// Copyright 2021 The Prometheus Authors // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package textparse import ( "bytes" "encoding/binary" "fmt" "io" "math" "sort" "strings" "unicode/utf8" "github.com/gogo/protobuf/proto" "github.com/pkg/errors" "github.com/prometheus/common/model" "github.com/prometheus/prometheus/model/histogram" "github.com/prometheus/prometheus/pkg/exemplar" "github.com/prometheus/prometheus/pkg/labels" dto "github.com/prometheus/prometheus/prompb/io/prometheus/client" ) // ProtobufParser is a very inefficient way of unmarshaling the old Prometheus // protobuf format and then present it as it if were parsed by a // Prometheus-2-style text parser. This is only done so that we can easily plug // in the protobuf format into Prometheus 2. For future use (with the final // format that will be used for sparse histograms), we have to revisit the // parsing. A lot of the efficiency tricks of the Prometheus-2-style parsing // could be used in a similar fashion (byte-slice pointers into the raw // payload), which requires some hand-coded protobuf handling. But the current // parsers all expect the full series name (metric name plus label pairs) as one // string, which is not how things are represented in the protobuf format. If // the re-arrangement work is actually causing problems (which has to be seen), // that expectation needs to be changed. type ProtobufParser struct { in []byte // The intput to parse. inPos int // Position within the input. metricPos int // Position within Metric slice. // fieldPos is the position within a Summary or (legacy) Histogram. -2 // is the count. -1 is the sum. Otherwise it is the index within // quantiles/buckets. fieldPos int fieldsDone bool // true if no more fields of a Summary or (legacy) Histogram to be processed. // state is marked by the entry we are processing. EntryInvalid implies // that we have to decode the next MetricFamily. state Entry mf *dto.MetricFamily // The following are just shenanigans to satisfy the Parser interface. metricBytes *bytes.Buffer // A somewhat fluid representation of the current metric. } // NewProtobufParser returns a parser for the payload in the byte slice. func NewProtobufParser(b []byte) Parser { return &ProtobufParser{ in: b, state: EntryInvalid, mf: &dto.MetricFamily{}, metricBytes: &bytes.Buffer{}, } } // Series returns the bytes of a series with a simple float64 as a // value, the timestamp if set, and the value of the current sample. func (p *ProtobufParser) Series() ([]byte, *int64, float64) { var ( m = p.mf.GetMetric()[p.metricPos] ts = m.GetTimestampMs() v float64 ) switch p.mf.GetType() { case dto.MetricType_COUNTER: v = m.GetCounter().GetValue() case dto.MetricType_GAUGE: v = m.GetGauge().GetValue() case dto.MetricType_UNTYPED: v = m.GetUntyped().GetValue() case dto.MetricType_SUMMARY: s := m.GetSummary() switch p.fieldPos { case -2: v = float64(s.GetSampleCount()) case -1: v = s.GetSampleSum() // Need to detect a summaries without quantile here. if len(s.GetQuantile()) == 0 { p.fieldsDone = true } default: v = s.GetQuantile()[p.fieldPos].GetValue() } case dto.MetricType_HISTOGRAM: // This should only happen for a legacy histogram. h := m.GetHistogram() switch p.fieldPos { case -2: v = float64(h.GetSampleCount()) case -1: v = h.GetSampleSum() default: bb := h.GetBucket() if p.fieldPos >= len(bb) { v = float64(h.GetSampleCount()) } else { v = float64(bb[p.fieldPos].GetCumulativeCount()) } } default: panic("encountered unexpected metric type, this is a bug") } if ts != 0 { return p.metricBytes.Bytes(), &ts, v } // Nasty hack: Assume that ts==0 means no timestamp. That's not true in // general, but proto3 has no distinction between unset and // default. Need to avoid in the final format. return p.metricBytes.Bytes(), nil, v } // Histogram returns the bytes of a series with a sparse histogram as a // value, the timestamp if set, and the sparse histogram in the current // sample. func (p *ProtobufParser) Histogram() ([]byte, *int64, histogram.Histogram) { var ( m = p.mf.GetMetric()[p.metricPos] ts = m.GetTimestampMs() h = m.GetHistogram() ) sh := histogram.Histogram{ Count: h.GetSampleCount(), Sum: h.GetSampleSum(), ZeroThreshold: h.GetSbZeroThreshold(), ZeroCount: h.GetSbZeroCount(), Schema: h.GetSbSchema(), PositiveSpans: make([]histogram.Span, len(h.GetSbPositive().GetSpan())), PositiveBuckets: h.GetSbPositive().GetDelta(), NegativeSpans: make([]histogram.Span, len(h.GetSbNegative().GetSpan())), NegativeBuckets: h.GetSbNegative().GetDelta(), } for i, span := range h.GetSbPositive().GetSpan() { sh.PositiveSpans[i].Offset = span.GetOffset() sh.PositiveSpans[i].Length = span.GetLength() } for i, span := range h.GetSbNegative().GetSpan() { sh.NegativeSpans[i].Offset = span.GetOffset() sh.NegativeSpans[i].Length = span.GetLength() } if ts != 0 { return p.metricBytes.Bytes(), &ts, sh } // Nasty hack: Assume that ts==0 means no timestamp. That's not true in // general, but proto3 has no distinction between unset and // default. Need to avoid in the final format. return p.metricBytes.Bytes(), nil, sh } // Help returns the metric name and help text in the current entry. // Must only be called after Next returned a help entry. // The returned byte slices become invalid after the next call to Next. func (p *ProtobufParser) Help() ([]byte, []byte) { return p.metricBytes.Bytes(), []byte(p.mf.GetHelp()) } // Type returns the metric name and type in the current entry. // Must only be called after Next returned a type entry. // The returned byte slices become invalid after the next call to Next. func (p *ProtobufParser) Type() ([]byte, MetricType) { n := p.metricBytes.Bytes() switch p.mf.GetType() { case dto.MetricType_COUNTER: return n, MetricTypeCounter case dto.MetricType_GAUGE: return n, MetricTypeGauge case dto.MetricType_HISTOGRAM: return n, MetricTypeHistogram case dto.MetricType_SUMMARY: return n, MetricTypeSummary } return n, MetricTypeUnknown } // Unit always returns (nil, nil) because units aren't supported by the protobuf // format. func (p *ProtobufParser) Unit() ([]byte, []byte) { return nil, nil } // Comment always returns nil because comments aren't supported by the protobuf // format. func (p *ProtobufParser) Comment() []byte { return nil } // Metric writes the labels of the current sample into the passed labels. // It returns the string from which the metric was parsed. func (p *ProtobufParser) Metric(l *labels.Labels) string { *l = append(*l, labels.Label{ Name: labels.MetricName, Value: p.getMagicName(), }) for _, lp := range p.mf.GetMetric()[p.metricPos].GetLabel() { *l = append(*l, labels.Label{ Name: lp.GetName(), Value: lp.GetValue(), }) } if needed, name, value := p.getMagicLabel(); needed { *l = append(*l, labels.Label{Name: name, Value: value}) } // Sort labels to maintain the sorted labels invariant. sort.Sort(*l) return p.metricBytes.String() } // Exemplar writes the exemplar of the current sample into the passed // exemplar. It returns if an exemplar exists or not. In case of a sparse // histogram, the legacy bucket section is still used for exemplars. To ingest // all examplars, call the Exemplar method repeatedly until it returns false. func (p *ProtobufParser) Exemplar(ex *exemplar.Exemplar) bool { m := p.mf.GetMetric()[p.metricPos] var exProto *dto.Exemplar switch p.mf.GetType() { case dto.MetricType_COUNTER: exProto = m.GetCounter().GetExemplar() case dto.MetricType_HISTOGRAM: bb := m.GetHistogram().GetBucket() if p.fieldPos < 0 { if p.state == EntrySeries { return false // At _count or _sum. } p.fieldPos = 0 // Start at 1st bucket for sparse histograms. } for p.fieldPos < len(bb) { exProto = bb[p.fieldPos].GetExemplar() if p.state == EntrySeries { break } p.fieldPos++ if exProto != nil { break } } default: return false } if exProto == nil { return false } ex.Value = exProto.GetValue() if ts := exProto.GetTimestamp(); ts != nil { ex.HasTs = true ex.Ts = ts.GetSeconds()*1000 + int64(ts.GetNanos()/1_000_000) } for _, lp := range exProto.GetLabel() { ex.Labels = append(ex.Labels, labels.Label{ Name: lp.GetName(), Value: lp.GetValue(), }) } return true } // Next advances the parser to the next "sample" (emulating the behavior of a // text format parser). It returns (EntryInvalid, io.EOF) if no samples were // read. func (p *ProtobufParser) Next() (Entry, error) { switch p.state { case EntryInvalid: p.metricPos = 0 p.fieldPos = -2 n, err := readDelimited(p.in[p.inPos:], p.mf) p.inPos += n if err != nil { return p.state, err } // Skip empty metric families. if len(p.mf.GetMetric()) == 0 { return p.Next() } // We are at the beginning of a metric family. Put only the name // into metricBytes and validate only name and help for now. name := p.mf.GetName() if !model.IsValidMetricName(model.LabelValue(name)) { return EntryInvalid, errors.Errorf("invalid metric name: %s", name) } if help := p.mf.GetHelp(); !utf8.ValidString(help) { return EntryInvalid, errors.Errorf("invalid help for metric %q: %s", name, help) } p.metricBytes.Reset() p.metricBytes.WriteString(name) p.state = EntryHelp case EntryHelp: p.state = EntryType case EntryType: if p.mf.GetType() == dto.MetricType_HISTOGRAM && isSparseHistogram(p.mf.GetMetric()[0].GetHistogram()) { p.state = EntryHistogram } else { p.state = EntrySeries } if err := p.updateMetricBytes(); err != nil { return EntryInvalid, err } case EntryHistogram, EntrySeries: if p.state == EntrySeries && !p.fieldsDone && (p.mf.GetType() == dto.MetricType_SUMMARY || p.mf.GetType() == dto.MetricType_HISTOGRAM) { p.fieldPos++ } else { p.metricPos++ p.fieldPos = -2 p.fieldsDone = false } if p.metricPos >= len(p.mf.GetMetric()) { p.state = EntryInvalid return p.Next() } if err := p.updateMetricBytes(); err != nil { return EntryInvalid, err } default: return EntryInvalid, errors.Errorf("invalid protobuf parsing state: %d", p.state) } return p.state, nil } func (p *ProtobufParser) updateMetricBytes() error { b := p.metricBytes b.Reset() b.WriteString(p.getMagicName()) for _, lp := range p.mf.GetMetric()[p.metricPos].GetLabel() { b.WriteByte(model.SeparatorByte) n := lp.GetName() if !model.LabelName(n).IsValid() { return errors.Errorf("invalid label name: %s", n) } b.WriteString(n) b.WriteByte(model.SeparatorByte) v := lp.GetValue() if !utf8.ValidString(v) { return errors.Errorf("invalid label value: %s", v) } b.WriteString(v) } if needed, n, v := p.getMagicLabel(); needed { b.WriteByte(model.SeparatorByte) b.WriteString(n) b.WriteByte(model.SeparatorByte) b.WriteString(v) } return nil } // getMagicName usually just returns p.mf.GetType() but adds a magic suffix // ("_count", "_sum", "_bucket") if needed according to the current parser // state. func (p *ProtobufParser) getMagicName() string { t := p.mf.GetType() if p.state == EntryHistogram || (t != dto.MetricType_HISTOGRAM && t != dto.MetricType_SUMMARY) { return p.mf.GetName() } if p.fieldPos == -2 { return p.mf.GetName() + "_count" } if p.fieldPos == -1 { return p.mf.GetName() + "_sum" } if t == dto.MetricType_HISTOGRAM { return p.mf.GetName() + "_bucket" } return p.mf.GetName() } // getMagicLabel returns if a magic label ("quantile" or "le") is needed and, if // so, its name and value. It also sets p.fieldsDone if applicable. func (p *ProtobufParser) getMagicLabel() (bool, string, string) { if p.state == EntryHistogram || p.fieldPos < 0 { return false, "", "" } switch p.mf.GetType() { case dto.MetricType_SUMMARY: qq := p.mf.GetMetric()[p.metricPos].GetSummary().GetQuantile() q := qq[p.fieldPos] p.fieldsDone = p.fieldPos == len(qq)-1 return true, model.QuantileLabel, formatOpenMetricsFloat(q.GetQuantile()) case dto.MetricType_HISTOGRAM: bb := p.mf.GetMetric()[p.metricPos].GetHistogram().GetBucket() if p.fieldPos >= len(bb) { p.fieldsDone = true return true, model.BucketLabel, "+Inf" } b := bb[p.fieldPos] p.fieldsDone = math.IsInf(b.GetUpperBound(), +1) return true, model.BucketLabel, formatOpenMetricsFloat(b.GetUpperBound()) } return false, "", "" } var errInvalidVarint = errors.New("protobufparse: invalid varint encountered") // readDelimited is essentially doing what the function of the same name in // github.com/matttproud/golang_protobuf_extensions/pbutil is doing, but it is // specific to a MetricFamily, utilizes the more efficient gogo-protobuf // unmarshaling, and acts on a byte slice directly without any additional // staging buffers. func readDelimited(b []byte, mf *dto.MetricFamily) (n int, err error) { if len(b) == 0 { return 0, io.EOF } messageLength, varIntLength := proto.DecodeVarint(b) if varIntLength == 0 || varIntLength > binary.MaxVarintLen32 { return 0, errInvalidVarint } totalLength := varIntLength + int(messageLength) if totalLength > len(b) { return 0, errors.Errorf("protobufparse: insufficient length of buffer, expected at least %d bytes, got %d bytes", totalLength, len(b)) } mf.Reset() return totalLength, mf.Unmarshal(b[varIntLength:totalLength]) } // formatOpenMetricsFloat works like the usual Go string formatting of a fleat // but appends ".0" if the resulting number would otherwise contain neither a // "." nor an "e". func formatOpenMetricsFloat(f float64) string { // A few common cases hardcoded. switch { case f == 1: return "1.0" case f == 0: return "0.0" case f == -1: return "-1.0" case math.IsNaN(f): return "NaN" case math.IsInf(f, +1): return "+Inf" case math.IsInf(f, -1): return "-Inf" } s := fmt.Sprint(f) if strings.ContainsAny(s, "e.") { return s } return s + ".0" } // isSparseHistogram returns false iff the provided histograms has no // SparseBuckets and a zero threshold of 0 and a zero count of 0. In principle, // this could still be meant to be a sparse histgram (with a zero threshold of 0 // and no observations yet), but for now, we'll treat this case as a conventional // histogram. // // TODO(beorn7): In the final format, there should be an unambiguous way of // deciding if a histogram should be ingested as a conventional one or a sparse // one. func isSparseHistogram(h *dto.Histogram) bool { return len(h.GetSbNegative().GetDelta()) > 0 || len(h.GetSbPositive().GetDelta()) > 0 || h.GetSbZeroCount() > 0 || h.GetSbZeroThreshold() > 0 }