// Go support for Protocol Buffers - Google's data interchange format // // Copyright 2010 The Go Authors. All rights reserved. // https://github.com/golang/protobuf // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. package proto /* * Routines for decoding protocol buffer data to construct in-memory representations. */ import ( "errors" "fmt" "io" "os" "reflect" ) // errOverflow is returned when an integer is too large to be represented. var errOverflow = errors.New("proto: integer overflow") // ErrInternalBadWireType is returned by generated code when an incorrect // wire type is encountered. It does not get returned to user code. var ErrInternalBadWireType = errors.New("proto: internal error: bad wiretype for oneof") // The fundamental decoders that interpret bytes on the wire. // Those that take integer types all return uint64 and are // therefore of type valueDecoder. // DecodeVarint reads a varint-encoded integer from the slice. // It returns the integer and the number of bytes consumed, or // zero if there is not enough. // This is the format for the // int32, int64, uint32, uint64, bool, and enum // protocol buffer types. func DecodeVarint(buf []byte) (x uint64, n int) { // x, n already 0 for shift := uint(0); shift < 64; shift += 7 { if n >= len(buf) { return 0, 0 } b := uint64(buf[n]) n++ x |= (b & 0x7F) << shift if (b & 0x80) == 0 { return x, n } } // The number is too large to represent in a 64-bit value. return 0, 0 } // DecodeVarint reads a varint-encoded integer from the Buffer. // This is the format for the // int32, int64, uint32, uint64, bool, and enum // protocol buffer types. func (p *Buffer) DecodeVarint() (x uint64, err error) { // x, err already 0 i := p.index l := len(p.buf) for shift := uint(0); shift < 64; shift += 7 { if i >= l { err = io.ErrUnexpectedEOF return } b := p.buf[i] i++ x |= (uint64(b) & 0x7F) << shift if b < 0x80 { p.index = i return } } // The number is too large to represent in a 64-bit value. err = errOverflow return } // DecodeFixed64 reads a 64-bit integer from the Buffer. // This is the format for the // fixed64, sfixed64, and double protocol buffer types. func (p *Buffer) DecodeFixed64() (x uint64, err error) { // x, err already 0 i := p.index + 8 if i < 0 || i > len(p.buf) { err = io.ErrUnexpectedEOF return } p.index = i x = uint64(p.buf[i-8]) x |= uint64(p.buf[i-7]) << 8 x |= uint64(p.buf[i-6]) << 16 x |= uint64(p.buf[i-5]) << 24 x |= uint64(p.buf[i-4]) << 32 x |= uint64(p.buf[i-3]) << 40 x |= uint64(p.buf[i-2]) << 48 x |= uint64(p.buf[i-1]) << 56 return } // DecodeFixed32 reads a 32-bit integer from the Buffer. // This is the format for the // fixed32, sfixed32, and float protocol buffer types. func (p *Buffer) DecodeFixed32() (x uint64, err error) { // x, err already 0 i := p.index + 4 if i < 0 || i > len(p.buf) { err = io.ErrUnexpectedEOF return } p.index = i x = uint64(p.buf[i-4]) x |= uint64(p.buf[i-3]) << 8 x |= uint64(p.buf[i-2]) << 16 x |= uint64(p.buf[i-1]) << 24 return } // DecodeZigzag64 reads a zigzag-encoded 64-bit integer // from the Buffer. // This is the format used for the sint64 protocol buffer type. func (p *Buffer) DecodeZigzag64() (x uint64, err error) { x, err = p.DecodeVarint() if err != nil { return } x = (x >> 1) ^ uint64((int64(x&1)<<63)>>63) return } // DecodeZigzag32 reads a zigzag-encoded 32-bit integer // from the Buffer. // This is the format used for the sint32 protocol buffer type. func (p *Buffer) DecodeZigzag32() (x uint64, err error) { x, err = p.DecodeVarint() if err != nil { return } x = uint64((uint32(x) >> 1) ^ uint32((int32(x&1)<<31)>>31)) return } // These are not ValueDecoders: they produce an array of bytes or a string. // bytes, embedded messages // DecodeRawBytes reads a count-delimited byte buffer from the Buffer. // This is the format used for the bytes protocol buffer // type and for embedded messages. func (p *Buffer) DecodeRawBytes(alloc bool) (buf []byte, err error) { n, err := p.DecodeVarint() if err != nil { return nil, err } nb := int(n) if nb < 0 { return nil, fmt.Errorf("proto: bad byte length %d", nb) } end := p.index + nb if end < p.index || end > len(p.buf) { return nil, io.ErrUnexpectedEOF } if !alloc { // todo: check if can get more uses of alloc=false buf = p.buf[p.index:end] p.index += nb return } buf = make([]byte, nb) copy(buf, p.buf[p.index:]) p.index += nb return } // DecodeStringBytes reads an encoded string from the Buffer. // This is the format used for the proto2 string type. func (p *Buffer) DecodeStringBytes() (s string, err error) { buf, err := p.DecodeRawBytes(false) if err != nil { return } return string(buf), nil } // Skip the next item in the buffer. Its wire type is decoded and presented as an argument. // If the protocol buffer has extensions, and the field matches, add it as an extension. // Otherwise, if the XXX_unrecognized field exists, append the skipped data there. func (o *Buffer) skipAndSave(t reflect.Type, tag, wire int, base structPointer, unrecField field) error { oi := o.index err := o.skip(t, tag, wire) if err != nil { return err } if !unrecField.IsValid() { return nil } ptr := structPointer_Bytes(base, unrecField) // Add the skipped field to struct field obuf := o.buf o.buf = *ptr o.EncodeVarint(uint64(tag<<3 | wire)) *ptr = append(o.buf, obuf[oi:o.index]...) o.buf = obuf return nil } // Skip the next item in the buffer. Its wire type is decoded and presented as an argument. func (o *Buffer) skip(t reflect.Type, tag, wire int) error { var u uint64 var err error switch wire { case WireVarint: _, err = o.DecodeVarint() case WireFixed64: _, err = o.DecodeFixed64() case WireBytes: _, err = o.DecodeRawBytes(false) case WireFixed32: _, err = o.DecodeFixed32() case WireStartGroup: for { u, err = o.DecodeVarint() if err != nil { break } fwire := int(u & 0x7) if fwire == WireEndGroup { break } ftag := int(u >> 3) err = o.skip(t, ftag, fwire) if err != nil { break } } default: err = fmt.Errorf("proto: can't skip unknown wire type %d for %s", wire, t) } return err } // Unmarshaler is the interface representing objects that can // unmarshal themselves. The method should reset the receiver before // decoding starts. The argument points to data that may be // overwritten, so implementations should not keep references to the // buffer. type Unmarshaler interface { Unmarshal([]byte) error } // Unmarshal parses the protocol buffer representation in buf and places the // decoded result in pb. If the struct underlying pb does not match // the data in buf, the results can be unpredictable. // // Unmarshal resets pb before starting to unmarshal, so any // existing data in pb is always removed. Use UnmarshalMerge // to preserve and append to existing data. func Unmarshal(buf []byte, pb Message) error { pb.Reset() return UnmarshalMerge(buf, pb) } // UnmarshalMerge parses the protocol buffer representation in buf and // writes the decoded result to pb. If the struct underlying pb does not match // the data in buf, the results can be unpredictable. // // UnmarshalMerge merges into existing data in pb. // Most code should use Unmarshal instead. func UnmarshalMerge(buf []byte, pb Message) error { // If the object can unmarshal itself, let it. if u, ok := pb.(Unmarshaler); ok { return u.Unmarshal(buf) } return NewBuffer(buf).Unmarshal(pb) } // DecodeMessage reads a count-delimited message from the Buffer. func (p *Buffer) DecodeMessage(pb Message) error { enc, err := p.DecodeRawBytes(false) if err != nil { return err } return NewBuffer(enc).Unmarshal(pb) } // DecodeGroup reads a tag-delimited group from the Buffer. func (p *Buffer) DecodeGroup(pb Message) error { typ, base, err := getbase(pb) if err != nil { return err } return p.unmarshalType(typ.Elem(), GetProperties(typ.Elem()), true, base) } // Unmarshal parses the protocol buffer representation in the // Buffer and places the decoded result in pb. If the struct // underlying pb does not match the data in the buffer, the results can be // unpredictable. func (p *Buffer) Unmarshal(pb Message) error { // If the object can unmarshal itself, let it. if u, ok := pb.(Unmarshaler); ok { err := u.Unmarshal(p.buf[p.index:]) p.index = len(p.buf) return err } typ, base, err := getbase(pb) if err != nil { return err } err = p.unmarshalType(typ.Elem(), GetProperties(typ.Elem()), false, base) if collectStats { stats.Decode++ } return err } // unmarshalType does the work of unmarshaling a structure. func (o *Buffer) unmarshalType(st reflect.Type, prop *StructProperties, is_group bool, base structPointer) error { var state errorState required, reqFields := prop.reqCount, uint64(0) var err error for err == nil && o.index < len(o.buf) { oi := o.index var u uint64 u, err = o.DecodeVarint() if err != nil { break } wire := int(u & 0x7) if wire == WireEndGroup { if is_group { return nil // input is satisfied } return fmt.Errorf("proto: %s: wiretype end group for non-group", st) } tag := int(u >> 3) if tag <= 0 { return fmt.Errorf("proto: %s: illegal tag %d (wire type %d)", st, tag, wire) } fieldnum, ok := prop.decoderTags.get(tag) if !ok { // Maybe it's an extension? if prop.extendable { if e := structPointer_Interface(base, st).(extendableProto); isExtensionField(e, int32(tag)) { if err = o.skip(st, tag, wire); err == nil { if ee, eok := e.(extensionsMap); eok { ext := ee.ExtensionMap()[int32(tag)] // may be missing ext.enc = append(ext.enc, o.buf[oi:o.index]...) ee.ExtensionMap()[int32(tag)] = ext } else if ee, eok := e.(extensionsBytes); eok { ext := ee.GetExtensions() *ext = append(*ext, o.buf[oi:o.index]...) } } continue } } // Maybe it's a oneof? if prop.oneofUnmarshaler != nil { m := structPointer_Interface(base, st).(Message) // First return value indicates whether tag is a oneof field. ok, err = prop.oneofUnmarshaler(m, tag, wire, o) if err == ErrInternalBadWireType { // Map the error to something more descriptive. // Do the formatting here to save generated code space. err = fmt.Errorf("bad wiretype for oneof field in %T", m) } if ok { continue } } err = o.skipAndSave(st, tag, wire, base, prop.unrecField) continue } p := prop.Prop[fieldnum] if p.dec == nil { fmt.Fprintf(os.Stderr, "proto: no protobuf decoder for %s.%s\n", st, st.Field(fieldnum).Name) continue } dec := p.dec if wire != WireStartGroup && wire != p.WireType { if wire == WireBytes && p.packedDec != nil { // a packable field dec = p.packedDec } else { err = fmt.Errorf("proto: bad wiretype for field %s.%s: got wiretype %d, want %d", st, st.Field(fieldnum).Name, wire, p.WireType) continue } } decErr := dec(o, p, base) if decErr != nil && !state.shouldContinue(decErr, p) { err = decErr } if err == nil && p.Required { // Successfully decoded a required field. if tag <= 64 { // use bitmap for fields 1-64 to catch field reuse. var mask uint64 = 1 << uint64(tag-1) if reqFields&mask == 0 { // new required field reqFields |= mask required-- } } else { // This is imprecise. It can be fooled by a required field // with a tag > 64 that is encoded twice; that's very rare. // A fully correct implementation would require allocating // a data structure, which we would like to avoid. required-- } } } if err == nil { if is_group { return io.ErrUnexpectedEOF } if state.err != nil { return state.err } if required > 0 { // Not enough information to determine the exact field. If we use extra // CPU, we could determine the field only if the missing required field // has a tag <= 64 and we check reqFields. return &RequiredNotSetError{"{Unknown}"} } } return err } // Individual type decoders // For each, // u is the decoded value, // v is a pointer to the field (pointer) in the struct // Sizes of the pools to allocate inside the Buffer. // The goal is modest amortization and allocation // on at least 16-byte boundaries. const ( boolPoolSize = 16 uint32PoolSize = 8 uint64PoolSize = 4 ) // Decode a bool. func (o *Buffer) dec_bool(p *Properties, base structPointer) error { u, err := p.valDec(o) if err != nil { return err } if len(o.bools) == 0 { o.bools = make([]bool, boolPoolSize) } o.bools[0] = u != 0 *structPointer_Bool(base, p.field) = &o.bools[0] o.bools = o.bools[1:] return nil } func (o *Buffer) dec_proto3_bool(p *Properties, base structPointer) error { u, err := p.valDec(o) if err != nil { return err } *structPointer_BoolVal(base, p.field) = u != 0 return nil } // Decode an int32. func (o *Buffer) dec_int32(p *Properties, base structPointer) error { u, err := p.valDec(o) if err != nil { return err } word32_Set(structPointer_Word32(base, p.field), o, uint32(u)) return nil } func (o *Buffer) dec_proto3_int32(p *Properties, base structPointer) error { u, err := p.valDec(o) if err != nil { return err } word32Val_Set(structPointer_Word32Val(base, p.field), uint32(u)) return nil } // Decode an int64. func (o *Buffer) dec_int64(p *Properties, base structPointer) error { u, err := p.valDec(o) if err != nil { return err } word64_Set(structPointer_Word64(base, p.field), o, u) return nil } func (o *Buffer) dec_proto3_int64(p *Properties, base structPointer) error { u, err := p.valDec(o) if err != nil { return err } word64Val_Set(structPointer_Word64Val(base, p.field), o, u) return nil } // Decode a string. func (o *Buffer) dec_string(p *Properties, base structPointer) error { s, err := o.DecodeStringBytes() if err != nil { return err } *structPointer_String(base, p.field) = &s return nil } func (o *Buffer) dec_proto3_string(p *Properties, base structPointer) error { s, err := o.DecodeStringBytes() if err != nil { return err } *structPointer_StringVal(base, p.field) = s return nil } // Decode a slice of bytes ([]byte). func (o *Buffer) dec_slice_byte(p *Properties, base structPointer) error { b, err := o.DecodeRawBytes(true) if err != nil { return err } *structPointer_Bytes(base, p.field) = b return nil } // Decode a slice of bools ([]bool). func (o *Buffer) dec_slice_bool(p *Properties, base structPointer) error { u, err := p.valDec(o) if err != nil { return err } v := structPointer_BoolSlice(base, p.field) *v = append(*v, u != 0) return nil } // Decode a slice of bools ([]bool) in packed format. func (o *Buffer) dec_slice_packed_bool(p *Properties, base structPointer) error { v := structPointer_BoolSlice(base, p.field) nn, err := o.DecodeVarint() if err != nil { return err } nb := int(nn) // number of bytes of encoded bools fin := o.index + nb if fin < o.index { return errOverflow } y := *v for o.index < fin { u, err := p.valDec(o) if err != nil { return err } y = append(y, u != 0) } *v = y return nil } // Decode a slice of int32s ([]int32). func (o *Buffer) dec_slice_int32(p *Properties, base structPointer) error { u, err := p.valDec(o) if err != nil { return err } structPointer_Word32Slice(base, p.field).Append(uint32(u)) return nil } // Decode a slice of int32s ([]int32) in packed format. func (o *Buffer) dec_slice_packed_int32(p *Properties, base structPointer) error { v := structPointer_Word32Slice(base, p.field) nn, err := o.DecodeVarint() if err != nil { return err } nb := int(nn) // number of bytes of encoded int32s fin := o.index + nb if fin < o.index { return errOverflow } for o.index < fin { u, err := p.valDec(o) if err != nil { return err } v.Append(uint32(u)) } return nil } // Decode a slice of int64s ([]int64). func (o *Buffer) dec_slice_int64(p *Properties, base structPointer) error { u, err := p.valDec(o) if err != nil { return err } structPointer_Word64Slice(base, p.field).Append(u) return nil } // Decode a slice of int64s ([]int64) in packed format. func (o *Buffer) dec_slice_packed_int64(p *Properties, base structPointer) error { v := structPointer_Word64Slice(base, p.field) nn, err := o.DecodeVarint() if err != nil { return err } nb := int(nn) // number of bytes of encoded int64s fin := o.index + nb if fin < o.index { return errOverflow } for o.index < fin { u, err := p.valDec(o) if err != nil { return err } v.Append(u) } return nil } // Decode a slice of strings ([]string). func (o *Buffer) dec_slice_string(p *Properties, base structPointer) error { s, err := o.DecodeStringBytes() if err != nil { return err } v := structPointer_StringSlice(base, p.field) *v = append(*v, s) return nil } // Decode a slice of slice of bytes ([][]byte). func (o *Buffer) dec_slice_slice_byte(p *Properties, base structPointer) error { b, err := o.DecodeRawBytes(true) if err != nil { return err } v := structPointer_BytesSlice(base, p.field) *v = append(*v, b) return nil } // Decode a map field. func (o *Buffer) dec_new_map(p *Properties, base structPointer) error { raw, err := o.DecodeRawBytes(false) if err != nil { return err } oi := o.index // index at the end of this map entry o.index -= len(raw) // move buffer back to start of map entry mptr := structPointer_NewAt(base, p.field, p.mtype) // *map[K]V if mptr.Elem().IsNil() { mptr.Elem().Set(reflect.MakeMap(mptr.Type().Elem())) } v := mptr.Elem() // map[K]V // Prepare addressable doubly-indirect placeholders for the key and value types. // See enc_new_map for why. keyptr := reflect.New(reflect.PtrTo(p.mtype.Key())).Elem() // addressable *K keybase := toStructPointer(keyptr.Addr()) // **K var valbase structPointer var valptr reflect.Value switch p.mtype.Elem().Kind() { case reflect.Slice: // []byte var dummy []byte valptr = reflect.ValueOf(&dummy) // *[]byte valbase = toStructPointer(valptr) // *[]byte case reflect.Ptr: // message; valptr is **Msg; need to allocate the intermediate pointer valptr = reflect.New(reflect.PtrTo(p.mtype.Elem())).Elem() // addressable *V valptr.Set(reflect.New(valptr.Type().Elem())) valbase = toStructPointer(valptr) default: // everything else valptr = reflect.New(reflect.PtrTo(p.mtype.Elem())).Elem() // addressable *V valbase = toStructPointer(valptr.Addr()) // **V } // Decode. // This parses a restricted wire format, namely the encoding of a message // with two fields. See enc_new_map for the format. for o.index < oi { // tagcode for key and value properties are always a single byte // because they have tags 1 and 2. tagcode := o.buf[o.index] o.index++ switch tagcode { case p.mkeyprop.tagcode[0]: if err := p.mkeyprop.dec(o, p.mkeyprop, keybase); err != nil { return err } case p.mvalprop.tagcode[0]: if err := p.mvalprop.dec(o, p.mvalprop, valbase); err != nil { return err } default: // TODO: Should we silently skip this instead? return fmt.Errorf("proto: bad map data tag %d", raw[0]) } } keyelem, valelem := keyptr.Elem(), valptr.Elem() if !keyelem.IsValid() { keyelem = reflect.Zero(p.mtype.Key()) } if !valelem.IsValid() { valelem = reflect.Zero(p.mtype.Elem()) } v.SetMapIndex(keyelem, valelem) return nil } // Decode a group. func (o *Buffer) dec_struct_group(p *Properties, base structPointer) error { bas := structPointer_GetStructPointer(base, p.field) if structPointer_IsNil(bas) { // allocate new nested message bas = toStructPointer(reflect.New(p.stype)) structPointer_SetStructPointer(base, p.field, bas) } return o.unmarshalType(p.stype, p.sprop, true, bas) } // Decode an embedded message. func (o *Buffer) dec_struct_message(p *Properties, base structPointer) (err error) { raw, e := o.DecodeRawBytes(false) if e != nil { return e } bas := structPointer_GetStructPointer(base, p.field) if structPointer_IsNil(bas) { // allocate new nested message bas = toStructPointer(reflect.New(p.stype)) structPointer_SetStructPointer(base, p.field, bas) } // If the object can unmarshal itself, let it. if p.isUnmarshaler { iv := structPointer_Interface(bas, p.stype) return iv.(Unmarshaler).Unmarshal(raw) } obuf := o.buf oi := o.index o.buf = raw o.index = 0 err = o.unmarshalType(p.stype, p.sprop, false, bas) o.buf = obuf o.index = oi return err } // Decode a slice of embedded messages. func (o *Buffer) dec_slice_struct_message(p *Properties, base structPointer) error { return o.dec_slice_struct(p, false, base) } // Decode a slice of embedded groups. func (o *Buffer) dec_slice_struct_group(p *Properties, base structPointer) error { return o.dec_slice_struct(p, true, base) } // Decode a slice of structs ([]*struct). func (o *Buffer) dec_slice_struct(p *Properties, is_group bool, base structPointer) error { v := reflect.New(p.stype) bas := toStructPointer(v) structPointer_StructPointerSlice(base, p.field).Append(bas) if is_group { err := o.unmarshalType(p.stype, p.sprop, is_group, bas) return err } raw, err := o.DecodeRawBytes(false) if err != nil { return err } // If the object can unmarshal itself, let it. if p.isUnmarshaler { iv := v.Interface() return iv.(Unmarshaler).Unmarshal(raw) } obuf := o.buf oi := o.index o.buf = raw o.index = 0 err = o.unmarshalType(p.stype, p.sprop, is_group, bas) o.buf = obuf o.index = oi return err }