() defer evalTimer.Stop() // The base context might already be canceled on the first iteration (e.g. during shutdown). if err := contextDone(ctx, env); err != nil { return nil, err } switch s := q.Statement().(type) { case *EvalStmt: return ng.execEvalStmt(ctx, q, s) case testStmt: return nil, s(ctx) } panic(fmt.Errorf("promql.Engine.exec: unhandled statement of type %T", q.Statement())) } // execEvalStmt evaluates the expression of an evaluation statement for the given time range. func (ng *Engine) execEvalStmt(ctx context.Context, query *query, s *EvalStmt) (Value, error) { prepareTimer := query.stats.GetTimer(stats.TotalQueryPreparationTime).Start() analyzeTimer := query.stats.GetTimer(stats.QueryAnalysisTime).Start() // Only one execution statement per query is allowed. analyzer := &Analyzer{ Storage: ng.storage, Expr: s.Expr, Start: s.Start, End: s.End, } err := analyzer.Analyze(ctx) if err != nil { analyzeTimer.Stop() prepareTimer.Stop() return nil, err } analyzeTimer.Stop() preloadTimer := query.stats.GetTimer(stats.PreloadTime).Start() closer, err := analyzer.Prepare(ctx) if err != nil { preloadTimer.Stop() prepareTimer.Stop() return nil, err } defer closer.Close() preloadTimer.Stop() prepareTimer.Stop() evalTimer := query.stats.GetTimer(stats.InnerEvalTime).Start() // Instant evaluation. if s.Start == s.End && s.Interval == 0 { evaluator := &evaluator{ Timestamp: s.Start, ctx: ctx, } val, err := evaluator.Eval(s.Expr) if err != nil { return nil, err } evalTimer.Stop() return val, nil } numSteps := int(s.End.Sub(s.Start) / s.Interval) // Range evaluation. sampleStreams := map[clientmodel.Fingerprint]*SampleStream{} for ts := s.Start; !ts.After(s.End); ts = ts.Add(s.Interval) { if err := contextDone(ctx, "range evaluation"); err != nil { return nil, err } evaluator := &evaluator{ Timestamp: ts, ctx: ctx, } val, err := evaluator.Eval(s.Expr) if err != nil { return nil, err } switch v := val.(type) { case *Scalar: // As the expression type does not change we can safely default to 0 // as the fingerprint for scalar expressions. ss := sampleStreams[0] if ss == nil { ss = &SampleStream{Values: make(metric.Values, 0, numSteps)} sampleStreams[0] = ss } ss.Values = append(ss.Values, metric.SamplePair{ Value: v.Value, Timestamp: v.Timestamp, }) case Vector: for _, sample := range v { fp := sample.Metric.Metric.Fingerprint() ss := sampleStreams[fp] if ss == nil { ss = &SampleStream{ Metric: sample.Metric, Values: make(metric.Values, 0, numSteps), } sampleStreams[fp] = ss } ss.Values = append(ss.Values, metric.SamplePair{ Value: sample.Value, Timestamp: sample.Timestamp, }) } default: panic(fmt.Errorf("promql.Engine.exec: invalid expression type %q", val.Type())) } } evalTimer.Stop() if err := contextDone(ctx, "expression evaluation"); err != nil { return nil, err } appendTimer := query.stats.GetTimer(stats.ResultAppendTime).Start() matrix := Matrix{} for _, sampleStream := range sampleStreams { matrix = append(matrix, sampleStream) } appendTimer.Stop() if err := contextDone(ctx, "expression evaluation"); err != nil { return nil, err } sortTimer := query.stats.GetTimer(stats.ResultSortTime).Start() sort.Sort(matrix) sortTimer.Stop() return matrix, nil } // An evaluator evaluates given expressions at a fixed timestamp. It is attached to an // engine through which it connects to a storage and reports errors. On timeout or // cancellation of its context it terminates. type evaluator struct { ctx context.Context Timestamp clientmodel.Timestamp } // fatalf causes a panic with the input formatted into an error. func (ev *evaluator) errorf(format string, args ...interface{}) { ev.error(fmt.Errorf(format, args...)) } // fatal causes a panic with the given error. func (ev *evaluator) error(err error) { panic(err) } // recover is the handler that turns panics into returns from the top level of evaluation. func (ev *evaluator) recover(errp *error) { e := recover() if e != nil { if _, ok := e.(runtime.Error); ok { // Print the stack trace but do not inhibit the running application. buf := make([]byte, 64<<10) buf = buf[:runtime.Stack(buf, false)] log.Errorf("parser panic: %v\n%s", e, buf) *errp = fmt.Errorf("unexpected error") } else { *errp = e.(error) } } } // evalScalar attempts to evaluate e to a scalar value and errors otherwise. func (ev *evaluator) evalScalar(e Expr) *Scalar { val := ev.eval(e) sv, ok := val.(*Scalar) if !ok { ev.errorf("expected scalar but got %s", val.Type()) } return sv } // evalVector attempts to evaluate e to a vector value and errors otherwise. func (ev *evaluator) evalVector(e Expr) Vector { val := ev.eval(e) vec, ok := val.(Vector) if !ok { ev.errorf("expected vector but got %s", val.Type()) } return vec } // evalInt attempts to evaluate e into an integer and errors otherwise. func (ev *evaluator) evalInt(e Expr) int { sc := ev.evalScalar(e) return int(sc.Value) } // evalFloat attempts to evaluate e into a float and errors otherwise. func (ev *evaluator) evalFloat(e Expr) float64 { sc := ev.evalScalar(e) return float64(sc.Value) } // evalMatrix attempts to evaluate e into a matrix and errors otherwise. func (ev *evaluator) evalMatrix(e Expr) Matrix { val := ev.eval(e) mat, ok := val.(Matrix) if !ok { ev.errorf("expected matrix but got %s", val.Type()) } return mat } // evalMatrixBounds attempts to evaluate e to matrix boundaries and errors otherwise. func (ev *evaluator) evalMatrixBounds(e Expr) Matrix { ms, ok := e.(*MatrixSelector) if !ok { ev.errorf("matrix bounds can only be evaluated for matrix selectors, got %T", e) } return ev.matrixSelectorBounds(ms) } // evalString attempts to evaluate e to a string value and errors otherwise. func (ev *evaluator) evalString(e Expr) *String { val := ev.eval(e) sv, ok := val.(*String) if !ok { ev.errorf("expected string but got %s", val.Type()) } return sv } // evalOneOf evaluates e and errors unless the result is of one of the given types. func (ev *evaluator) evalOneOf(e Expr, t1, t2 ExprType) Value { val := ev.eval(e) if val.Type() != t1 && val.Type() != t2 { ev.errorf("expected %s or %s but got %s", t1, t2, val.Type()) } return val } func (ev *evaluator) Eval(expr Expr) (v Value, err error) { defer ev.recover(&err) return ev.eval(expr), nil } // eval evaluates the given expression as the given AST expression node requires. func (ev *evaluator) eval(expr Expr) Value { // This is the top-level evaluation method. // Thus, we check for timeout/cancellation here. if err := contextDone(ev.ctx, "expression evaluation"); err != nil { ev.error(err) } switch e := expr.(type) { case *AggregateExpr: vector := ev.evalVector(e.Expr) return ev.aggregation(e.Op, e.Grouping, e.KeepExtraLabels, vector) case *BinaryExpr: lhs := ev.evalOneOf(e.LHS, ExprScalar, ExprVector) rhs := ev.evalOneOf(e.RHS, ExprScalar, ExprVector) switch lt, rt := lhs.Type(), rhs.Type(); { case lt == ExprScalar && rt == ExprScalar: return &Scalar{ Value: scalarBinop(e.Op, lhs.(*Scalar).Value, rhs.(*Scalar).Value), Timestamp: ev.Timestamp, } case lt == ExprVector && rt == ExprVector: switch e.Op { case itemLAND: return ev.vectorAnd(lhs.(Vector), rhs.(Vector), e.VectorMatching) case itemLOR: return ev.vectorOr(lhs.(Vector), rhs.(Vector), e.VectorMatching) default: return ev.vectorBinop(e.Op, lhs.(Vector), rhs.(Vector), e.VectorMatching) } case lt == ExprVector && rt == ExprScalar: return ev.vectorScalarBinop(e.Op, lhs.(Vector), rhs.(*Scalar), false) case lt == ExprScalar && rt == ExprVector: return ev.vectorScalarBinop(e.Op, rhs.(Vector), lhs.(*Scalar), true) } case *Call: return e.Func.Call(ev, e.Args) case *MatrixSelector: return ev.matrixSelector(e) case *NumberLiteral: return &Scalar{Value: e.Val, Timestamp: ev.Timestamp} case *ParenExpr: return ev.eval(e.Expr) case *StringLiteral: return &String{Value: e.Val, Timestamp: ev.Timestamp} case *UnaryExpr: se := ev.evalOneOf(e.Expr, ExprScalar, ExprVector) // Only + and - are possible operators. if e.Op == itemSUB { switch v := se.(type) { case *Scalar: v.Value = -v.Value case Vector: for i, sv := range v { v[i].Value = -sv.Value } } } return se case *VectorSelector: return ev.vectorSelector(e) } panic(fmt.Errorf("unhandled expression of type: %T", expr)) } // vectorSelector evaluates a *VectorSelector expression. func (ev *evaluator) vectorSelector(node *VectorSelector) Vector { vec := Vector{} for fp, it := range node.iterators { sampleCandidates := it.ValueAtTime(ev.Timestamp.Add(-node.Offset)) samplePair := chooseClosestSample(sampleCandidates, ev.Timestamp.Add(-node.Offset)) if samplePair != nil { vec = append(vec, &Sample{ Metric: node.metrics[fp], Value: samplePair.Value, Timestamp: ev.Timestamp, }) } } return vec } // matrixSelector evaluates a *MatrixSelector expression. func (ev *evaluator) matrixSelector(node *MatrixSelector) Matrix { interval := metric.Interval{ OldestInclusive: ev.Timestamp.Add(-node.Range - node.Offset), NewestInclusive: ev.Timestamp.Add(-node.Offset), } sampleStreams := make([]*SampleStream, 0, len(node.iterators)) for fp, it := range node.iterators { samplePairs := it.RangeValues(interval) if len(samplePairs) == 0 { continue } if node.Offset != 0 { for _, sp := range samplePairs { sp.Timestamp = sp.Timestamp.Add(node.Offset) } } sampleStream := &SampleStream{ Metric: node.metrics[fp], Values: samplePairs, } sampleStreams = append(sampleStreams, sampleStream) } return Matrix(sampleStreams) } // matrixSelectorBounds evaluates the boundaries of a *MatrixSelector. func (ev *evaluator) matrixSelectorBounds(node *MatrixSelector) Matrix { interval := metric.Interval{ OldestInclusive: ev.Timestamp.Add(-node.Range - node.Offset), NewestInclusive: ev.Timestamp.Add(-node.Offset), } sampleStreams := make([]*SampleStream, 0, len(node.iterators)) for fp, it := range node.iterators { samplePairs := it.BoundaryValues(interval) if len(samplePairs) == 0 { continue } sampleStream := &SampleStream{ Metric: node.metrics[fp], Values: samplePairs, } sampleStreams = append(sampleStreams, sampleStream) } return Matrix(sampleStreams) } func (ev *evaluator) vectorAnd(lhs, rhs Vector, matching *VectorMatching) Vector { if matching.Card != CardManyToMany { panic("logical operations must always be many-to-many matching") } // If no matching labels are specified, match by all labels. sigf := signatureFunc(matching.On...) var result Vector // The set of signatures for the right-hand side vector. rightSigs := map[uint64]struct{}{} // Add all rhs samples to a map so we can easily find matches later. for _, rs := range rhs { rightSigs[sigf(rs.Metric)] = struct{}{} } for _, ls := range lhs { // If there's a matching entry in the right-hand side vector, add the sample. if _, ok := rightSigs[sigf(ls.Metric)]; ok { result = append(result, ls) } } return result } func (ev *evaluator) vectorOr(lhs, rhs Vector, matching *VectorMatching) Vector { if matching.Card != CardManyToMany { panic("logical operations must always be many-to-many matching") } sigf := signatureFunc(matching.On...) var result Vector leftSigs := map[uint64]struct{}{} // Add everything from the left-hand-side vector. for _, ls := range lhs { leftSigs[sigf(ls.Metric)] = struct{}{} result = append(result, ls) } // Add all right-hand side elements which have not been added from the left-hand side. for _, rs := range rhs { if _, ok := leftSigs[sigf(rs.Metric)]; !ok { result = append(result, rs) } } return result } // vectorBinop evaluates a binary operation between two vector, excluding AND and OR. func (ev *evaluator) vectorBinop(op itemType, lhs, rhs Vector, matching *VectorMatching) Vector { if matching.Card == CardManyToMany { panic("many-to-many only allowed for AND and OR") } var ( result = Vector{} sigf = signatureFunc(matching.On...) resultLabels = append(matching.On, matching.Include...) ) // The control flow below handles one-to-one or many-to-one matching. // For one-to-many, swap sidedness and account for the swap when calculating // values. if matching.Card == CardOneToMany { lhs, rhs = rhs, lhs } // All samples from the rhs hashed by the matching label/values. rightSigs := map[uint64]*Sample{} // Add all rhs samples to a map so we can easily find matches later. for _, rs := range rhs { sig := sigf(rs.Metric) // The rhs is guaranteed to be the 'one' side. Having multiple samples // with the same signature means that the matching is many-to-many. if _, found := rightSigs[sig]; found { // Many-to-many matching not allowed. ev.errorf("many-to-many matching not allowed: matching labels must be unique on one side") } rightSigs[sig] = rs } // Tracks the match-signature. For one-to-one operations the value is nil. For many-to-one // the value is a set of signatures to detect duplicated result elements. matchedSigs := map[uint64]map[uint64]struct{}{} // For all lhs samples find a respective rhs sample and perform // the binary operation. for _, ls := range lhs { sig := sigf(ls.Metric) rs, found := rightSigs[sig] // Look for a match in the rhs vector. if !found { continue } // Account for potentially swapped sidedness. vl, vr := ls.Value, rs.Value if matching.Card == CardOneToMany { vl, vr = vr, vl } value, keep := vectorElemBinop(op, vl, vr) if !keep { continue } metric := resultMetric(ls.Metric, op, resultLabels...) insertedSigs, exists := matchedSigs[sig] if matching.Card == CardOneToOne { if exists { ev.errorf("multiple matches for labels: many-to-one matching must be explicit (group_left/group_right)") } matchedSigs[sig] = nil // Set existance to true. } else { // In many-to-one matching the grouping labels have to ensure a unique metric // for the result vector. Check whether those labels have already been added for // the same matching labels. insertSig := clientmodel.SignatureForLabels(metric.Metric, matching.Include) if !exists { insertedSigs = map[uint64]struct{}{} matchedSigs[sig] = insertedSigs } else if _, duplicate := insertedSigs[insertSig]; duplicate { ev.errorf("multiple matches for labels: grouping labels must ensure unique matches") } insertedSigs[insertSig] = struct{}{} } result = append(result, &Sample{ Metric: metric, Value: value, Timestamp: ev.Timestamp, }) } return result } // signatureFunc returns a function that calculates the signature for a metric // based on the provided labels. func signatureFunc(labels ...clientmodel.LabelName) func(m clientmodel.COWMetric) uint64 { if len(labels) == 0 { return func(m clientmodel.COWMetric) uint64 { m.Delete(clientmodel.MetricNameLabel) return uint64(m.Metric.Fingerprint()) } } return func(m clientmodel.COWMetric) uint64 { return clientmodel.SignatureForLabels(m.Metric, labels) } } // resultMetric returns the metric for the given sample(s) based on the vector // binary operation and the matching options. func resultMetric(met clientmodel.COWMetric, op itemType, labels ...clientmodel.LabelName) clientmodel.COWMetric { if len(labels) == 0 { if shouldDropMetricName(op) { met.Delete(clientmodel.MetricNameLabel) } return met } // As we definitly write, creating a new metric is the easiest solution. m := clientmodel.Metric{} for _, ln := range labels { // Included labels from the `group_x` modifier are taken from the "many"-side. if v, ok := met.Metric[ln]; ok { m[ln] = v } } return clientmodel.COWMetric{Metric: m, Copied: false} } // vectorScalarBinop evaluates a binary operation between a vector and a scalar. func (ev *evaluator) vectorScalarBinop(op itemType, lhs Vector, rhs *Scalar, swap bool) Vector { vector := make(Vector, 0, len(lhs)) for _, lhsSample := range lhs { lv, rv := lhsSample.Value, rhs.Value // lhs always contains the vector. If the original position was different // swap for calculating the value. if swap { lv, rv = rv, lv } value, keep := vectorElemBinop(op, lv, rv) if keep { lhsSample.Value = value if shouldDropMetricName(op) { lhsSample.Metric.Delete(clientmodel.MetricNameLabel) } vector = append(vector, lhsSample) } } return vector } // scalarBinop evaluates a binary operation between two scalars. func scalarBinop(op itemType, lhs, rhs clientmodel.SampleValue) clientmodel.SampleValue { switch op { case itemADD: return lhs + rhs case itemSUB: return lhs - rhs case itemMUL: return lhs * rhs case itemDIV: return lhs / rhs case itemMOD: if rhs != 0 { return clientmodel.SampleValue(int(lhs) % int(rhs)) } return clientmodel.SampleValue(math.NaN()) case itemEQL: return btos(lhs == rhs) case itemNEQ: return btos(lhs != rhs) case itemGTR: return btos(lhs > rhs) case itemLSS: return btos(lhs < rhs) case itemGTE: return btos(lhs >= rhs) case itemLTE: return btos(lhs <= rhs) } panic(fmt.Errorf("operator %q not allowed for scalar operations", op)) } // vectorElemBinop evaluates a binary operation between two vector elements. func vectorElemBinop(op itemType, lhs, rhs clientmodel.SampleValue) (clientmodel.SampleValue, bool) { switch op { case itemADD: return lhs + rhs, true case itemSUB: return lhs - rhs, true case itemMUL: return lhs * rhs, true case itemDIV: return lhs / rhs, true case itemMOD: if rhs != 0 { return clientmodel.SampleValue(int(lhs) % int(rhs)), true } return clientmodel.SampleValue(math.NaN()), true case itemEQL: return lhs, lhs == rhs case itemNEQ: return lhs, lhs != rhs case itemGTR: return lhs, lhs > rhs case itemLSS: return lhs, lhs < rhs case itemGTE: return lhs, lhs >= rhs case itemLTE: return lhs, lhs <= rhs } panic(fmt.Errorf("operator %q not allowed for operations between vectors", op)) } // labelIntersection returns the metric of common label/value pairs of two input metrics. func labelIntersection(metric1, metric2 clientmodel.COWMetric) clientmodel.COWMetric { for label, value := range metric1.Metric { if metric2.Metric[label] != value { metric1.Delete(label) } } return metric1 } type groupedAggregation struct { labels clientmodel.COWMetric value clientmodel.SampleValue valuesSquaredSum clientmodel.SampleValue groupCount int } // aggregation evaluates an aggregation operation on a vector. func (ev *evaluator) aggregation(op itemType, grouping clientmodel.LabelNames, keepExtra bool, vector Vector) Vector { result := map[uint64]*groupedAggregation{} for _, sample := range vector { groupingKey := clientmodel.SignatureForLabels(sample.Metric.Metric, grouping) groupedResult, ok := result[groupingKey] // Add a new group if it doesn't exist. if !ok { var m clientmodel.COWMetric if keepExtra { m = sample.Metric m.Delete(clientmodel.MetricNameLabel) } else { m = clientmodel.COWMetric{ Metric: clientmodel.Metric{}, Copied: true, } for _, l := range grouping { if v, ok := sample.Metric.Metric[l]; ok { m.Set(l, v) } } } result[groupingKey] = &groupedAggregation{ labels: m, value: sample.Value, valuesSquaredSum: sample.Value * sample.Value, groupCount: 1, } continue } // Add the sample to the existing group. if keepExtra { groupedResult.labels = labelIntersection(groupedResult.labels, sample.Metric) } switch op { case itemSum: groupedResult.value += sample.Value case itemAvg: groupedResult.value += sample.Value groupedResult.groupCount++ case itemMax: if groupedResult.value < sample.Value { groupedResult.value = sample.Value } case itemMin: if groupedResult.value > sample.Value { groupedResult.value = sample.Value } case itemCount: groupedResult.groupCount++ case itemStdvar, itemStddev: groupedResult.value += sample.Value groupedResult.valuesSquaredSum += sample.Value * sample.Value groupedResult.groupCount++ default: panic(fmt.Errorf("expected aggregation operator but got %q", op)) } } // Construct the result vector from the aggregated groups. resultVector := make(Vector, 0, len(result)) for _, aggr := range result { switch op { case itemAvg: aggr.value = aggr.value / clientmodel.SampleValue(aggr.groupCount) case itemCount: aggr.value = clientmodel.SampleValue(aggr.groupCount) case itemStdvar: avg := float64(aggr.value) / float64(aggr.groupCount) aggr.value = clientmodel.SampleValue(float64(aggr.valuesSquaredSum)/float64(aggr.groupCount) - avg*avg) case itemStddev: avg := float64(aggr.value) / float64(aggr.groupCount) aggr.value = clientmodel.SampleValue(math.Sqrt(float64(aggr.valuesSquaredSum)/float64(aggr.groupCount) - avg*avg)) default: // For other aggregations, we already have the right value. } sample := &Sample{ Metric: aggr.labels, Value: aggr.value, Timestamp: ev.Timestamp, } resultVector = append(resultVector, sample) } return resultVector } // btos returns 1 if b is true, 0 otherwise. func btos(b bool) clientmodel.SampleValue { if b { return 1 } return 0 } // shouldDropMetricName returns whether the metric name should be dropped in the // result of the op operation. func shouldDropMetricName(op itemType) bool { switch op { case itemADD, itemSUB, itemDIV, itemMUL, itemMOD: return true default: return false } } // StalenessDelta determines the time since the last sample after which a time // series is considered stale. var StalenessDelta = 5 * time.Minute // chooseClosestSample chooses the closest sample of a list of samples // surrounding a given target time. If samples are found both before and after // the target time, the sample value is interpolated between these. Otherwise, // the single closest sample is returned verbatim. func chooseClosestSample(samples metric.Values, timestamp clientmodel.Timestamp) *metric.SamplePair { var closestBefore *metric.SamplePair var closestAfter *metric.SamplePair for _, candidate := range samples { delta := candidate.Timestamp.Sub(timestamp) // Samples before target time. if delta < 0 { // Ignore samples outside of staleness policy window. if -delta > StalenessDelta { continue } // Ignore samples that are farther away than what we've seen before. if closestBefore != nil && candidate.Timestamp.Before(closestBefore.Timestamp) { continue } sample := candidate closestBefore = &sample } // Samples after target time. if delta >= 0 { // Ignore samples outside of staleness policy window. if delta > StalenessDelta { continue } // Ignore samples that are farther away than samples we've seen before. if closestAfter != nil && candidate.Timestamp.After(closestAfter.Timestamp) { continue } sample := candidate closestAfter = &sample } } switch { case closestBefore != nil && closestAfter != nil: return interpolateSamples(closestBefore, closestAfter, timestamp) case closestBefore != nil: return closestBefore default: return closestAfter } } // interpolateSamples interpolates a value at a target time between two // provided sample pairs. func interpolateSamples(first, second *metric.SamplePair, timestamp clientmodel.Timestamp) *metric.SamplePair { dv := second.Value - first.Value dt := second.Timestamp.Sub(first.Timestamp) dDt := dv / clientmodel.SampleValue(dt) offset := clientmodel.SampleValue(timestamp.Sub(first.Timestamp)) return &metric.SamplePair{ Value: first.Value + (offset * dDt), Timestamp: timestamp, } } // A queryGate controls the maximum number of concurrently running and waiting queries. type queryGate struct { ch chan struct{} } // newQueryGate returns a query gate that limits the number of queries // being concurrently executed. func newQueryGate(length int) *queryGate { return &queryGate{ ch: make(chan struct{}, length), } } // Start blocks until the gate has a free spot or the context is done. func (g *queryGate) Start(ctx context.Context) error { select { case <-ctx.Done(): return contextDone(ctx, "query queue") case g.ch <- struct{}{}: return nil } } // Done releases a single spot in the gate. func (g *queryGate) Done() { select { case <-g.ch: default: panic("engine.queryGate.Done: more operations done than started") } }