// Copyright 2013 The Prometheus Authors // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package remote import ( "context" "math" "strconv" "sync" "sync/atomic" "time" "github.com/go-kit/kit/log" "github.com/go-kit/kit/log/level" "github.com/gogo/protobuf/proto" "github.com/golang/snappy" "github.com/prometheus/client_golang/prometheus" "github.com/prometheus/client_golang/prometheus/promauto" "github.com/prometheus/prometheus/config" "github.com/prometheus/prometheus/pkg/labels" "github.com/prometheus/prometheus/pkg/relabel" "github.com/prometheus/prometheus/prompb" "github.com/prometheus/prometheus/tsdb" tsdbLabels "github.com/prometheus/prometheus/tsdb/labels" ) // String constants for instrumentation. const ( namespace = "prometheus" subsystem = "remote_storage" queue = "queue" // We track samples in/out and how long pushes take using an Exponentially // Weighted Moving Average. ewmaWeight = 0.2 shardUpdateDuration = 10 * time.Second // Allow 30% too many shards before scaling down. shardToleranceFraction = 0.3 ) var ( succeededSamplesTotal = promauto.NewCounterVec( prometheus.CounterOpts{ Namespace: namespace, Subsystem: subsystem, Name: "succeeded_samples_total", Help: "Total number of samples successfully sent to remote storage.", }, []string{queue}, ) failedSamplesTotal = promauto.NewCounterVec( prometheus.CounterOpts{ Namespace: namespace, Subsystem: subsystem, Name: "failed_samples_total", Help: "Total number of samples which failed on send to remote storage, non-recoverable errors.", }, []string{queue}, ) retriedSamplesTotal = promauto.NewCounterVec( prometheus.CounterOpts{ Namespace: namespace, Subsystem: subsystem, Name: "retried_samples_total", Help: "Total number of samples which failed on send to remote storage but were retried because the send error was recoverable.", }, []string{queue}, ) droppedSamplesTotal = promauto.NewCounterVec( prometheus.CounterOpts{ Namespace: namespace, Subsystem: subsystem, Name: "dropped_samples_total", Help: "Total number of samples which were dropped after being read from the WAL before being sent via remote write.", }, []string{queue}, ) enqueueRetriesTotal = promauto.NewCounterVec( prometheus.CounterOpts{ Namespace: namespace, Subsystem: subsystem, Name: "enqueue_retries_total", Help: "Total number of times enqueue has failed because a shards queue was full.", }, []string{queue}, ) sentBatchDuration = promauto.NewHistogramVec( prometheus.HistogramOpts{ Namespace: namespace, Subsystem: subsystem, Name: "sent_batch_duration_seconds", Help: "Duration of sample batch send calls to the remote storage.", Buckets: prometheus.DefBuckets, }, []string{queue}, ) queueHighestSentTimestamp = promauto.NewGaugeVec( prometheus.GaugeOpts{ Namespace: namespace, Subsystem: subsystem, Name: "queue_highest_sent_timestamp_seconds", Help: "Timestamp from a WAL sample, the highest timestamp successfully sent by this queue, in seconds since epoch.", }, []string{queue}, ) queuePendingSamples = promauto.NewGaugeVec( prometheus.GaugeOpts{ Namespace: namespace, Subsystem: subsystem, Name: "pending_samples", Help: "The number of samples pending in the queues shards to be sent to the remote storage.", }, []string{queue}, ) shardCapacity = promauto.NewGaugeVec( prometheus.GaugeOpts{ Namespace: namespace, Subsystem: subsystem, Name: "shard_capacity", Help: "The capacity of each shard of the queue used for parallel sending to the remote storage.", }, []string{queue}, ) numShards = promauto.NewGaugeVec( prometheus.GaugeOpts{ Namespace: namespace, Subsystem: subsystem, Name: "shards", Help: "The number of shards used for parallel sending to the remote storage.", }, []string{queue}, ) ) // StorageClient defines an interface for sending a batch of samples to an // external timeseries database. type StorageClient interface { // Store stores the given samples in the remote storage. Store(context.Context, []byte) error // Name identifies the remote storage implementation. Name() string } // QueueManager manages a queue of samples to be sent to the Storage // indicated by the provided StorageClient. Implements writeTo interface // used by WAL Watcher. type QueueManager struct { logger log.Logger flushDeadline time.Duration cfg config.QueueConfig externalLabels labels.Labels relabelConfigs []*relabel.Config client StorageClient watcher *WALWatcher seriesLabels map[uint64]labels.Labels seriesSegmentIndexes map[uint64]int droppedSeries map[uint64]struct{} shards *shards numShards int reshardChan chan int quit chan struct{} wg sync.WaitGroup samplesIn, samplesDropped, samplesOut, samplesOutDuration *ewmaRate integralAccumulator float64 startedAt time.Time highestSentTimestampMetric *maxGauge pendingSamplesMetric prometheus.Gauge enqueueRetriesMetric prometheus.Counter droppedSamplesTotal prometheus.Counter numShardsMetric prometheus.Gauge failedSamplesTotal prometheus.Counter sentBatchDuration prometheus.Observer succeededSamplesTotal prometheus.Counter retriedSamplesTotal prometheus.Counter shardCapacity prometheus.Gauge } // NewQueueManager builds a new QueueManager. func NewQueueManager(logger log.Logger, walDir string, samplesIn *ewmaRate, cfg config.QueueConfig, externalLabels labels.Labels, relabelConfigs []*relabel.Config, client StorageClient, flushDeadline time.Duration) *QueueManager { if logger == nil { logger = log.NewNopLogger() } name := client.Name() logger = log.With(logger, "queue", name) t := &QueueManager{ logger: logger, flushDeadline: flushDeadline, cfg: cfg, externalLabels: externalLabels, relabelConfigs: relabelConfigs, client: client, seriesLabels: make(map[uint64]labels.Labels), seriesSegmentIndexes: make(map[uint64]int), droppedSeries: make(map[uint64]struct{}), numShards: cfg.MinShards, reshardChan: make(chan int), quit: make(chan struct{}), samplesIn: samplesIn, samplesDropped: newEWMARate(ewmaWeight, shardUpdateDuration), samplesOut: newEWMARate(ewmaWeight, shardUpdateDuration), samplesOutDuration: newEWMARate(ewmaWeight, shardUpdateDuration), } t.watcher = NewWALWatcher(logger, name, t, walDir) t.shards = t.newShards() return t } // Append queues a sample to be sent to the remote storage. Blocks until all samples are // enqueued on their shards or a shutdown signal is received. func (t *QueueManager) Append(samples []tsdb.RefSample) bool { outer: for _, s := range samples { lbls, ok := t.seriesLabels[s.Ref] if !ok { t.droppedSamplesTotal.Inc() t.samplesDropped.incr(1) if _, ok := t.droppedSeries[s.Ref]; !ok { level.Info(t.logger).Log("msg", "dropped sample for series that was not explicitly dropped via relabelling", "ref", s.Ref) } continue } // This will only loop if the queues are being resharded. backoff := t.cfg.MinBackoff for { select { case <-t.quit: return false default: } if t.shards.enqueue(s.Ref, sample{ labels: lbls, t: s.T, v: s.V, }) { continue outer } t.enqueueRetriesMetric.Inc() time.Sleep(time.Duration(backoff)) backoff = backoff * 2 if backoff > t.cfg.MaxBackoff { backoff = t.cfg.MaxBackoff } } } return true } // Start the queue manager sending samples to the remote storage. // Does not block. func (t *QueueManager) Start() { t.startedAt = time.Now() // Setup the QueueManagers metrics. We do this here rather than in the // constructor because of the ordering of creating Queue Managers's, stopping them, // and then starting new ones in storage/remote/storage.go ApplyConfig. name := t.client.Name() t.highestSentTimestampMetric = &maxGauge{ Gauge: queueHighestSentTimestamp.WithLabelValues(name), } t.pendingSamplesMetric = queuePendingSamples.WithLabelValues(name) t.enqueueRetriesMetric = enqueueRetriesTotal.WithLabelValues(name) t.droppedSamplesTotal = droppedSamplesTotal.WithLabelValues(name) t.numShardsMetric = numShards.WithLabelValues(name) t.failedSamplesTotal = failedSamplesTotal.WithLabelValues(name) t.sentBatchDuration = sentBatchDuration.WithLabelValues(name) t.succeededSamplesTotal = succeededSamplesTotal.WithLabelValues(name) t.retriedSamplesTotal = retriedSamplesTotal.WithLabelValues(name) t.shardCapacity = shardCapacity.WithLabelValues(name) // Initialise some metrics. t.shardCapacity.Set(float64(t.cfg.Capacity)) t.pendingSamplesMetric.Set(0) t.shards.start(t.numShards) t.watcher.Start() t.wg.Add(2) go t.updateShardsLoop() go t.reshardLoop() } // Stop stops sending samples to the remote storage and waits for pending // sends to complete. func (t *QueueManager) Stop() { level.Info(t.logger).Log("msg", "Stopping remote storage...") defer level.Info(t.logger).Log("msg", "Remote storage stopped.") close(t.quit) t.wg.Wait() // Wait for all QueueManager routines to end before stopping shards and WAL watcher. This // is to ensure we don't end up executing a reshard and shards.stop() at the same time, which // causes a closed channel panic. t.shards.stop() t.watcher.Stop() // On shutdown, release the strings in the labels from the intern pool. for _, labels := range t.seriesLabels { releaseLabels(labels) } // Delete metrics so we don't have alerts for queues that are gone. name := t.client.Name() queueHighestSentTimestamp.DeleteLabelValues(name) queuePendingSamples.DeleteLabelValues(name) enqueueRetriesTotal.DeleteLabelValues(name) droppedSamplesTotal.DeleteLabelValues(name) numShards.DeleteLabelValues(name) failedSamplesTotal.DeleteLabelValues(name) sentBatchDuration.DeleteLabelValues(name) succeededSamplesTotal.DeleteLabelValues(name) retriedSamplesTotal.DeleteLabelValues(name) shardCapacity.DeleteLabelValues(name) } // StoreSeries keeps track of which series we know about for lookups when sending samples to remote. func (t *QueueManager) StoreSeries(series []tsdb.RefSeries, index int) { for _, s := range series { ls := processExternalLabels(s.Labels, t.externalLabels) lbls := relabel.Process(ls, t.relabelConfigs...) if len(lbls) == 0 { t.droppedSeries[s.Ref] = struct{}{} continue } t.seriesSegmentIndexes[s.Ref] = index internLabels(lbls) // We should not ever be replacing a series labels in the map, but just // in case we do we need to ensure we do not leak the replaced interned // strings. if orig, ok := t.seriesLabels[s.Ref]; ok { releaseLabels(orig) } t.seriesLabels[s.Ref] = lbls } } // SeriesReset is used when reading a checkpoint. WAL Watcher should have // stored series records with the checkpoints index number, so we can now // delete any ref ID's lower than that # from the two maps. func (t *QueueManager) SeriesReset(index int) { // Check for series that are in segments older than the checkpoint // that were not also present in the checkpoint. for k, v := range t.seriesSegmentIndexes { if v < index { delete(t.seriesSegmentIndexes, k) releaseLabels(t.seriesLabels[k]) delete(t.seriesLabels, k) } } } func internLabels(lbls labels.Labels) { for i, l := range lbls { lbls[i].Name = interner.intern(l.Name) lbls[i].Value = interner.intern(l.Value) } } func releaseLabels(ls labels.Labels) { for _, l := range ls { interner.release(l.Name) interner.release(l.Value) } } // processExternalLabels merges externalLabels into ls. If ls contains // a label in externalLabels, the value in ls wins. func processExternalLabels(ls tsdbLabels.Labels, externalLabels labels.Labels) labels.Labels { i, j, result := 0, 0, make(labels.Labels, 0, len(ls)+len(externalLabels)) for i < len(ls) && j < len(externalLabels) { if ls[i].Name < externalLabels[j].Name { result = append(result, labels.Label{ Name: ls[i].Name, Value: ls[i].Value, }) i++ } else if ls[i].Name > externalLabels[j].Name { result = append(result, externalLabels[j]) j++ } else { result = append(result, labels.Label{ Name: ls[i].Name, Value: ls[i].Value, }) i++ j++ } } for ; i < len(ls); i++ { result = append(result, labels.Label{ Name: ls[i].Name, Value: ls[i].Value, }) } result = append(result, externalLabels[j:]...) return result } func (t *QueueManager) updateShardsLoop() { defer t.wg.Done() ticker := time.NewTicker(shardUpdateDuration) defer ticker.Stop() for { select { case <-ticker.C: t.calculateDesiredShards() case <-t.quit: return } } } func (t *QueueManager) calculateDesiredShards() { t.samplesOut.tick() t.samplesDropped.tick() t.samplesOutDuration.tick() // We use the number of incoming samples as a prediction of how much work we // will need to do next iteration. We add to this any pending samples // (received - send) so we can catch up with any backlog. We use the average // outgoing batch latency to work out how many shards we need. var ( samplesInRate = t.samplesIn.rate() samplesOutRate = t.samplesOut.rate() samplesKeptRatio = samplesOutRate / (t.samplesDropped.rate() + samplesOutRate) samplesOutDuration = t.samplesOutDuration.rate() / float64(time.Second) samplesPendingRate = samplesInRate*samplesKeptRatio - samplesOutRate highestSent = t.highestSentTimestampMetric.Get() highestRecv = highestTimestamp.Get() samplesPending = (highestRecv - highestSent) * samplesInRate * samplesKeptRatio ) if samplesOutRate <= 0 { return } // We use an integral accumulator, like in a PID, to help dampen // oscillation. The accumulator will correct for any errors not accounted // for in the desired shard calculation by adjusting for pending samples. const integralGain = 0.2 // Initialise the integral accumulator as the average rate of samples // pending. This accounts for pending samples that were created while the // WALWatcher starts up. if t.integralAccumulator == 0 { elapsed := time.Since(t.startedAt) / time.Second t.integralAccumulator = integralGain * samplesPending / float64(elapsed) } t.integralAccumulator += samplesPendingRate * integralGain var ( timePerSample = samplesOutDuration / samplesOutRate desiredShards = timePerSample * (samplesInRate + t.integralAccumulator) ) level.Debug(t.logger).Log("msg", "QueueManager.calculateDesiredShards", "samplesInRate", samplesInRate, "samplesOutRate", samplesOutRate, "samplesKeptRatio", samplesKeptRatio, "samplesPendingRate", samplesPendingRate, "samplesPending", samplesPending, "samplesOutDuration", samplesOutDuration, "timePerSample", timePerSample, "desiredShards", desiredShards, "highestSent", highestSent, "highestRecv", highestRecv, "integralAccumulator", t.integralAccumulator, ) // Changes in the number of shards must be greater than shardToleranceFraction. var ( lowerBound = float64(t.numShards) * (1. - shardToleranceFraction) upperBound = float64(t.numShards) * (1. + shardToleranceFraction) ) level.Debug(t.logger).Log("msg", "QueueManager.updateShardsLoop", "lowerBound", lowerBound, "desiredShards", desiredShards, "upperBound", upperBound) if lowerBound <= desiredShards && desiredShards <= upperBound { return } numShards := int(math.Ceil(desiredShards)) if numShards > t.cfg.MaxShards { numShards = t.cfg.MaxShards } else if numShards < t.cfg.MinShards { numShards = t.cfg.MinShards } if numShards == t.numShards { return } // Resharding can take some time, and we want this loop // to stay close to shardUpdateDuration. select { case t.reshardChan <- numShards: level.Info(t.logger).Log("msg", "Remote storage resharding", "from", t.numShards, "to", numShards) t.numShards = numShards default: level.Info(t.logger).Log("msg", "Currently resharding, skipping.") } } func (t *QueueManager) reshardLoop() { defer t.wg.Done() for { select { case numShards := <-t.reshardChan: // We start the newShards after we have stopped (the therefore completely // flushed) the oldShards, to guarantee we only every deliver samples in // order. t.shards.stop() t.shards.start(numShards) case <-t.quit: return } } } func (t *QueueManager) newShards() *shards { s := &shards{ qm: t, done: make(chan struct{}), } return s } type sample struct { labels labels.Labels t int64 v float64 } type shards struct { mtx sync.RWMutex // With the WAL, this is never actually contended. qm *QueueManager queues []chan sample // Emulate a wait group with a channel and an atomic int, as you // cannot select on a wait group. done chan struct{} running int32 // Soft shutdown context will prevent new enqueues and deadlocks. softShutdown chan struct{} // Hard shutdown context is used to terminate outgoing HTTP connections // after giving them a chance to terminate. hardShutdown context.CancelFunc } // start the shards; must be called before any call to enqueue. func (s *shards) start(n int) { s.mtx.Lock() defer s.mtx.Unlock() newQueues := make([]chan sample, n) for i := 0; i < n; i++ { newQueues[i] = make(chan sample, s.qm.cfg.Capacity) } s.queues = newQueues var hardShutdownCtx context.Context hardShutdownCtx, s.hardShutdown = context.WithCancel(context.Background()) s.softShutdown = make(chan struct{}) s.running = int32(n) s.done = make(chan struct{}) for i := 0; i < n; i++ { go s.runShard(hardShutdownCtx, i, newQueues[i]) } s.qm.numShardsMetric.Set(float64(n)) } // stop the shards; subsequent call to enqueue will return false. func (s *shards) stop() { // Attempt a clean shutdown, but only wait flushDeadline for all the shards // to cleanly exit. As we're doing RPCs, enqueue can block indefinitely. // We must be able so call stop concurrently, hence we can only take the // RLock here. s.mtx.RLock() close(s.softShutdown) s.mtx.RUnlock() // Enqueue should now be unblocked, so we can take the write lock. This // also ensures we don't race with writes to the queues, and get a panic: // send on closed channel. s.mtx.Lock() defer s.mtx.Unlock() for _, queue := range s.queues { close(queue) } select { case <-s.done: return case <-time.After(s.qm.flushDeadline): level.Error(s.qm.logger).Log("msg", "Failed to flush all samples on shutdown") } // Force an unclean shutdown. s.hardShutdown() <-s.done } // enqueue a sample. If we are currently in the process of shutting down or resharding, // will return false; in this case, you should back off and retry. func (s *shards) enqueue(ref uint64, sample sample) bool { s.mtx.RLock() defer s.mtx.RUnlock() select { case <-s.softShutdown: return false default: } shard := uint64(ref) % uint64(len(s.queues)) select { case <-s.softShutdown: return false case s.queues[shard] <- sample: return true } } func (s *shards) runShard(ctx context.Context, shardID int, queue chan sample) { defer func() { if atomic.AddInt32(&s.running, -1) == 0 { close(s.done) } }() shardNum := strconv.Itoa(shardID) // Send batches of at most MaxSamplesPerSend samples to the remote storage. // If we have fewer samples than that, flush them out after a deadline // anyways. var ( max = s.qm.cfg.MaxSamplesPerSend nPending = 0 pendingSamples = allocateTimeSeries(max) buf []byte ) timer := time.NewTimer(time.Duration(s.qm.cfg.BatchSendDeadline)) stop := func() { if !timer.Stop() { select { case <-timer.C: default: } } } defer stop() for { select { case <-ctx.Done(): return case sample, ok := <-queue: if !ok { if nPending > 0 { level.Debug(s.qm.logger).Log("msg", "Flushing samples to remote storage...", "count", nPending) s.sendSamples(ctx, pendingSamples[:nPending], &buf) s.qm.pendingSamplesMetric.Sub(float64(nPending)) level.Debug(s.qm.logger).Log("msg", "Done flushing.") } return } // Number of pending samples is limited by the fact that sendSamples (via sendSamplesWithBackoff) // retries endlessly, so once we reach max samples, if we can never send to the endpoint we'll // stop reading from the queue. This makes it safe to reference pendingSamples by index. pendingSamples[nPending].Labels = labelsToLabelsProto(sample.labels, pendingSamples[nPending].Labels) pendingSamples[nPending].Samples[0].Timestamp = sample.t pendingSamples[nPending].Samples[0].Value = sample.v nPending++ s.qm.pendingSamplesMetric.Inc() if nPending >= max { s.sendSamples(ctx, pendingSamples, &buf) nPending = 0 s.qm.pendingSamplesMetric.Sub(float64(max)) stop() timer.Reset(time.Duration(s.qm.cfg.BatchSendDeadline)) } case <-timer.C: if nPending > 0 { level.Debug(s.qm.logger).Log("msg", "runShard timer ticked, sending samples", "samples", nPending, "shard", shardNum) s.sendSamples(ctx, pendingSamples[:nPending], &buf) nPending = 0 s.qm.pendingSamplesMetric.Sub(float64(nPending)) } timer.Reset(time.Duration(s.qm.cfg.BatchSendDeadline)) } } } func (s *shards) sendSamples(ctx context.Context, samples []prompb.TimeSeries, buf *[]byte) { begin := time.Now() err := s.sendSamplesWithBackoff(ctx, samples, buf) if err != nil { level.Error(s.qm.logger).Log("msg", "non-recoverable error", "count", len(samples), "err", err) s.qm.failedSamplesTotal.Add(float64(len(samples))) } // These counters are used to calculate the dynamic sharding, and as such // should be maintained irrespective of success or failure. s.qm.samplesOut.incr(int64(len(samples))) s.qm.samplesOutDuration.incr(int64(time.Since(begin))) } // sendSamples to the remote storage with backoff for recoverable errors. func (s *shards) sendSamplesWithBackoff(ctx context.Context, samples []prompb.TimeSeries, buf *[]byte) error { backoff := s.qm.cfg.MinBackoff req, highest, err := buildWriteRequest(samples, *buf) *buf = req if err != nil { // Failing to build the write request is non-recoverable, since it will // only error if marshaling the proto to bytes fails. return err } for { select { case <-ctx.Done(): return ctx.Err() default: } begin := time.Now() err := s.qm.client.Store(ctx, req) s.qm.sentBatchDuration.Observe(time.Since(begin).Seconds()) if err == nil { s.qm.succeededSamplesTotal.Add(float64(len(samples))) s.qm.highestSentTimestampMetric.Set(float64(highest / 1000)) return nil } if _, ok := err.(recoverableError); !ok { return err } s.qm.retriedSamplesTotal.Add(float64(len(samples))) level.Debug(s.qm.logger).Log("msg", "failed to send batch, retrying", "err", err) time.Sleep(time.Duration(backoff)) backoff = backoff * 2 if backoff > s.qm.cfg.MaxBackoff { backoff = s.qm.cfg.MaxBackoff } } } func buildWriteRequest(samples []prompb.TimeSeries, buf []byte) ([]byte, int64, error) { var highest int64 for _, ts := range samples { // At the moment we only ever append a TimeSeries with a single sample in it. if ts.Samples[0].Timestamp > highest { highest = ts.Samples[0].Timestamp } } req := &prompb.WriteRequest{ Timeseries: samples, } data, err := proto.Marshal(req) if err != nil { return nil, highest, err } // snappy uses len() to see if it needs to allocate a new slice. Make the // buffer as long as possible. if buf != nil { buf = buf[0:cap(buf)] } compressed := snappy.Encode(buf, data) return compressed, highest, nil } func allocateTimeSeries(capacity int) []prompb.TimeSeries { timeseries := make([]prompb.TimeSeries, capacity) // We only ever send one sample per timeseries, so preallocate with length one. for i := range timeseries { timeseries[i].Samples = []prompb.Sample{{}} } return timeseries }