// Copyright 2015 The Prometheus Authors // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package promql import ( "fmt" "os" "runtime" "strconv" "strings" "time" "github.com/pkg/errors" "github.com/prometheus/common/model" "github.com/prometheus/prometheus/pkg/labels" "github.com/prometheus/prometheus/util/strutil" ) type parser struct { lex *Lexer inject ItemType injecting bool yyParser yyParserImpl generatedParserResult interface{} } // ParseErr wraps a parsing error with line and position context. // If the parsing input was a single line, line will be 0 and omitted // from the error string. type ParseErr struct { Line, Pos int Err error } func (e *ParseErr) Error() string { return fmt.Sprintf("%d:%d: parse error: %s", e.Line+1, e.Pos, e.Err) } // ParseExpr returns the expression parsed from the input. func ParseExpr(input string) (expr Expr, err error) { p := newParser(input) defer p.recover(&err) expr = p.parseGenerated(START_EXPRESSION).(Expr) err = p.typecheck(expr) return expr, err } // ParseMetric parses the input into a metric func ParseMetric(input string) (m labels.Labels, err error) { p := newParser(input) defer p.recover(&err) return p.parseGenerated(START_METRIC).(labels.Labels), nil } // ParseMetricSelector parses the provided textual metric selector into a list of // label matchers. func ParseMetricSelector(input string) (m []*labels.Matcher, err error) { p := newParser(input) defer p.recover(&err) return p.parseGenerated(START_METRIC_SELECTOR).(*VectorSelector).LabelMatchers, nil } // newParser returns a new parser. func newParser(input string) *parser { p := &parser{ lex: Lex(input), } return p } // sequenceValue is an omittable value in a sequence of time series values. type sequenceValue struct { value float64 omitted bool } func (v sequenceValue) String() string { if v.omitted { return "_" } return fmt.Sprintf("%f", v.value) } type seriesDescription struct { labels labels.Labels values []sequenceValue } // parseSeriesDesc parses the description of a time series. func parseSeriesDesc(input string) (labels labels.Labels, values []sequenceValue, err error) { p := newParser(input) p.lex.seriesDesc = true defer p.recover(&err) result := p.parseGenerated(START_SERIES_DESCRIPTION).(*seriesDescription) labels = result.labels values = result.values return } // typecheck checks correct typing of the parsed statements or expression. func (p *parser) typecheck(node Node) (err error) { defer p.recover(&err) p.checkType(node) return nil } // errorf formats the error and terminates processing. func (p *parser) errorf(format string, args ...interface{}) { p.error(errors.Errorf(format, args...)) } // error terminates processing. func (p *parser) error(err error) { perr := &ParseErr{ Line: p.lex.lineNumber(), Pos: p.lex.linePosition(), Err: err, } if strings.Count(strings.TrimSpace(p.lex.input), "\n") == 0 { perr.Line = 0 } panic(perr) } // unexpected creates a parser error complaining about an unexpected lexer item. // The item that is presented as unexpected is always the last item produced // by the lexer. func (p *parser) unexpected(context string, expected string) { var errMsg strings.Builder errMsg.WriteString("unexpected ") errMsg.WriteString(p.yyParser.lval.item.desc()) if context != "" { errMsg.WriteString(" in ") errMsg.WriteString(context) } if expected != "" { errMsg.WriteString(", expected ") errMsg.WriteString(expected) } p.error(errors.New(errMsg.String())) } var errUnexpected = errors.New("unexpected error") // recover is the handler that turns panics into returns from the top level of Parse. func (p *parser) recover(errp *error) { e := recover() if _, ok := e.(runtime.Error); ok { // Print the stack trace but do not inhibit the running application. buf := make([]byte, 64<<10) buf = buf[:runtime.Stack(buf, false)] fmt.Fprintf(os.Stderr, "parser panic: %v\n%s", e, buf) *errp = errUnexpected } else if e != nil { *errp = e.(error) } } // Lex is expected by the yyLexer interface of the yacc generated parser. // It writes the next Item provided by the lexer to the provided pointer address. // Comments are skipped. // // The yyLexer interface is currently implemented by the parser to allow // the generated and non-generated parts to work together with regards to lookahead // and error handling. // // For more information, see https://godoc.org/golang.org/x/tools/cmd/goyacc. func (p *parser) Lex(lval *yySymType) int { var typ ItemType if p.injecting { p.injecting = false return int(p.inject) } else { // Skip comments. for { p.lex.NextItem(&lval.item) typ = lval.item.Typ if typ != COMMENT { break } } } if typ == ERROR { p.errorf("%s", lval.item.Val) } if typ == EOF { lval.item.Typ = EOF p.InjectItem(0) } return int(typ) } // Error is expected by the yyLexer interface of the yacc generated parser. // // It is a no-op since the parsers error routines are triggered // by mechanisms that allow more fine-grained control // For more information, see https://godoc.org/golang.org/x/tools/cmd/goyacc. func (p *parser) Error(e string) { } // InjectItem allows injecting a single Item at the beginning of the token stream // consumed by the generated parser. // This allows having multiple start symbols as described in // https://www.gnu.org/software/bison/manual/html_node/Multiple-start_002dsymbols.html . // Only the Lex function used by the generated parser is affected by this injected Item. // Trying to inject when a previously injected Item has not yet been consumed will panic. // Only Item types that are supposed to be used as start symbols are allowed as an argument. func (p *parser) InjectItem(typ ItemType) { if p.injecting { panic("cannot inject multiple Items into the token stream") } if typ != 0 && (typ <= startSymbolsStart || typ >= startSymbolsEnd) { panic("cannot inject symbol that isn't start symbol") } p.inject = typ p.injecting = true } func (p *parser) newBinaryExpression(lhs Node, op Item, modifiers Node, rhs Node) *BinaryExpr { ret := modifiers.(*BinaryExpr) ret.LHS = lhs.(Expr) ret.RHS = rhs.(Expr) ret.Op = op.Typ if ret.ReturnBool && !op.Typ.isComparisonOperator() { p.errorf("bool modifier can only be used on comparison operators") } if op.Typ.isComparisonOperator() && !ret.ReturnBool && ret.RHS.Type() == ValueTypeScalar && ret.LHS.Type() == ValueTypeScalar { p.errorf("comparisons between scalars must use BOOL modifier") } if op.Typ.isSetOperator() && ret.VectorMatching.Card == CardOneToOne { ret.VectorMatching.Card = CardManyToMany } for _, l1 := range ret.VectorMatching.MatchingLabels { for _, l2 := range ret.VectorMatching.Include { if l1 == l2 && ret.VectorMatching.On { p.errorf("label %q must not occur in ON and GROUP clause at once", l1) } } } return ret } func (p *parser) newVectorSelector(name string, labelMatchers []*labels.Matcher) *VectorSelector { ret := &VectorSelector{LabelMatchers: labelMatchers} if name != "" { ret.Name = name for _, m := range ret.LabelMatchers { if m.Name == labels.MetricName { p.errorf("metric name must not be set twice: %q or %q", name, m.Value) } } nameMatcher, err := labels.NewMatcher(labels.MatchEqual, labels.MetricName, name) if err != nil { panic(err) // Must not happen with labels.MatchEqual } ret.LabelMatchers = append(ret.LabelMatchers, nameMatcher) } // A Vector selector must contain at least one non-empty matcher to prevent // implicit selection of all metrics (e.g. by a typo). notEmpty := false for _, lm := range ret.LabelMatchers { if !lm.Matches("") { notEmpty = true break } } if !notEmpty { p.errorf("vector selector must contain at least one non-empty matcher") } return ret } func (p *parser) newAggregateExpr(op Item, modifier Node, args Node) (ret *AggregateExpr) { ret = modifier.(*AggregateExpr) arguments := args.(Expressions) ret.Op = op.Typ if len(arguments) == 0 { p.errorf("no arguments for aggregate expression provided") // Currently p.errorf() panics, so this return is not needed // at the moment. // However, this behaviour is likely to be changed in the // future. In case of having non-panicking errors this // return prevents invalid array accesses return } desiredArgs := 1 if ret.Op.isAggregatorWithParam() { desiredArgs = 2 ret.Param = arguments[0] } if len(arguments) != desiredArgs { p.errorf("wrong number of arguments for aggregate expression provided, expected %d, got %d", desiredArgs, len(arguments)) return } ret.Expr = arguments[desiredArgs-1] return ret } // number parses a number. func (p *parser) number(val string) float64 { n, err := strconv.ParseInt(val, 0, 64) f := float64(n) if err != nil { f, err = strconv.ParseFloat(val, 64) } if err != nil { p.errorf("error parsing number: %s", err) } return f } // expectType checks the type of the node and raises an error if it // is not of the expected type. func (p *parser) expectType(node Node, want ValueType, context string) { t := p.checkType(node) if t != want { p.errorf("expected type %s in %s, got %s", documentedType(want), context, documentedType(t)) } } // check the types of the children of each node and raise an error // if they do not form a valid node. // // Some of these checks are redundant as the parsing stage does not allow // them, but the costs are small and might reveal errors when making changes. func (p *parser) checkType(node Node) (typ ValueType) { // For expressions the type is determined by their Type function. // Lists do not have a type but are not invalid either. switch n := node.(type) { case Expressions: typ = ValueTypeNone case Expr: typ = n.Type() default: p.errorf("unknown node type: %T", node) } // Recursively check correct typing for child nodes and raise // errors in case of bad typing. switch n := node.(type) { case *EvalStmt: ty := p.checkType(n.Expr) if ty == ValueTypeNone { p.errorf("evaluation statement must have a valid expression type but got %s", documentedType(ty)) } case Expressions: for _, e := range n { ty := p.checkType(e) if ty == ValueTypeNone { p.errorf("expression must have a valid expression type but got %s", documentedType(ty)) } } case *AggregateExpr: if !n.Op.isAggregator() { p.errorf("aggregation operator expected in aggregation expression but got %q", n.Op) } p.expectType(n.Expr, ValueTypeVector, "aggregation expression") if n.Op == TOPK || n.Op == BOTTOMK || n.Op == QUANTILE { p.expectType(n.Param, ValueTypeScalar, "aggregation parameter") } if n.Op == COUNT_VALUES { p.expectType(n.Param, ValueTypeString, "aggregation parameter") } case *BinaryExpr: lt := p.checkType(n.LHS) rt := p.checkType(n.RHS) if !n.Op.isOperator() { p.errorf("binary expression does not support operator %q", n.Op) } if (lt != ValueTypeScalar && lt != ValueTypeVector) || (rt != ValueTypeScalar && rt != ValueTypeVector) { p.errorf("binary expression must contain only scalar and instant vector types") } if (lt != ValueTypeVector || rt != ValueTypeVector) && n.VectorMatching != nil { if len(n.VectorMatching.MatchingLabels) > 0 { p.errorf("vector matching only allowed between instant vectors") } n.VectorMatching = nil } else { // Both operands are Vectors. if n.Op.isSetOperator() { if n.VectorMatching.Card == CardOneToMany || n.VectorMatching.Card == CardManyToOne { p.errorf("no grouping allowed for %q operation", n.Op) } if n.VectorMatching.Card != CardManyToMany { p.errorf("set operations must always be many-to-many") } } } if (lt == ValueTypeScalar || rt == ValueTypeScalar) && n.Op.isSetOperator() { p.errorf("set operator %q not allowed in binary scalar expression", n.Op) } case *Call: nargs := len(n.Func.ArgTypes) if n.Func.Variadic == 0 { if nargs != len(n.Args) { p.errorf("expected %d argument(s) in call to %q, got %d", nargs, n.Func.Name, len(n.Args)) } } else { na := nargs - 1 if na > len(n.Args) { p.errorf("expected at least %d argument(s) in call to %q, got %d", na, n.Func.Name, len(n.Args)) } else if nargsmax := na + n.Func.Variadic; n.Func.Variadic > 0 && nargsmax < len(n.Args) { p.errorf("expected at most %d argument(s) in call to %q, got %d", nargsmax, n.Func.Name, len(n.Args)) } } for i, arg := range n.Args { if i >= len(n.Func.ArgTypes) { i = len(n.Func.ArgTypes) - 1 } p.expectType(arg, n.Func.ArgTypes[i], fmt.Sprintf("call to function %q", n.Func.Name)) } case *ParenExpr: p.checkType(n.Expr) case *UnaryExpr: if n.Op != ADD && n.Op != SUB { p.errorf("only + and - operators allowed for unary expressions") } if t := p.checkType(n.Expr); t != ValueTypeScalar && t != ValueTypeVector { p.errorf("unary expression only allowed on expressions of type scalar or instant vector, got %q", documentedType(t)) } case *SubqueryExpr: ty := p.checkType(n.Expr) if ty != ValueTypeVector { p.errorf("subquery is only allowed on instant vector, got %s in %q instead", ty, n.String()) } case *NumberLiteral, *MatrixSelector, *StringLiteral, *VectorSelector: // Nothing to do for terminals. default: p.errorf("unknown node type: %T", node) } return } func (p *parser) unquoteString(s string) string { unquoted, err := strutil.Unquote(s) if err != nil { p.errorf("error unquoting string %q: %s", s, err) } return unquoted } func parseDuration(ds string) (time.Duration, error) { dur, err := model.ParseDuration(ds) if err != nil { return 0, err } if dur == 0 { return 0, errors.New("duration must be greater than 0") } return time.Duration(dur), nil } // parseGenerated invokes the yacc generated parser. // The generated parser gets the provided startSymbol injected into // the lexer stream, based on which grammar will be used. func (p *parser) parseGenerated(startSymbol ItemType) interface{} { p.InjectItem(startSymbol) p.yyParser.Parse(p) return p.generatedParserResult } func (p *parser) newLabelMatcher(label Item, operator Item, value Item) *labels.Matcher { op := operator.Typ val := p.unquoteString(value.Val) // Map the Item to the respective match type. var matchType labels.MatchType switch op { case EQL: matchType = labels.MatchEqual case NEQ: matchType = labels.MatchNotEqual case EQL_REGEX: matchType = labels.MatchRegexp case NEQ_REGEX: matchType = labels.MatchNotRegexp default: // This should never happen, since the error should have been caught // by the generated parser. panic("invalid operator") } m, err := labels.NewMatcher(matchType, label.Val, val) if err != nil { p.error(err) } return m } func (p *parser) addOffset(e Node, offset time.Duration) { var offsetp *time.Duration switch s := e.(type) { case *VectorSelector: offsetp = &s.Offset case *MatrixSelector: offsetp = &s.Offset case *SubqueryExpr: offsetp = &s.Offset default: p.errorf("offset modifier must be preceded by an instant or range selector, but follows a %T instead", e) return } // it is already ensured by parseDuration func that there never will be a zero offset modifier if *offsetp != 0 { p.errorf("offset may not be set multiple times") } else { *offsetp = offset } }