// Copyright 2017 The Prometheus Authors // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // Package tsdb implements a time series storage for float64 sample data. package tsdb import ( "bytes" "fmt" "io" "io/ioutil" "math" "os" "path/filepath" "runtime" "sort" "strconv" "strings" "sync" "time" "github.com/go-kit/kit/log" "github.com/go-kit/kit/log/level" "github.com/oklog/ulid" "github.com/pkg/errors" "github.com/prometheus/client_golang/prometheus" "github.com/prometheus/tsdb/chunkenc" "github.com/prometheus/tsdb/fileutil" "github.com/prometheus/tsdb/labels" "github.com/prometheus/tsdb/wal" "golang.org/x/sync/errgroup" ) // DefaultOptions used for the DB. They are sane for setups using // millisecond precision timestamps. var DefaultOptions = &Options{ WALFlushInterval: 5 * time.Second, RetentionDuration: 15 * 24 * 60 * 60 * 1000, // 15 days in milliseconds BlockRanges: ExponentialBlockRanges(int64(2*time.Hour)/1e6, 3, 5), NoLockfile: false, } // Options of the DB storage. type Options struct { // The interval at which the write ahead log is flushed to disk. WALFlushInterval time.Duration // Duration of persisted data to keep. RetentionDuration uint64 // The sizes of the Blocks. BlockRanges []int64 // NoLockfile disables creation and consideration of a lock file. NoLockfile bool } // Appender allows appending a batch of data. It must be completed with a // call to Commit or Rollback and must not be reused afterwards. // // Operations on the Appender interface are not goroutine-safe. type Appender interface { // Add adds a sample pair for the given series. A reference number is // returned which can be used to add further samples in the same or later // transactions. // Returned reference numbers are ephemeral and may be rejected in calls // to AddFast() at any point. Adding the sample via Add() returns a new // reference number. // If the reference is 0 it must not be used for caching. Add(l labels.Labels, t int64, v float64) (uint64, error) // Add adds a sample pair for the referenced series. It is generally faster // than adding a sample by providing its full label set. AddFast(ref uint64, t int64, v float64) error // Commit submits the collected samples and purges the batch. Commit() error // Rollback rolls back all modifications made in the appender so far. Rollback() error } // DB handles reads and writes of time series falling into // a hashed partition of a seriedb. type DB struct { dir string lockf fileutil.Releaser logger log.Logger metrics *dbMetrics opts *Options chunkPool chunkenc.Pool compactor Compactor // Mutex for that must be held when modifying the general block layout. mtx sync.RWMutex blocks []*Block head *Head compactc chan struct{} donec chan struct{} stopc chan struct{} // cmtx ensures that compactions and deletions don't run simultaneously. cmtx sync.Mutex // autoCompactMtx ensures that no compaction gets triggered while // changing the autoCompact var. autoCompactMtx sync.Mutex autoCompact bool } type dbMetrics struct { loadedBlocks prometheus.GaugeFunc symbolTableSize prometheus.GaugeFunc reloads prometheus.Counter reloadsFailed prometheus.Counter compactionsTriggered prometheus.Counter compactionsSkipped prometheus.Counter cutoffs prometheus.Counter cutoffsFailed prometheus.Counter startTime prometheus.GaugeFunc tombCleanTimer prometheus.Histogram } func newDBMetrics(db *DB, r prometheus.Registerer) *dbMetrics { m := &dbMetrics{} m.loadedBlocks = prometheus.NewGaugeFunc(prometheus.GaugeOpts{ Name: "prometheus_tsdb_blocks_loaded", Help: "Number of currently loaded data blocks", }, func() float64 { db.mtx.RLock() defer db.mtx.RUnlock() return float64(len(db.blocks)) }) m.symbolTableSize = prometheus.NewGaugeFunc(prometheus.GaugeOpts{ Name: "prometheus_tsdb_symbol_table_size_bytes", Help: "Size of symbol table on disk (in bytes)", }, func() float64 { db.mtx.RLock() blocks := db.blocks[:] db.mtx.RUnlock() symTblSize := uint64(0) for _, b := range blocks { symTblSize += b.GetSymbolTableSize() } return float64(symTblSize) }) m.reloads = prometheus.NewCounter(prometheus.CounterOpts{ Name: "prometheus_tsdb_reloads_total", Help: "Number of times the database reloaded block data from disk.", }) m.reloadsFailed = prometheus.NewCounter(prometheus.CounterOpts{ Name: "prometheus_tsdb_reloads_failures_total", Help: "Number of times the database failed to reload block data from disk.", }) m.compactionsTriggered = prometheus.NewCounter(prometheus.CounterOpts{ Name: "prometheus_tsdb_compactions_triggered_total", Help: "Total number of triggered compactions for the partition.", }) m.compactionsSkipped = prometheus.NewCounter(prometheus.CounterOpts{ Name: "prometheus_tsdb_compactions_skipped_total", Help: "Total number of skipped compactions due to disabled auto compaction.", }) m.cutoffs = prometheus.NewCounter(prometheus.CounterOpts{ Name: "prometheus_tsdb_retention_cutoffs_total", Help: "Number of times the database cut off block data from disk.", }) m.cutoffsFailed = prometheus.NewCounter(prometheus.CounterOpts{ Name: "prometheus_tsdb_retention_cutoffs_failures_total", Help: "Number of times the database failed to cut off block data from disk.", }) m.startTime = prometheus.NewGaugeFunc(prometheus.GaugeOpts{ Name: "prometheus_tsdb_lowest_timestamp", Help: "Lowest timestamp value stored in the database. The unit is decided by the library consumer.", }, func() float64 { db.mtx.RLock() defer db.mtx.RUnlock() if len(db.blocks) == 0 { return float64(db.head.minTime) } return float64(db.blocks[0].meta.MinTime) }) m.tombCleanTimer = prometheus.NewHistogram(prometheus.HistogramOpts{ Name: "prometheus_tsdb_tombstone_cleanup_seconds", Help: "The time taken to recompact blocks to remove tombstones.", }) if r != nil { r.MustRegister( m.loadedBlocks, m.symbolTableSize, m.reloads, m.reloadsFailed, m.cutoffs, m.cutoffsFailed, m.compactionsTriggered, m.startTime, m.tombCleanTimer, ) } return m } // Open returns a new DB in the given directory. func Open(dir string, l log.Logger, r prometheus.Registerer, opts *Options) (db *DB, err error) { if err := os.MkdirAll(dir, 0777); err != nil { return nil, err } if l == nil { l = log.NewNopLogger() } if opts == nil { opts = DefaultOptions } // Fixup bad format written by Prometheus 2.1. if err := repairBadIndexVersion(l, dir); err != nil { return nil, err } // Migrate old WAL if one exists. if err := MigrateWAL(l, filepath.Join(dir, "wal")); err != nil { return nil, errors.Wrap(err, "migrate WAL") } db = &DB{ dir: dir, logger: l, opts: opts, compactc: make(chan struct{}, 1), donec: make(chan struct{}), stopc: make(chan struct{}), autoCompact: true, chunkPool: chunkenc.NewPool(), } db.metrics = newDBMetrics(db, r) if !opts.NoLockfile { absdir, err := filepath.Abs(dir) if err != nil { return nil, err } lockf, _, err := fileutil.Flock(filepath.Join(absdir, "lock")) if err != nil { return nil, errors.Wrap(err, "lock DB directory") } db.lockf = lockf } db.compactor, err = NewLeveledCompactor(r, l, opts.BlockRanges, db.chunkPool) if err != nil { return nil, errors.Wrap(err, "create leveled compactor") } wlog, err := wal.New(l, r, filepath.Join(dir, "wal")) if err != nil { return nil, err } db.head, err = NewHead(r, l, wlog, opts.BlockRanges[0]) if err != nil { return nil, err } if err := db.head.Init(); err != nil { return nil, errors.Wrap(err, "read WAL") } if err := db.reload(); err != nil { return nil, err } go db.run() return db, nil } // Dir returns the directory of the database. func (db *DB) Dir() string { return db.dir } func (db *DB) run() { defer close(db.donec) backoff := time.Duration(0) for { select { case <-db.stopc: return case <-time.After(backoff): } select { case <-time.After(1 * time.Minute): select { case db.compactc <- struct{}{}: default: } case <-db.compactc: db.metrics.compactionsTriggered.Inc() db.autoCompactMtx.Lock() if db.autoCompact { if err := db.compact(); err != nil { level.Error(db.logger).Log("msg", "compaction failed", "err", err) backoff = exponential(backoff, 1*time.Second, 1*time.Minute) } else { backoff = 0 } } else { db.metrics.compactionsSkipped.Inc() } db.autoCompactMtx.Unlock() case <-db.stopc: return } } } func (db *DB) beyondRetention(meta *BlockMeta) bool { if db.opts.RetentionDuration == 0 { return false } db.mtx.RLock() blocks := db.blocks[:] db.mtx.RUnlock() if len(blocks) == 0 { return false } last := blocks[len(db.blocks)-1] mint := last.Meta().MaxTime - int64(db.opts.RetentionDuration) return meta.MaxTime < mint } // Appender opens a new appender against the database. func (db *DB) Appender() Appender { return dbAppender{db: db, Appender: db.head.Appender()} } // dbAppender wraps the DB's head appender and triggers compactions on commit // if necessary. type dbAppender struct { Appender db *DB } func (a dbAppender) Commit() error { err := a.Appender.Commit() // We could just run this check every few minutes practically. But for benchmarks // and high frequency use cases this is the safer way. if a.db.head.MaxTime()-a.db.head.MinTime() > a.db.head.chunkRange/2*3 { select { case a.db.compactc <- struct{}{}: default: } } return err } // Compact data if possible. After successful compaction blocks are reloaded // which will also trigger blocks to be deleted that fall out of the retention // window. // If no blocks are compacted, the retention window state doesn't change. Thus, // this is sufficient to reliably delete old data. // Old blocks are only deleted on reload based on the new block's parent information. // See DB.reload documentation for further information. func (db *DB) compact() (err error) { db.cmtx.Lock() defer db.cmtx.Unlock() // Check whether we have pending head blocks that are ready to be persisted. // They have the highest priority. for { select { case <-db.stopc: return nil default: } // The head has a compactable range if 1.5 level 0 ranges are between the oldest // and newest timestamp. The 0.5 acts as a buffer of the appendable window. if db.head.MaxTime()-db.head.MinTime() <= db.opts.BlockRanges[0]/2*3 { break } mint, maxt := rangeForTimestamp(db.head.MinTime(), db.opts.BlockRanges[0]) // Wrap head into a range that bounds all reads to it. head := &rangeHead{ head: db.head, mint: mint, // We remove 1 millisecond from maxt because block // intervals are half-open: [b.MinTime, b.MaxTime). But // chunk intervals are closed: [c.MinTime, c.MaxTime]; // so in order to make sure that overlaps are evaluated // consistently, we explicitly remove the last value // from the block interval here. maxt: maxt - 1, } if _, err = db.compactor.Write(db.dir, head, mint, maxt, nil); err != nil { return errors.Wrap(err, "persist head block") } runtime.GC() if err := db.reload(); err != nil { return errors.Wrap(err, "reload blocks") } runtime.GC() } // Check for compactions of multiple blocks. for { plan, err := db.compactor.Plan(db.dir) if err != nil { return errors.Wrap(err, "plan compaction") } if len(plan) == 0 { break } select { case <-db.stopc: return nil default: } if _, err := db.compactor.Compact(db.dir, plan, db.blocks); err != nil { return errors.Wrapf(err, "compact %s", plan) } runtime.GC() if err := db.reload(); err != nil { return errors.Wrap(err, "reload blocks") } runtime.GC() } return nil } func (db *DB) getBlock(id ulid.ULID) (*Block, bool) { for _, b := range db.blocks { if b.Meta().ULID == id { return b, true } } return nil, false } // reload on-disk blocks and trigger head truncation if new blocks appeared. It takes // a list of block directories which should be deleted during reload. // Blocks that are obsolete due to replacement or retention will be deleted. func (db *DB) reload() (err error) { defer func() { if err != nil { db.metrics.reloadsFailed.Inc() } db.metrics.reloads.Inc() }() dirs, err := blockDirs(db.dir) if err != nil { return errors.Wrap(err, "find blocks") } // We delete old blocks that have been superseded by new ones by gathering all parents // from existing blocks. Those parents all have newer replacements and can be safely deleted // after we loaded the other blocks. // This makes us resilient against the process crashing towards the end of a compaction. // Creation of a new block and deletion of its parents cannot happen atomically. By creating // blocks with their parents, we can pick up the deletion where it left off during a crash. var ( blocks []*Block corrupted = map[ulid.ULID]error{} opened = map[ulid.ULID]struct{}{} deleteable = map[ulid.ULID]struct{}{} ) for _, dir := range dirs { meta, err := readMetaFile(dir) if err != nil { // The block was potentially in the middle of being deleted during a crash. // Skip it since we may delete it properly further down again. level.Warn(db.logger).Log("msg", "read meta information", "err", err, "dir", dir) ulid, err2 := ulid.Parse(filepath.Base(dir)) if err2 != nil { level.Error(db.logger).Log("msg", "not a block dir", "dir", dir) continue } corrupted[ulid] = err continue } if db.beyondRetention(meta) { deleteable[meta.ULID] = struct{}{} continue } for _, b := range meta.Compaction.Parents { deleteable[b.ULID] = struct{}{} } } // Blocks we failed to open should all be those we are want to delete anyway. for c, err := range corrupted { if _, ok := deleteable[c]; !ok { return errors.Wrapf(err, "unexpected corrupted block %s", c) } } // Load new blocks into memory. for _, dir := range dirs { meta, err := readMetaFile(dir) if err != nil { return errors.Wrapf(err, "read meta information %s", dir) } // Don't load blocks that are scheduled for deletion. if _, ok := deleteable[meta.ULID]; ok { continue } // See if we already have the block in memory or open it otherwise. b, ok := db.getBlock(meta.ULID) if !ok { b, err = OpenBlock(dir, db.chunkPool) if err != nil { return errors.Wrapf(err, "open block %s", dir) } } blocks = append(blocks, b) opened[meta.ULID] = struct{}{} } sort.Slice(blocks, func(i, j int) bool { return blocks[i].Meta().MinTime < blocks[j].Meta().MinTime }) if err := validateBlockSequence(blocks); err != nil { return errors.Wrap(err, "invalid block sequence") } // Swap in new blocks first for subsequently created readers to be seen. // Then close previous blocks, which may block for pending readers to complete. db.mtx.Lock() oldBlocks := db.blocks db.blocks = blocks db.mtx.Unlock() // Drop old blocks from memory. for _, b := range oldBlocks { if _, ok := opened[b.Meta().ULID]; ok { continue } if err := b.Close(); err != nil { level.Warn(db.logger).Log("msg", "closing block failed", "err", err) } } // Delete all obsolete blocks. None of them are opened any longer. for ulid := range deleteable { if err := os.RemoveAll(filepath.Join(db.dir, ulid.String())); err != nil { return errors.Wrapf(err, "delete obsolete block %s", ulid) } } // Garbage collect data in the head if the most recent persisted block // covers data of its current time range. if len(blocks) == 0 { return nil } maxt := blocks[len(blocks)-1].Meta().MaxTime return errors.Wrap(db.head.Truncate(maxt), "head truncate failed") } // validateBlockSequence returns error if given block meta files indicate that some blocks overlaps within sequence. func validateBlockSequence(bs []*Block) error { if len(bs) <= 1 { return nil } var metas []BlockMeta for _, b := range bs { metas = append(metas, b.meta) } overlaps := OverlappingBlocks(metas) if len(overlaps) > 0 { return errors.Errorf("block time ranges overlap: %s", overlaps) } return nil } // TimeRange specifies minTime and maxTime range. type TimeRange struct { Min, Max int64 } // Overlaps contains overlapping blocks aggregated by overlapping range. type Overlaps map[TimeRange][]BlockMeta // String returns human readable string form of overlapped blocks. func (o Overlaps) String() string { var res []string for r, overlaps := range o { var groups []string for _, m := range overlaps { groups = append(groups, fmt.Sprintf( "", m.ULID.String(), m.MinTime, m.MaxTime, (time.Duration((m.MaxTime-m.MinTime)/1000)*time.Second).String(), )) } res = append(res, fmt.Sprintf( "[mint: %d, maxt: %d, range: %s, blocks: %d]: %s", r.Min, r.Max, (time.Duration((r.Max-r.Min)/1000)*time.Second).String(), len(overlaps), strings.Join(groups, ", ")), ) } return strings.Join(res, "\n") } // OverlappingBlocks returns all overlapping blocks from given meta files. func OverlappingBlocks(bm []BlockMeta) Overlaps { if len(bm) <= 1 { return nil } var ( overlaps [][]BlockMeta // pending contains not ended blocks in regards to "current" timestamp. pending = []BlockMeta{bm[0]} // continuousPending helps to aggregate same overlaps to single group. continuousPending = true ) // We have here blocks sorted by minTime. We iterate over each block and treat its minTime as our "current" timestamp. // We check if any of the pending block finished (blocks that we have seen before, but their maxTime was still ahead current // timestamp). If not, it means they overlap with our current block. In the same time current block is assumed pending. for _, b := range bm[1:] { var newPending []BlockMeta for _, p := range pending { // "b.MinTime" is our current time. if b.MinTime >= p.MaxTime { continuousPending = false continue } // "p" overlaps with "b" and "p" is still pending. newPending = append(newPending, p) } // Our block "b" is now pending. pending = append(newPending, b) if len(newPending) == 0 { // No overlaps. continue } if continuousPending && len(overlaps) > 0 { overlaps[len(overlaps)-1] = append(overlaps[len(overlaps)-1], b) continue } overlaps = append(overlaps, append(newPending, b)) // Start new pendings. continuousPending = true } // Fetch the critical overlapped time range foreach overlap groups. overlapGroups := Overlaps{} for _, overlap := range overlaps { minRange := TimeRange{Min: 0, Max: math.MaxInt64} for _, b := range overlap { if minRange.Max > b.MaxTime { minRange.Max = b.MaxTime } if minRange.Min < b.MinTime { minRange.Min = b.MinTime } } overlapGroups[minRange] = overlap } return overlapGroups } func (db *DB) String() string { return "HEAD" } // Blocks returns the databases persisted blocks. func (db *DB) Blocks() []*Block { db.mtx.RLock() defer db.mtx.RUnlock() return db.blocks } // Head returns the databases's head. func (db *DB) Head() *Head { return db.head } // Close the partition. func (db *DB) Close() error { close(db.stopc) <-db.donec db.mtx.Lock() defer db.mtx.Unlock() var g errgroup.Group // blocks also contains all head blocks. for _, pb := range db.blocks { g.Go(pb.Close) } var merr MultiError merr.Add(g.Wait()) if db.lockf != nil { merr.Add(db.lockf.Release()) } merr.Add(db.head.Close()) return merr.Err() } // DisableCompactions disables auto compactions. func (db *DB) DisableCompactions() { db.autoCompactMtx.Lock() defer db.autoCompactMtx.Unlock() db.autoCompact = false level.Info(db.logger).Log("msg", "compactions disabled") } // EnableCompactions enables auto compactions. func (db *DB) EnableCompactions() { db.autoCompactMtx.Lock() defer db.autoCompactMtx.Unlock() db.autoCompact = true level.Info(db.logger).Log("msg", "compactions enabled") } // Snapshot writes the current data to the directory. If withHead is set to true it // will create a new block containing all data that's currently in the memory buffer/WAL. func (db *DB) Snapshot(dir string, withHead bool) error { if dir == db.dir { return errors.Errorf("cannot snapshot into base directory") } if _, err := ulid.Parse(dir); err == nil { return errors.Errorf("dir must not be a valid ULID") } db.cmtx.Lock() defer db.cmtx.Unlock() db.mtx.RLock() defer db.mtx.RUnlock() for _, b := range db.blocks { level.Info(db.logger).Log("msg", "snapshotting block", "block", b) if err := b.Snapshot(dir); err != nil { return errors.Wrapf(err, "error snapshotting block: %s", b.Dir()) } } if !withHead { return nil } _, err := db.compactor.Write(dir, db.head, db.head.MinTime(), db.head.MaxTime(), nil) return errors.Wrap(err, "snapshot head block") } // Querier returns a new querier over the data partition for the given time range. // A goroutine must not handle more than one open Querier. func (db *DB) Querier(mint, maxt int64) (Querier, error) { var blocks []BlockReader db.mtx.RLock() defer db.mtx.RUnlock() for _, b := range db.blocks { if b.OverlapsClosedInterval(mint, maxt) { blocks = append(blocks, b) } } if maxt >= db.head.MinTime() { blocks = append(blocks, &rangeHead{ head: db.head, mint: mint, maxt: maxt, }) } sq := &querier{ blocks: make([]Querier, 0, len(blocks)), } for _, b := range blocks { q, err := NewBlockQuerier(b, mint, maxt) if err == nil { sq.blocks = append(sq.blocks, q) continue } // If we fail, all previously opened queriers must be closed. for _, q := range sq.blocks { q.Close() } return nil, errors.Wrapf(err, "open querier for block %s", b) } return sq, nil } func rangeForTimestamp(t int64, width int64) (mint, maxt int64) { mint = (t / width) * width return mint, mint + width } // Delete implements deletion of metrics. It only has atomicity guarantees on a per-block basis. func (db *DB) Delete(mint, maxt int64, ms ...labels.Matcher) error { db.cmtx.Lock() defer db.cmtx.Unlock() var g errgroup.Group db.mtx.RLock() defer db.mtx.RUnlock() for _, b := range db.blocks { if b.OverlapsClosedInterval(mint, maxt) { g.Go(func(b *Block) func() error { return func() error { return b.Delete(mint, maxt, ms...) } }(b)) } } g.Go(func() error { return db.head.Delete(mint, maxt, ms...) }) return g.Wait() } // CleanTombstones re-writes any blocks with tombstones. func (db *DB) CleanTombstones() (err error) { db.cmtx.Lock() defer db.cmtx.Unlock() start := time.Now() defer db.metrics.tombCleanTimer.Observe(time.Since(start).Seconds()) newUIDs := []ulid.ULID{} defer func() { // If any error is caused, we need to delete all the new directory created. if err != nil { for _, uid := range newUIDs { dir := filepath.Join(db.Dir(), uid.String()) if err := os.RemoveAll(dir); err != nil { level.Error(db.logger).Log("msg", "failed to delete block after failed `CleanTombstones`", "dir", dir, "err", err) } } } }() db.mtx.RLock() blocks := db.blocks[:] db.mtx.RUnlock() for _, b := range blocks { if uid, er := b.CleanTombstones(db.Dir(), db.compactor); er != nil { err = errors.Wrapf(er, "clean tombstones: %s", b.Dir()) return err } else if uid != nil { // New block was created. newUIDs = append(newUIDs, *uid) } } return errors.Wrap(db.reload(), "reload blocks") } func isBlockDir(fi os.FileInfo) bool { if !fi.IsDir() { return false } _, err := ulid.Parse(fi.Name()) return err == nil } func blockDirs(dir string) ([]string, error) { files, err := ioutil.ReadDir(dir) if err != nil { return nil, err } var dirs []string for _, fi := range files { if isBlockDir(fi) { dirs = append(dirs, filepath.Join(dir, fi.Name())) } } return dirs, nil } func sequenceFiles(dir string) ([]string, error) { files, err := ioutil.ReadDir(dir) if err != nil { return nil, err } var res []string for _, fi := range files { if _, err := strconv.ParseUint(fi.Name(), 10, 64); err != nil { continue } res = append(res, filepath.Join(dir, fi.Name())) } return res, nil } func nextSequenceFile(dir string) (string, int, error) { names, err := fileutil.ReadDir(dir) if err != nil { return "", 0, err } i := uint64(0) for _, n := range names { j, err := strconv.ParseUint(n, 10, 64) if err != nil { continue } i = j } return filepath.Join(dir, fmt.Sprintf("%0.6d", i+1)), int(i + 1), nil } // The MultiError type implements the error interface, and contains the // Errors used to construct it. type MultiError []error // Returns a concatenated string of the contained errors func (es MultiError) Error() string { var buf bytes.Buffer if len(es) > 1 { fmt.Fprintf(&buf, "%d errors: ", len(es)) } for i, err := range es { if i != 0 { buf.WriteString("; ") } buf.WriteString(err.Error()) } return buf.String() } // Add adds the error to the error list if it is not nil. func (es *MultiError) Add(err error) { if err == nil { return } if merr, ok := err.(MultiError); ok { *es = append(*es, merr...) } else { *es = append(*es, err) } } // Err returns the error list as an error or nil if it is empty. func (es MultiError) Err() error { if len(es) == 0 { return nil } return es } func closeAll(cs ...io.Closer) error { var merr MultiError for _, c := range cs { merr.Add(c.Close()) } return merr.Err() } func exponential(d, min, max time.Duration) time.Duration { d *= 2 if d < min { d = min } if d > max { d = max } return d }