// Copyright 2015 The Prometheus Authors // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package promql import ( "fmt" "math" "os" "runtime" "sort" "strconv" "strings" "time" "github.com/prometheus/common/model" "github.com/prometheus/prometheus/pkg/labels" "github.com/prometheus/prometheus/pkg/value" "github.com/prometheus/prometheus/util/strutil" ) type parser struct { lex *lexer token [3]item peekCount int } // ParseErr wraps a parsing error with line and position context. // If the parsing input was a single line, line will be 0 and omitted // from the error string. type ParseErr struct { Line, Pos int Err error } func (e *ParseErr) Error() string { if e.Line == 0 { return fmt.Sprintf("parse error at char %d: %s", e.Pos, e.Err) } return fmt.Sprintf("parse error at line %d, char %d: %s", e.Line, e.Pos, e.Err) } // ParseExpr returns the expression parsed from the input. func ParseExpr(input string) (Expr, error) { p := newParser(input) expr, err := p.parseExpr() if err != nil { return nil, err } err = p.typecheck(expr) return expr, err } // ParseMetric parses the input into a metric func ParseMetric(input string) (m labels.Labels, err error) { p := newParser(input) defer p.recover(&err) m = p.metric() if p.peek().typ != itemEOF { p.errorf("could not parse remaining input %.15q...", p.lex.input[p.lex.lastPos:]) } return m, nil } // ParseMetricSelector parses the provided textual metric selector into a list of // label matchers. func ParseMetricSelector(input string) (m []*labels.Matcher, err error) { p := newParser(input) defer p.recover(&err) name := "" if t := p.peek().typ; t == itemMetricIdentifier || t == itemIdentifier { name = p.next().val } vs := p.VectorSelector(name) if p.peek().typ != itemEOF { p.errorf("could not parse remaining input %.15q...", p.lex.input[p.lex.lastPos:]) } return vs.LabelMatchers, nil } // newParser returns a new parser. func newParser(input string) *parser { p := &parser{ lex: lex(input), } return p } // parseExpr parses a single expression from the input. func (p *parser) parseExpr() (expr Expr, err error) { defer p.recover(&err) for p.peek().typ != itemEOF { if p.peek().typ == itemComment { continue } if expr != nil { p.errorf("could not parse remaining input %.15q...", p.lex.input[p.lex.lastPos:]) } expr = p.expr() } if expr == nil { p.errorf("no expression found in input") } return } // sequenceValue is an omittable value in a sequence of time series values. type sequenceValue struct { value float64 omitted bool } func (v sequenceValue) String() string { if v.omitted { return "_" } return fmt.Sprintf("%f", v.value) } // parseSeriesDesc parses the description of a time series. func parseSeriesDesc(input string) (labels.Labels, []sequenceValue, error) { p := newParser(input) p.lex.seriesDesc = true return p.parseSeriesDesc() } // parseSeriesDesc parses a description of a time series into its metric and value sequence. func (p *parser) parseSeriesDesc() (m labels.Labels, vals []sequenceValue, err error) { defer p.recover(&err) m = p.metric() const ctx = "series values" for { for p.peek().typ == itemSpace { p.next() } if p.peek().typ == itemEOF { break } // Extract blanks. if p.peek().typ == itemBlank { p.next() times := uint64(1) if p.peek().typ == itemTimes { p.next() times, err = strconv.ParseUint(p.expect(itemNumber, ctx).val, 10, 64) if err != nil { p.errorf("invalid repetition in %s: %s", ctx, err) } } for i := uint64(0); i < times; i++ { vals = append(vals, sequenceValue{omitted: true}) } // This is to ensure that there is a space between this and the next number. // This is especially required if the next number is negative. if t := p.expectOneOf(itemSpace, itemEOF, ctx).typ; t == itemEOF { break } continue } // Extract values. sign := 1.0 if t := p.peek().typ; t == itemSUB || t == itemADD { if p.next().typ == itemSUB { sign = -1 } } var k float64 if t := p.peek().typ; t == itemNumber { k = sign * p.number(p.expect(itemNumber, ctx).val) } else if t == itemIdentifier && p.peek().val == "stale" { p.next() k = math.Float64frombits(value.StaleNaN) } else { p.errorf("expected number or 'stale' in %s but got %s (value: %s)", ctx, t.desc(), p.peek()) } vals = append(vals, sequenceValue{ value: k, }) // If there are no offset repetitions specified, proceed with the next value. if t := p.peek(); t.typ == itemSpace { // This ensures there is a space between every value. continue } else if t.typ == itemEOF { break } else if t.typ != itemADD && t.typ != itemSUB { p.errorf("expected next value or relative expansion in %s but got %s (value: %s)", ctx, t.desc(), p.peek()) } // Expand the repeated offsets into values. sign = 1.0 if p.next().typ == itemSUB { sign = -1.0 } offset := sign * p.number(p.expect(itemNumber, ctx).val) p.expect(itemTimes, ctx) times, err := strconv.ParseUint(p.expect(itemNumber, ctx).val, 10, 64) if err != nil { p.errorf("invalid repetition in %s: %s", ctx, err) } for i := uint64(0); i < times; i++ { k += offset vals = append(vals, sequenceValue{ value: k, }) } // This is to ensure that there is a space between this expanding notation // and the next number. This is especially required if the next number // is negative. if t := p.expectOneOf(itemSpace, itemEOF, ctx).typ; t == itemEOF { break } } return m, vals, nil } // typecheck checks correct typing of the parsed statements or expression. func (p *parser) typecheck(node Node) (err error) { defer p.recover(&err) p.checkType(node) return nil } // next returns the next token. func (p *parser) next() item { if p.peekCount > 0 { p.peekCount-- } else { t := p.lex.nextItem() // Skip comments. for t.typ == itemComment { t = p.lex.nextItem() } p.token[0] = t } if p.token[p.peekCount].typ == itemError { p.errorf("%s", p.token[p.peekCount].val) } return p.token[p.peekCount] } // peek returns but does not consume the next token. func (p *parser) peek() item { if p.peekCount > 0 { return p.token[p.peekCount-1] } p.peekCount = 1 t := p.lex.nextItem() // Skip comments. for t.typ == itemComment { t = p.lex.nextItem() } p.token[0] = t return p.token[0] } // backup backs the input stream up one token. func (p *parser) backup() { p.peekCount++ } // errorf formats the error and terminates processing. func (p *parser) errorf(format string, args ...interface{}) { p.error(fmt.Errorf(format, args...)) } // error terminates processing. func (p *parser) error(err error) { perr := &ParseErr{ Line: p.lex.lineNumber(), Pos: p.lex.linePosition(), Err: err, } if strings.Count(strings.TrimSpace(p.lex.input), "\n") == 0 { perr.Line = 0 } panic(perr) } // expect consumes the next token and guarantees it has the required type. func (p *parser) expect(exp ItemType, context string) item { token := p.next() if token.typ != exp { p.errorf("unexpected %s in %s, expected %s", token.desc(), context, exp.desc()) } return token } // expectOneOf consumes the next token and guarantees it has one of the required types. func (p *parser) expectOneOf(exp1, exp2 ItemType, context string) item { token := p.next() if token.typ != exp1 && token.typ != exp2 { p.errorf("unexpected %s in %s, expected %s or %s", token.desc(), context, exp1.desc(), exp2.desc()) } return token } var errUnexpected = fmt.Errorf("unexpected error") // recover is the handler that turns panics into returns from the top level of Parse. func (p *parser) recover(errp *error) { e := recover() if e != nil { if _, ok := e.(runtime.Error); ok { // Print the stack trace but do not inhibit the running application. buf := make([]byte, 64<<10) buf = buf[:runtime.Stack(buf, false)] fmt.Fprintf(os.Stderr, "parser panic: %v\n%s", e, buf) *errp = errUnexpected } else { *errp = e.(error) } } p.lex.close() } // expr parses any expression. func (p *parser) expr() Expr { // Parse the starting expression. expr := p.unaryExpr() // Loop through the operations and construct a binary operation tree based // on the operators' precedence. for { // If the next token is not an operator the expression is done. op := p.peek().typ if !op.isOperator() { // Check for subquery. if op == itemLeftBracket { expr = p.subqueryOrRangeSelector(expr, false) if s, ok := expr.(*SubqueryExpr); ok { // Parse optional offset. if p.peek().typ == itemOffset { offset := p.offset() s.Offset = offset } } } return expr } p.next() // Consume operator. // Parse optional operator matching options. Its validity // is checked in the type-checking stage. vecMatching := &VectorMatching{ Card: CardOneToOne, } if op.isSetOperator() { vecMatching.Card = CardManyToMany } returnBool := false // Parse bool modifier. if p.peek().typ == itemBool { if !op.isComparisonOperator() { p.errorf("bool modifier can only be used on comparison operators") } p.next() returnBool = true } // Parse ON/IGNORING clause. if p.peek().typ == itemOn || p.peek().typ == itemIgnoring { if p.peek().typ == itemOn { vecMatching.On = true } p.next() vecMatching.MatchingLabels = p.labels() // Parse grouping. if t := p.peek().typ; t == itemGroupLeft || t == itemGroupRight { p.next() if t == itemGroupLeft { vecMatching.Card = CardManyToOne } else { vecMatching.Card = CardOneToMany } if p.peek().typ == itemLeftParen { vecMatching.Include = p.labels() } } } for _, ln := range vecMatching.MatchingLabels { for _, ln2 := range vecMatching.Include { if ln == ln2 && vecMatching.On { p.errorf("label %q must not occur in ON and GROUP clause at once", ln) } } } // Parse the next operand. rhs := p.unaryExpr() // Assign the new root based on the precedence of the LHS and RHS operators. expr = p.balance(expr, op, rhs, vecMatching, returnBool) } } func (p *parser) balance(lhs Expr, op ItemType, rhs Expr, vecMatching *VectorMatching, returnBool bool) *BinaryExpr { if lhsBE, ok := lhs.(*BinaryExpr); ok { precd := lhsBE.Op.precedence() - op.precedence() if (precd < 0) || (precd == 0 && op.isRightAssociative()) { balanced := p.balance(lhsBE.RHS, op, rhs, vecMatching, returnBool) if lhsBE.Op.isComparisonOperator() && !lhsBE.ReturnBool && balanced.Type() == ValueTypeScalar && lhsBE.LHS.Type() == ValueTypeScalar { p.errorf("comparisons between scalars must use BOOL modifier") } return &BinaryExpr{ Op: lhsBE.Op, LHS: lhsBE.LHS, RHS: balanced, VectorMatching: lhsBE.VectorMatching, ReturnBool: lhsBE.ReturnBool, } } } if op.isComparisonOperator() && !returnBool && rhs.Type() == ValueTypeScalar && lhs.Type() == ValueTypeScalar { p.errorf("comparisons between scalars must use BOOL modifier") } return &BinaryExpr{ Op: op, LHS: lhs, RHS: rhs, VectorMatching: vecMatching, ReturnBool: returnBool, } } // unaryExpr parses a unary expression. // // | | (+|-) | '(' ')' // func (p *parser) unaryExpr() Expr { switch t := p.peek(); t.typ { case itemADD, itemSUB: p.next() e := p.unaryExpr() // Simplify unary expressions for number literals. if nl, ok := e.(*NumberLiteral); ok { if t.typ == itemSUB { nl.Val *= -1 } return nl } return &UnaryExpr{Op: t.typ, Expr: e} case itemLeftParen: p.next() e := p.expr() p.expect(itemRightParen, "paren expression") return &ParenExpr{Expr: e} } e := p.primaryExpr() // Expression might be followed by a range selector. if p.peek().typ == itemLeftBracket { e = p.subqueryOrRangeSelector(e, true) } // Parse optional offset. if p.peek().typ == itemOffset { offset := p.offset() switch s := e.(type) { case *VectorSelector: s.Offset = offset case *MatrixSelector: s.Offset = offset case *SubqueryExpr: s.Offset = offset default: p.errorf("offset modifier must be preceded by an instant or range selector, but follows a %T instead", e) } } return e } // subqueryOrRangeSelector parses a Subquery based on given Expr (or) // a Matrix (a.k.a. range) selector based on a given Vector selector. // // '[' ']' | '[' ':' [] ']' // func (p *parser) subqueryOrRangeSelector(expr Expr, checkRange bool) Expr { ctx := "subquery selector" if checkRange { ctx = "range/subquery selector" } p.next() var erange time.Duration var err error erangeStr := p.expect(itemDuration, ctx).val erange, err = parseDuration(erangeStr) if err != nil { p.error(err) } var itm item if checkRange { itm = p.expectOneOf(itemRightBracket, itemColon, ctx) if itm.typ == itemRightBracket { // Range selector. vs, ok := expr.(*VectorSelector) if !ok { p.errorf("range specification must be preceded by a metric selector, but follows a %T instead", expr) } return &MatrixSelector{ Name: vs.Name, LabelMatchers: vs.LabelMatchers, Range: erange, } } } else { itm = p.expect(itemColon, ctx) } // Subquery. var estep time.Duration itm = p.expectOneOf(itemRightBracket, itemDuration, ctx) if itm.typ == itemDuration { estepStr := itm.val estep, err = parseDuration(estepStr) if err != nil { p.error(err) } p.expect(itemRightBracket, ctx) } return &SubqueryExpr{ Expr: expr, Range: erange, Step: estep, } } // number parses a number. func (p *parser) number(val string) float64 { n, err := strconv.ParseInt(val, 0, 64) f := float64(n) if err != nil { f, err = strconv.ParseFloat(val, 64) } if err != nil { p.errorf("error parsing number: %s", err) } return f } // primaryExpr parses a primary expression. // // | | | // func (p *parser) primaryExpr() Expr { switch t := p.next(); { case t.typ == itemNumber: f := p.number(t.val) return &NumberLiteral{f} case t.typ == itemString: return &StringLiteral{p.unquoteString(t.val)} case t.typ == itemLeftBrace: // Metric selector without metric name. p.backup() return p.VectorSelector("") case t.typ == itemIdentifier: // Check for function call. if p.peek().typ == itemLeftParen { return p.call(t.val) } fallthrough // Else metric selector. case t.typ == itemMetricIdentifier: return p.VectorSelector(t.val) case t.typ.isAggregator(): p.backup() return p.aggrExpr() default: p.errorf("no valid expression found") } return nil } // labels parses a list of labelnames. // // '(' , ... ')' // func (p *parser) labels() []string { const ctx = "grouping opts" p.expect(itemLeftParen, ctx) labels := []string{} if p.peek().typ != itemRightParen { for { id := p.next() if !isLabel(id.val) { p.errorf("unexpected %s in %s, expected label", id.desc(), ctx) } labels = append(labels, id.val) if p.peek().typ != itemComma { break } p.next() } } p.expect(itemRightParen, ctx) return labels } // aggrExpr parses an aggregation expression. // // () [by|without ] // [by|without ] () // func (p *parser) aggrExpr() *AggregateExpr { const ctx = "aggregation" agop := p.next() if !agop.typ.isAggregator() { p.errorf("expected aggregation operator but got %s", agop) } var grouping []string var without bool modifiersFirst := false if t := p.peek().typ; t == itemBy || t == itemWithout { if t == itemWithout { without = true } p.next() grouping = p.labels() modifiersFirst = true } p.expect(itemLeftParen, ctx) var param Expr if agop.typ.isAggregatorWithParam() { param = p.expr() p.expect(itemComma, ctx) } e := p.expr() p.expect(itemRightParen, ctx) if !modifiersFirst { if t := p.peek().typ; t == itemBy || t == itemWithout { if len(grouping) > 0 { p.errorf("aggregation must only contain one grouping clause") } if t == itemWithout { without = true } p.next() grouping = p.labels() } } return &AggregateExpr{ Op: agop.typ, Expr: e, Param: param, Grouping: grouping, Without: without, } } // call parses a function call. // // '(' [ , ...] ')' // func (p *parser) call(name string) *Call { const ctx = "function call" fn, exist := getFunction(name) if !exist { p.errorf("unknown function with name %q", name) } p.expect(itemLeftParen, ctx) // Might be call without args. if p.peek().typ == itemRightParen { p.next() // Consume. return &Call{fn, nil} } var args []Expr for { e := p.expr() args = append(args, e) // Terminate if no more arguments. if p.peek().typ != itemComma { break } p.next() } // Call must be closed. p.expect(itemRightParen, ctx) return &Call{Func: fn, Args: args} } // labelSet parses a set of label matchers // // '{' [ '=' , ... ] '}' // func (p *parser) labelSet() labels.Labels { set := []labels.Label{} for _, lm := range p.labelMatchers(itemEQL) { set = append(set, labels.Label{Name: lm.Name, Value: lm.Value}) } return labels.New(set...) } // labelMatchers parses a set of label matchers. // // '{' [ , ... ] '}' // func (p *parser) labelMatchers(operators ...ItemType) []*labels.Matcher { const ctx = "label matching" matchers := []*labels.Matcher{} p.expect(itemLeftBrace, ctx) // Check if no matchers are provided. if p.peek().typ == itemRightBrace { p.next() return matchers } for { label := p.expect(itemIdentifier, ctx) op := p.next().typ if !op.isOperator() { p.errorf("expected label matching operator but got %s", op) } var validOp = false for _, allowedOp := range operators { if op == allowedOp { validOp = true } } if !validOp { p.errorf("operator must be one of %q, is %q", operators, op) } val := p.unquoteString(p.expect(itemString, ctx).val) // Map the item to the respective match type. var matchType labels.MatchType switch op { case itemEQL: matchType = labels.MatchEqual case itemNEQ: matchType = labels.MatchNotEqual case itemEQLRegex: matchType = labels.MatchRegexp case itemNEQRegex: matchType = labels.MatchNotRegexp default: p.errorf("item %q is not a metric match type", op) } m, err := labels.NewMatcher(matchType, label.val, val) if err != nil { p.error(err) } matchers = append(matchers, m) if p.peek().typ == itemIdentifier { p.errorf("missing comma before next identifier %q", p.peek().val) } // Terminate list if last matcher. if p.peek().typ != itemComma { break } p.next() // Allow comma after each item in a multi-line listing. if p.peek().typ == itemRightBrace { break } } p.expect(itemRightBrace, ctx) return matchers } // metric parses a metric. // // // [] // func (p *parser) metric() labels.Labels { name := "" var m labels.Labels t := p.peek().typ if t == itemIdentifier || t == itemMetricIdentifier { name = p.next().val t = p.peek().typ } if t != itemLeftBrace && name == "" { p.errorf("missing metric name or metric selector") } if t == itemLeftBrace { m = p.labelSet() } if name != "" { m = append(m, labels.Label{Name: labels.MetricName, Value: name}) sort.Sort(m) } return m } // offset parses an offset modifier. // // offset // func (p *parser) offset() time.Duration { const ctx = "offset" p.next() offi := p.expect(itemDuration, ctx) offset, err := parseDuration(offi.val) if err != nil { p.error(err) } return offset } // VectorSelector parses a new (instant) vector selector. // // [] // [] // func (p *parser) VectorSelector(name string) *VectorSelector { var matchers []*labels.Matcher // Parse label matching if any. if t := p.peek(); t.typ == itemLeftBrace { matchers = p.labelMatchers(itemEQL, itemNEQ, itemEQLRegex, itemNEQRegex) } // Metric name must not be set in the label matchers and before at the same time. if name != "" { for _, m := range matchers { if m.Name == labels.MetricName { p.errorf("metric name must not be set twice: %q or %q", name, m.Value) } } // Set name label matching. m, err := labels.NewMatcher(labels.MatchEqual, labels.MetricName, name) if err != nil { panic(err) // Must not happen with metric.Equal. } matchers = append(matchers, m) } if len(matchers) == 0 { p.errorf("vector selector must contain label matchers or metric name") } // A Vector selector must contain at least one non-empty matcher to prevent // implicit selection of all metrics (e.g. by a typo). notEmpty := false for _, lm := range matchers { if !lm.Matches("") { notEmpty = true break } } if !notEmpty { p.errorf("vector selector must contain at least one non-empty matcher") } return &VectorSelector{ Name: name, LabelMatchers: matchers, } } // expectType checks the type of the node and raises an error if it // is not of the expected type. func (p *parser) expectType(node Node, want ValueType, context string) { t := p.checkType(node) if t != want { p.errorf("expected type %s in %s, got %s", documentedType(want), context, documentedType(t)) } } // check the types of the children of each node and raise an error // if they do not form a valid node. // // Some of these checks are redundant as the parsing stage does not allow // them, but the costs are small and might reveal errors when making changes. func (p *parser) checkType(node Node) (typ ValueType) { // For expressions the type is determined by their Type function. // Lists do not have a type but are not invalid either. switch n := node.(type) { case Expressions: typ = ValueTypeNone case Expr: typ = n.Type() default: p.errorf("unknown node type: %T", node) } // Recursively check correct typing for child nodes and raise // errors in case of bad typing. switch n := node.(type) { case *EvalStmt: ty := p.checkType(n.Expr) if ty == ValueTypeNone { p.errorf("evaluation statement must have a valid expression type but got %s", documentedType(ty)) } case Expressions: for _, e := range n { ty := p.checkType(e) if ty == ValueTypeNone { p.errorf("expression must have a valid expression type but got %s", documentedType(ty)) } } case *AggregateExpr: if !n.Op.isAggregator() { p.errorf("aggregation operator expected in aggregation expression but got %q", n.Op) } p.expectType(n.Expr, ValueTypeVector, "aggregation expression") if n.Op == itemTopK || n.Op == itemBottomK || n.Op == itemQuantile { p.expectType(n.Param, ValueTypeScalar, "aggregation parameter") } if n.Op == itemCountValues { p.expectType(n.Param, ValueTypeString, "aggregation parameter") } case *BinaryExpr: lt := p.checkType(n.LHS) rt := p.checkType(n.RHS) if !n.Op.isOperator() { p.errorf("binary expression does not support operator %q", n.Op) } if (lt != ValueTypeScalar && lt != ValueTypeVector) || (rt != ValueTypeScalar && rt != ValueTypeVector) { p.errorf("binary expression must contain only scalar and instant vector types") } if (lt != ValueTypeVector || rt != ValueTypeVector) && n.VectorMatching != nil { if len(n.VectorMatching.MatchingLabels) > 0 { p.errorf("vector matching only allowed between instant vectors") } n.VectorMatching = nil } else { // Both operands are Vectors. if n.Op.isSetOperator() { if n.VectorMatching.Card == CardOneToMany || n.VectorMatching.Card == CardManyToOne { p.errorf("no grouping allowed for %q operation", n.Op) } if n.VectorMatching.Card != CardManyToMany { p.errorf("set operations must always be many-to-many") } } } if (lt == ValueTypeScalar || rt == ValueTypeScalar) && n.Op.isSetOperator() { p.errorf("set operator %q not allowed in binary scalar expression", n.Op) } case *Call: nargs := len(n.Func.ArgTypes) if n.Func.Variadic == 0 { if nargs != len(n.Args) { p.errorf("expected %d argument(s) in call to %q, got %d", nargs, n.Func.Name, len(n.Args)) } } else { na := nargs - 1 if na > len(n.Args) { p.errorf("expected at least %d argument(s) in call to %q, got %d", na, n.Func.Name, len(n.Args)) } else if nargsmax := na + n.Func.Variadic; n.Func.Variadic > 0 && nargsmax < len(n.Args) { p.errorf("expected at most %d argument(s) in call to %q, got %d", nargsmax, n.Func.Name, len(n.Args)) } } for i, arg := range n.Args { if i >= len(n.Func.ArgTypes) { i = len(n.Func.ArgTypes) - 1 } p.expectType(arg, n.Func.ArgTypes[i], fmt.Sprintf("call to function %q", n.Func.Name)) } case *ParenExpr: p.checkType(n.Expr) case *UnaryExpr: if n.Op != itemADD && n.Op != itemSUB { p.errorf("only + and - operators allowed for unary expressions") } if t := p.checkType(n.Expr); t != ValueTypeScalar && t != ValueTypeVector { p.errorf("unary expression only allowed on expressions of type scalar or instant vector, got %q", documentedType(t)) } case *SubqueryExpr: ty := p.checkType(n.Expr) if ty != ValueTypeVector { p.errorf("subquery is only allowed on instant vector, got %s in %q instead", ty, n.String()) } case *NumberLiteral, *MatrixSelector, *StringLiteral, *VectorSelector: // Nothing to do for terminals. default: p.errorf("unknown node type: %T", node) } return } func (p *parser) unquoteString(s string) string { unquoted, err := strutil.Unquote(s) if err != nil { p.errorf("error unquoting string %q: %s", s, err) } return unquoted } func parseDuration(ds string) (time.Duration, error) { dur, err := model.ParseDuration(ds) if err != nil { return 0, err } if dur == 0 { return 0, fmt.Errorf("duration must be greater than 0") } return time.Duration(dur), nil }