// Copyright 2014 The Prometheus Authors // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package local import ( "fmt" "hash/fnv" "math/rand" "os" "reflect" "testing" "testing/quick" "time" "github.com/prometheus/common/log" "github.com/prometheus/common/model" "github.com/prometheus/prometheus/storage/metric" "github.com/prometheus/prometheus/util/testutil" ) func TestMatches(t *testing.T) { storage, closer := NewTestStorage(t, 1) defer closer.Close() samples := make([]*model.Sample, 100) fingerprints := make(model.Fingerprints, 100) for i := range samples { metric := model.Metric{ model.MetricNameLabel: model.LabelValue(fmt.Sprintf("test_metric_%d", i)), "label1": model.LabelValue(fmt.Sprintf("test_%d", i/10)), "label2": model.LabelValue(fmt.Sprintf("test_%d", (i+5)/10)), "all": "const", } samples[i] = &model.Sample{ Metric: metric, Timestamp: model.Time(i), Value: model.SampleValue(i), } fingerprints[i] = metric.FastFingerprint() } for _, s := range samples { storage.Append(s) } storage.WaitForIndexing() newMatcher := func(matchType metric.MatchType, name model.LabelName, value model.LabelValue) *metric.LabelMatcher { lm, err := metric.NewLabelMatcher(matchType, name, value) if err != nil { t.Fatalf("error creating label matcher: %s", err) } return lm } var matcherTests = []struct { matchers metric.LabelMatchers expected model.Fingerprints }{ { matchers: metric.LabelMatchers{newMatcher(metric.Equal, "label1", "x")}, expected: model.Fingerprints{}, }, { matchers: metric.LabelMatchers{newMatcher(metric.Equal, "label1", "test_0")}, expected: fingerprints[:10], }, { matchers: metric.LabelMatchers{ newMatcher(metric.Equal, "label1", "test_0"), newMatcher(metric.Equal, "label2", "test_1"), }, expected: fingerprints[5:10], }, { matchers: metric.LabelMatchers{ newMatcher(metric.Equal, "all", "const"), newMatcher(metric.NotEqual, "label1", "x"), }, expected: fingerprints, }, { matchers: metric.LabelMatchers{ newMatcher(metric.Equal, "all", "const"), newMatcher(metric.NotEqual, "label1", "test_0"), }, expected: fingerprints[10:], }, { matchers: metric.LabelMatchers{ newMatcher(metric.Equal, "all", "const"), newMatcher(metric.NotEqual, "label1", "test_0"), newMatcher(metric.NotEqual, "label1", "test_1"), newMatcher(metric.NotEqual, "label1", "test_2"), }, expected: fingerprints[30:], }, { matchers: metric.LabelMatchers{ newMatcher(metric.Equal, "label1", ""), }, expected: fingerprints[:0], }, { matchers: metric.LabelMatchers{ newMatcher(metric.NotEqual, "label1", "test_0"), newMatcher(metric.Equal, "label1", ""), }, expected: fingerprints[:0], }, { matchers: metric.LabelMatchers{ newMatcher(metric.NotEqual, "label1", "test_0"), newMatcher(metric.Equal, "label2", ""), }, expected: fingerprints[:0], }, { matchers: metric.LabelMatchers{ newMatcher(metric.Equal, "all", "const"), newMatcher(metric.NotEqual, "label1", "test_0"), newMatcher(metric.Equal, "not_existant", ""), }, expected: fingerprints[10:], }, { matchers: metric.LabelMatchers{ newMatcher(metric.RegexMatch, "label1", `test_[3-5]`), }, expected: fingerprints[30:60], }, { matchers: metric.LabelMatchers{ newMatcher(metric.Equal, "all", "const"), newMatcher(metric.RegexNoMatch, "label1", `test_[3-5]`), }, expected: append(append(model.Fingerprints{}, fingerprints[:30]...), fingerprints[60:]...), }, { matchers: metric.LabelMatchers{ newMatcher(metric.RegexMatch, "label1", `test_[3-5]`), newMatcher(metric.RegexMatch, "label2", `test_[4-6]`), }, expected: fingerprints[35:60], }, { matchers: metric.LabelMatchers{ newMatcher(metric.RegexMatch, "label1", `test_[3-5]`), newMatcher(metric.NotEqual, "label2", `test_4`), }, expected: append(append(model.Fingerprints{}, fingerprints[30:35]...), fingerprints[45:60]...), }, { matchers: metric.LabelMatchers{ newMatcher(metric.Equal, "label1", `nonexistent`), newMatcher(metric.RegexMatch, "label2", `test`), }, expected: model.Fingerprints{}, }, { matchers: metric.LabelMatchers{ newMatcher(metric.Equal, "label1", `test_0`), newMatcher(metric.RegexMatch, "label2", `nonexistent`), }, expected: model.Fingerprints{}, }, } for _, mt := range matcherTests { res := storage.MetricsForLabelMatchers(mt.matchers...) if len(mt.expected) != len(res) { t.Fatalf("expected %d matches for %q, found %d", len(mt.expected), mt.matchers, len(res)) } for fp1 := range res { found := false for _, fp2 := range mt.expected { if fp1 == fp2 { found = true break } } if !found { t.Errorf("expected fingerprint %s for %q not in result", fp1, mt.matchers) } } } } func TestFingerprintsForLabels(t *testing.T) { storage, closer := NewTestStorage(t, 1) defer closer.Close() samples := make([]*model.Sample, 100) fingerprints := make(model.Fingerprints, 100) for i := range samples { metric := model.Metric{ model.MetricNameLabel: model.LabelValue(fmt.Sprintf("test_metric_%d", i)), "label1": model.LabelValue(fmt.Sprintf("test_%d", i/10)), "label2": model.LabelValue(fmt.Sprintf("test_%d", (i+5)/10)), } samples[i] = &model.Sample{ Metric: metric, Timestamp: model.Time(i), Value: model.SampleValue(i), } fingerprints[i] = metric.FastFingerprint() } for _, s := range samples { storage.Append(s) } storage.WaitForIndexing() var matcherTests = []struct { pairs []model.LabelPair expected model.Fingerprints }{ { pairs: []model.LabelPair{{"label1", "x"}}, expected: fingerprints[:0], }, { pairs: []model.LabelPair{{"label1", "test_0"}}, expected: fingerprints[:10], }, { pairs: []model.LabelPair{ {"label1", "test_0"}, {"label1", "test_1"}, }, expected: fingerprints[:0], }, { pairs: []model.LabelPair{ {"label1", "test_0"}, {"label2", "test_1"}, }, expected: fingerprints[5:10], }, { pairs: []model.LabelPair{ {"label1", "test_1"}, {"label2", "test_2"}, }, expected: fingerprints[15:20], }, } for _, mt := range matcherTests { resfps := storage.fingerprintsForLabelPairs(mt.pairs...) if len(mt.expected) != len(resfps) { t.Fatalf("expected %d matches for %q, found %d", len(mt.expected), mt.pairs, len(resfps)) } for fp1 := range resfps { found := false for _, fp2 := range mt.expected { if fp1 == fp2 { found = true break } } if !found { t.Errorf("expected fingerprint %s for %q not in result", fp1, mt.pairs) } } } } var benchLabelMatchingRes map[model.Fingerprint]metric.Metric func BenchmarkLabelMatching(b *testing.B) { s, closer := NewTestStorage(b, 1) defer closer.Close() h := fnv.New64a() lbl := func(x int) model.LabelValue { h.Reset() h.Write([]byte(fmt.Sprintf("%d", x))) return model.LabelValue(fmt.Sprintf("%d", h.Sum64())) } M := 32 met := model.Metric{} for i := 0; i < M; i++ { met["label_a"] = lbl(i) for j := 0; j < M; j++ { met["label_b"] = lbl(j) for k := 0; k < M; k++ { met["label_c"] = lbl(k) for l := 0; l < M; l++ { met["label_d"] = lbl(l) s.Append(&model.Sample{ Metric: met.Clone(), Timestamp: 0, Value: 1, }) } } } } s.WaitForIndexing() newMatcher := func(matchType metric.MatchType, name model.LabelName, value model.LabelValue) *metric.LabelMatcher { lm, err := metric.NewLabelMatcher(matchType, name, value) if err != nil { b.Fatalf("error creating label matcher: %s", err) } return lm } var matcherTests = []metric.LabelMatchers{ { newMatcher(metric.Equal, "label_a", lbl(1)), }, { newMatcher(metric.Equal, "label_a", lbl(3)), newMatcher(metric.Equal, "label_c", lbl(3)), }, { newMatcher(metric.Equal, "label_a", lbl(3)), newMatcher(metric.Equal, "label_c", lbl(3)), newMatcher(metric.NotEqual, "label_d", lbl(3)), }, { newMatcher(metric.Equal, "label_a", lbl(3)), newMatcher(metric.Equal, "label_b", lbl(3)), newMatcher(metric.Equal, "label_c", lbl(3)), newMatcher(metric.NotEqual, "label_d", lbl(3)), }, { newMatcher(metric.RegexMatch, "label_a", ".+"), }, { newMatcher(metric.Equal, "label_a", lbl(3)), newMatcher(metric.RegexMatch, "label_a", ".+"), }, { newMatcher(metric.Equal, "label_a", lbl(1)), newMatcher(metric.RegexMatch, "label_c", "("+lbl(3)+"|"+lbl(10)+")"), }, { newMatcher(metric.Equal, "label_a", lbl(3)), newMatcher(metric.Equal, "label_a", lbl(4)), newMatcher(metric.RegexMatch, "label_c", "("+lbl(3)+"|"+lbl(10)+")"), }, } b.ReportAllocs() b.ResetTimer() for i := 0; i < b.N; i++ { benchLabelMatchingRes = map[model.Fingerprint]metric.Metric{} for _, mt := range matcherTests { benchLabelMatchingRes = s.MetricsForLabelMatchers(mt...) } } // Stop timer to not count the storage closing. b.StopTimer() } func TestRetentionCutoff(t *testing.T) { now := model.Now() insertStart := now.Add(-2 * time.Hour) s, closer := NewTestStorage(t, 1) defer closer.Close() // Stop maintenance loop to prevent actual purging. close(s.loopStopping) <-s.loopStopped <-s.logThrottlingStopped // Recreate channel to avoid panic when we really shut down. s.loopStopping = make(chan struct{}) s.dropAfter = 1 * time.Hour for i := 0; i < 120; i++ { smpl := &model.Sample{ Metric: model.Metric{"job": "test"}, Timestamp: insertStart.Add(time.Duration(i) * time.Minute), // 1 minute intervals. Value: 1, } s.Append(smpl) } s.WaitForIndexing() var fp model.Fingerprint for f := range s.fingerprintsForLabelPairs(model.LabelPair{Name: "job", Value: "test"}) { fp = f break } pl := s.NewPreloader() defer pl.Close() // Preload everything. it := pl.PreloadRange(fp, insertStart, now) val := it.ValueAtOrBeforeTime(now.Add(-61 * time.Minute)) if val.Timestamp != model.Earliest { t.Errorf("unexpected result for timestamp before retention period") } vals := it.RangeValues(metric.Interval{OldestInclusive: insertStart, NewestInclusive: now}) // We get 59 values here because the model.Now() is slightly later // than our now. if len(vals) != 59 { t.Errorf("expected 59 values but got %d", len(vals)) } if expt := now.Add(-1 * time.Hour).Add(time.Minute); vals[0].Timestamp != expt { t.Errorf("unexpected timestamp for first sample: %v, expected %v", vals[0].Timestamp.Time(), expt.Time()) } } func TestDropMetrics(t *testing.T) { now := model.Now() insertStart := now.Add(-2 * time.Hour) s, closer := NewTestStorage(t, 1) defer closer.Close() chunkFileExists := func(fp model.Fingerprint) (bool, error) { f, err := s.persistence.openChunkFileForReading(fp) if err == nil { f.Close() return true, nil } if os.IsNotExist(err) { return false, nil } return false, err } m1 := model.Metric{model.MetricNameLabel: "test", "n1": "v1"} m2 := model.Metric{model.MetricNameLabel: "test", "n1": "v2"} m3 := model.Metric{model.MetricNameLabel: "test", "n1": "v3"} N := 120000 for j, m := range []model.Metric{m1, m2, m3} { for i := 0; i < N; i++ { smpl := &model.Sample{ Metric: m, Timestamp: insertStart.Add(time.Duration(i) * time.Millisecond), // 1 millisecond intervals. Value: model.SampleValue(j), } s.Append(smpl) } } s.WaitForIndexing() // Archive m3, but first maintain it so that at least something is written to disk. fpToBeArchived := m3.FastFingerprint() s.maintainMemorySeries(fpToBeArchived, 0) s.fpLocker.Lock(fpToBeArchived) s.fpToSeries.del(fpToBeArchived) if err := s.persistence.archiveMetric( fpToBeArchived, m3, 0, insertStart.Add(time.Duration(N-1)*time.Millisecond), ); err != nil { t.Error(err) } s.fpLocker.Unlock(fpToBeArchived) fps := s.fingerprintsForLabelPairs(model.LabelPair{Name: model.MetricNameLabel, Value: "test"}) if len(fps) != 3 { t.Errorf("unexpected number of fingerprints: %d", len(fps)) } fpList := model.Fingerprints{m1.FastFingerprint(), m2.FastFingerprint(), fpToBeArchived} s.DropMetricsForFingerprints(fpList[0]) s.WaitForIndexing() fps2 := s.fingerprintsForLabelPairs(model.LabelPair{ Name: model.MetricNameLabel, Value: "test", }) if len(fps2) != 2 { t.Errorf("unexpected number of fingerprints: %d", len(fps2)) } _, it := s.preloadChunksForRange(fpList[0], model.Earliest, model.Latest, false) if vals := it.RangeValues(metric.Interval{OldestInclusive: insertStart, NewestInclusive: now}); len(vals) != 0 { t.Errorf("unexpected number of samples: %d", len(vals)) } _, it = s.preloadChunksForRange(fpList[1], model.Earliest, model.Latest, false) if vals := it.RangeValues(metric.Interval{OldestInclusive: insertStart, NewestInclusive: now}); len(vals) != N { t.Errorf("unexpected number of samples: %d", len(vals)) } exists, err := chunkFileExists(fpList[2]) if err != nil { t.Fatal(err) } if !exists { t.Errorf("chunk file does not exist for fp=%v", fpList[2]) } s.DropMetricsForFingerprints(fpList...) s.WaitForIndexing() fps3 := s.fingerprintsForLabelPairs(model.LabelPair{ Name: model.MetricNameLabel, Value: "test", }) if len(fps3) != 0 { t.Errorf("unexpected number of fingerprints: %d", len(fps3)) } _, it = s.preloadChunksForRange(fpList[0], model.Earliest, model.Latest, false) if vals := it.RangeValues(metric.Interval{OldestInclusive: insertStart, NewestInclusive: now}); len(vals) != 0 { t.Errorf("unexpected number of samples: %d", len(vals)) } _, it = s.preloadChunksForRange(fpList[1], model.Earliest, model.Latest, false) if vals := it.RangeValues(metric.Interval{OldestInclusive: insertStart, NewestInclusive: now}); len(vals) != 0 { t.Errorf("unexpected number of samples: %d", len(vals)) } exists, err = chunkFileExists(fpList[2]) if err != nil { t.Fatal(err) } if exists { t.Errorf("chunk file still exists for fp=%v", fpList[2]) } } func TestQuarantineMetric(t *testing.T) { now := model.Now() insertStart := now.Add(-2 * time.Hour) s, closer := NewTestStorage(t, 1) defer closer.Close() chunkFileExists := func(fp model.Fingerprint) (bool, error) { f, err := s.persistence.openChunkFileForReading(fp) if err == nil { f.Close() return true, nil } if os.IsNotExist(err) { return false, nil } return false, err } m1 := model.Metric{model.MetricNameLabel: "test", "n1": "v1"} m2 := model.Metric{model.MetricNameLabel: "test", "n1": "v2"} m3 := model.Metric{model.MetricNameLabel: "test", "n1": "v3"} N := 120000 for j, m := range []model.Metric{m1, m2, m3} { for i := 0; i < N; i++ { smpl := &model.Sample{ Metric: m, Timestamp: insertStart.Add(time.Duration(i) * time.Millisecond), // 1 millisecond intervals. Value: model.SampleValue(j), } s.Append(smpl) } } s.WaitForIndexing() // Archive m3, but first maintain it so that at least something is written to disk. fpToBeArchived := m3.FastFingerprint() s.maintainMemorySeries(fpToBeArchived, 0) s.fpLocker.Lock(fpToBeArchived) s.fpToSeries.del(fpToBeArchived) if err := s.persistence.archiveMetric( fpToBeArchived, m3, 0, insertStart.Add(time.Duration(N-1)*time.Millisecond), ); err != nil { t.Error(err) } s.fpLocker.Unlock(fpToBeArchived) // Corrupt the series file for m3. f, err := os.Create(s.persistence.fileNameForFingerprint(fpToBeArchived)) if err != nil { t.Fatal(err) } if _, err := f.WriteString("This is clearly not the content of a series file."); err != nil { t.Fatal(err) } if f.Close(); err != nil { t.Fatal(err) } fps := s.fingerprintsForLabelPairs(model.LabelPair{Name: model.MetricNameLabel, Value: "test"}) if len(fps) != 3 { t.Errorf("unexpected number of fingerprints: %d", len(fps)) } pl := s.NewPreloader() // This will access the corrupt file and lead to quarantining. pl.PreloadInstant(fpToBeArchived, now.Add(-2*time.Hour), time.Minute) pl.Close() time.Sleep(time.Second) // Give time to quarantine. TODO(beorn7): Find a better way to wait. s.WaitForIndexing() fps2 := s.fingerprintsForLabelPairs(model.LabelPair{ Name: model.MetricNameLabel, Value: "test", }) if len(fps2) != 2 { t.Errorf("unexpected number of fingerprints: %d", len(fps2)) } exists, err := chunkFileExists(fpToBeArchived) if err != nil { t.Fatal(err) } if exists { t.Errorf("chunk file exists for fp=%v", fpToBeArchived) } } // TestLoop is just a smoke test for the loop method, if we can switch it on and // off without disaster. func TestLoop(t *testing.T) { if testing.Short() { t.Skip("Skipping test in short mode.") } samples := make(model.Samples, 1000) for i := range samples { samples[i] = &model.Sample{ Timestamp: model.Time(2 * i), Value: model.SampleValue(float64(i) * 0.2), } } directory := testutil.NewTemporaryDirectory("test_storage", t) defer directory.Close() o := &MemorySeriesStorageOptions{ MemoryChunks: 50, MaxChunksToPersist: 1000000, PersistenceRetentionPeriod: 24 * 7 * time.Hour, PersistenceStoragePath: directory.Path(), CheckpointInterval: 250 * time.Millisecond, SyncStrategy: Adaptive, MinShrinkRatio: 0.1, } storage := NewMemorySeriesStorage(o) if err := storage.Start(); err != nil { t.Errorf("Error starting storage: %s", err) } for _, s := range samples { storage.Append(s) } storage.WaitForIndexing() series, _ := storage.(*memorySeriesStorage).fpToSeries.get(model.Metric{}.FastFingerprint()) cdsBefore := len(series.chunkDescs) time.Sleep(fpMaxWaitDuration + time.Second) // TODO(beorn7): Ugh, need to wait for maintenance to kick in. cdsAfter := len(series.chunkDescs) storage.Stop() if cdsBefore <= cdsAfter { t.Errorf( "Number of chunk descriptors should have gone down by now. Got before %d, after %d.", cdsBefore, cdsAfter, ) } } func testChunk(t *testing.T, encoding chunkEncoding) { samples := make(model.Samples, 500000) for i := range samples { samples[i] = &model.Sample{ Timestamp: model.Time(i), Value: model.SampleValue(float64(i) * 0.2), } } s, closer := NewTestStorage(t, encoding) defer closer.Close() for _, sample := range samples { s.Append(sample) } s.WaitForIndexing() for m := range s.fpToSeries.iter() { s.fpLocker.Lock(m.fp) var values []model.SamplePair for _, cd := range m.series.chunkDescs { if cd.isEvicted() { continue } for sample := range cd.c.newIterator().values() { if sample.error != nil { t.Error(sample.error) } values = append(values, sample.SamplePair) } } for i, v := range values { if samples[i].Timestamp != v.Timestamp { t.Errorf("%d. Got %v; want %v", i, v.Timestamp, samples[i].Timestamp) } if samples[i].Value != v.Value { t.Errorf("%d. Got %v; want %v", i, v.Value, samples[i].Value) } } s.fpLocker.Unlock(m.fp) } log.Info("test done, closing") } func TestChunkType0(t *testing.T) { testChunk(t, 0) } func TestChunkType1(t *testing.T) { testChunk(t, 1) } func testValueAtOrBeforeTime(t *testing.T, encoding chunkEncoding) { samples := make(model.Samples, 10000) for i := range samples { samples[i] = &model.Sample{ Timestamp: model.Time(2 * i), Value: model.SampleValue(float64(i) * 0.2), } } s, closer := NewTestStorage(t, encoding) defer closer.Close() for _, sample := range samples { s.Append(sample) } s.WaitForIndexing() fp := model.Metric{}.FastFingerprint() _, it := s.preloadChunksForRange(fp, model.Earliest, model.Latest, false) // #1 Exactly on a sample. for i, expected := range samples { actual := it.ValueAtOrBeforeTime(expected.Timestamp) if expected.Timestamp != actual.Timestamp { t.Errorf("1.%d. Got %v; want %v", i, actual.Timestamp, expected.Timestamp) } if expected.Value != actual.Value { t.Errorf("1.%d. Got %v; want %v", i, actual.Value, expected.Value) } } // #2 Between samples. for i, expected := range samples { if i == len(samples)-1 { continue } actual := it.ValueAtOrBeforeTime(expected.Timestamp + 1) if expected.Timestamp != actual.Timestamp { t.Errorf("2.%d. Got %v; want %v", i, actual.Timestamp, expected.Timestamp) } if expected.Value != actual.Value { t.Errorf("2.%d. Got %v; want %v", i, actual.Value, expected.Value) } } // #3 Corner cases: Just before the first sample, just after the last. expected := &model.Sample{Timestamp: model.Earliest} actual := it.ValueAtOrBeforeTime(samples[0].Timestamp - 1) if expected.Timestamp != actual.Timestamp { t.Errorf("3.1. Got %v; want %v", actual.Timestamp, expected.Timestamp) } if expected.Value != actual.Value { t.Errorf("3.1. Got %v; want %v", actual.Value, expected.Value) } expected = samples[len(samples)-1] actual = it.ValueAtOrBeforeTime(expected.Timestamp + 1) if expected.Timestamp != actual.Timestamp { t.Errorf("3.2. Got %v; want %v", actual.Timestamp, expected.Timestamp) } if expected.Value != actual.Value { t.Errorf("3.2. Got %v; want %v", actual.Value, expected.Value) } } func TestValueAtTimeChunkType0(t *testing.T) { testValueAtOrBeforeTime(t, 0) } func TestValueAtTimeChunkType1(t *testing.T) { testValueAtOrBeforeTime(t, 1) } func benchmarkValueAtOrBeforeTime(b *testing.B, encoding chunkEncoding) { samples := make(model.Samples, 10000) for i := range samples { samples[i] = &model.Sample{ Timestamp: model.Time(2 * i), Value: model.SampleValue(float64(i) * 0.2), } } s, closer := NewTestStorage(b, encoding) defer closer.Close() for _, sample := range samples { s.Append(sample) } s.WaitForIndexing() fp := model.Metric{}.FastFingerprint() _, it := s.preloadChunksForRange(fp, model.Earliest, model.Latest, false) b.ResetTimer() for i := 0; i < b.N; i++ { // #1 Exactly on a sample. for i, expected := range samples { actual := it.ValueAtOrBeforeTime(expected.Timestamp) if expected.Timestamp != actual.Timestamp { b.Errorf("1.%d. Got %v; want %v", i, actual.Timestamp, expected.Timestamp) } if expected.Value != actual.Value { b.Errorf("1.%d. Got %v; want %v", i, actual.Value, expected.Value) } } // #2 Between samples. for i, expected := range samples { if i == len(samples)-1 { continue } actual := it.ValueAtOrBeforeTime(expected.Timestamp + 1) if expected.Timestamp != actual.Timestamp { b.Errorf("2.%d. Got %v; want %v", i, actual.Timestamp, expected.Timestamp) } if expected.Value != actual.Value { b.Errorf("2.%d. Got %v; want %v", i, actual.Value, expected.Value) } } // #3 Corner cases: Just before the first sample, just after the last. expected := &model.Sample{Timestamp: model.Earliest} actual := it.ValueAtOrBeforeTime(samples[0].Timestamp - 1) if expected.Timestamp != actual.Timestamp { b.Errorf("3.1. Got %v; want %v", actual.Timestamp, expected.Timestamp) } if expected.Value != actual.Value { b.Errorf("3.1. Got %v; want %v", actual.Value, expected.Value) } expected = samples[len(samples)-1] actual = it.ValueAtOrBeforeTime(expected.Timestamp + 1) if expected.Timestamp != actual.Timestamp { b.Errorf("3.2. Got %v; want %v", actual.Timestamp, expected.Timestamp) } if expected.Value != actual.Value { b.Errorf("3.2. Got %v; want %v", actual.Value, expected.Value) } } } func BenchmarkValueAtOrBeforeTimeChunkType0(b *testing.B) { benchmarkValueAtOrBeforeTime(b, 0) } func BenchmarkValueAtTimeChunkType1(b *testing.B) { benchmarkValueAtOrBeforeTime(b, 1) } func testRangeValues(t *testing.T, encoding chunkEncoding) { samples := make(model.Samples, 10000) for i := range samples { samples[i] = &model.Sample{ Timestamp: model.Time(2 * i), Value: model.SampleValue(float64(i) * 0.2), } } s, closer := NewTestStorage(t, encoding) defer closer.Close() for _, sample := range samples { s.Append(sample) } s.WaitForIndexing() fp := model.Metric{}.FastFingerprint() _, it := s.preloadChunksForRange(fp, model.Earliest, model.Latest, false) // #1 Zero length interval at sample. for i, expected := range samples { actual := it.RangeValues(metric.Interval{ OldestInclusive: expected.Timestamp, NewestInclusive: expected.Timestamp, }) if len(actual) != 1 { t.Fatalf("1.%d. Expected exactly one result, got %d.", i, len(actual)) } if expected.Timestamp != actual[0].Timestamp { t.Errorf("1.%d. Got %v; want %v.", i, actual[0].Timestamp, expected.Timestamp) } if expected.Value != actual[0].Value { t.Errorf("1.%d. Got %v; want %v.", i, actual[0].Value, expected.Value) } } // #2 Zero length interval off sample. for i, expected := range samples { actual := it.RangeValues(metric.Interval{ OldestInclusive: expected.Timestamp + 1, NewestInclusive: expected.Timestamp + 1, }) if len(actual) != 0 { t.Fatalf("2.%d. Expected no result, got %d.", i, len(actual)) } } // #3 2sec interval around sample. for i, expected := range samples { actual := it.RangeValues(metric.Interval{ OldestInclusive: expected.Timestamp - 1, NewestInclusive: expected.Timestamp + 1, }) if len(actual) != 1 { t.Fatalf("3.%d. Expected exactly one result, got %d.", i, len(actual)) } if expected.Timestamp != actual[0].Timestamp { t.Errorf("3.%d. Got %v; want %v.", i, actual[0].Timestamp, expected.Timestamp) } if expected.Value != actual[0].Value { t.Errorf("3.%d. Got %v; want %v.", i, actual[0].Value, expected.Value) } } // #4 2sec interval sample to sample. for i, expected1 := range samples { if i == len(samples)-1 { continue } expected2 := samples[i+1] actual := it.RangeValues(metric.Interval{ OldestInclusive: expected1.Timestamp, NewestInclusive: expected1.Timestamp + 2, }) if len(actual) != 2 { t.Fatalf("4.%d. Expected exactly 2 results, got %d.", i, len(actual)) } if expected1.Timestamp != actual[0].Timestamp { t.Errorf("4.%d. Got %v for 1st result; want %v.", i, actual[0].Timestamp, expected1.Timestamp) } if expected1.Value != actual[0].Value { t.Errorf("4.%d. Got %v for 1st result; want %v.", i, actual[0].Value, expected1.Value) } if expected2.Timestamp != actual[1].Timestamp { t.Errorf("4.%d. Got %v for 2nd result; want %v.", i, actual[1].Timestamp, expected2.Timestamp) } if expected2.Value != actual[1].Value { t.Errorf("4.%d. Got %v for 2nd result; want %v.", i, actual[1].Value, expected2.Value) } } // #5 corner cases: Interval ends at first sample, interval starts // at last sample, interval entirely before/after samples. expected := samples[0] actual := it.RangeValues(metric.Interval{ OldestInclusive: expected.Timestamp - 2, NewestInclusive: expected.Timestamp, }) if len(actual) != 1 { t.Fatalf("5.1. Expected exactly one result, got %d.", len(actual)) } if expected.Timestamp != actual[0].Timestamp { t.Errorf("5.1. Got %v; want %v.", actual[0].Timestamp, expected.Timestamp) } if expected.Value != actual[0].Value { t.Errorf("5.1. Got %v; want %v.", actual[0].Value, expected.Value) } expected = samples[len(samples)-1] actual = it.RangeValues(metric.Interval{ OldestInclusive: expected.Timestamp, NewestInclusive: expected.Timestamp + 2, }) if len(actual) != 1 { t.Fatalf("5.2. Expected exactly one result, got %d.", len(actual)) } if expected.Timestamp != actual[0].Timestamp { t.Errorf("5.2. Got %v; want %v.", actual[0].Timestamp, expected.Timestamp) } if expected.Value != actual[0].Value { t.Errorf("5.2. Got %v; want %v.", actual[0].Value, expected.Value) } firstSample := samples[0] actual = it.RangeValues(metric.Interval{ OldestInclusive: firstSample.Timestamp - 4, NewestInclusive: firstSample.Timestamp - 2, }) if len(actual) != 0 { t.Fatalf("5.3. Expected no results, got %d.", len(actual)) } lastSample := samples[len(samples)-1] actual = it.RangeValues(metric.Interval{ OldestInclusive: lastSample.Timestamp + 2, NewestInclusive: lastSample.Timestamp + 4, }) if len(actual) != 0 { t.Fatalf("5.3. Expected no results, got %d.", len(actual)) } } func TestRangeValuesChunkType0(t *testing.T) { testRangeValues(t, 0) } func TestRangeValuesChunkType1(t *testing.T) { testRangeValues(t, 1) } func benchmarkRangeValues(b *testing.B, encoding chunkEncoding) { samples := make(model.Samples, 10000) for i := range samples { samples[i] = &model.Sample{ Timestamp: model.Time(2 * i), Value: model.SampleValue(float64(i) * 0.2), } } s, closer := NewTestStorage(b, encoding) defer closer.Close() for _, sample := range samples { s.Append(sample) } s.WaitForIndexing() fp := model.Metric{}.FastFingerprint() _, it := s.preloadChunksForRange(fp, model.Earliest, model.Latest, false) b.ResetTimer() for i := 0; i < b.N; i++ { for _, sample := range samples { actual := it.RangeValues(metric.Interval{ OldestInclusive: sample.Timestamp - 20, NewestInclusive: sample.Timestamp + 20, }) if len(actual) < 10 { b.Fatalf("not enough samples found") } } } } func BenchmarkRangeValuesChunkType0(b *testing.B) { benchmarkRangeValues(b, 0) } func BenchmarkRangeValuesChunkType1(b *testing.B) { benchmarkRangeValues(b, 1) } func testEvictAndPurgeSeries(t *testing.T, encoding chunkEncoding) { samples := make(model.Samples, 10000) for i := range samples { samples[i] = &model.Sample{ Timestamp: model.Time(2 * i), Value: model.SampleValue(float64(i * i)), } } s, closer := NewTestStorage(t, encoding) defer closer.Close() for _, sample := range samples { s.Append(sample) } s.WaitForIndexing() fp := model.Metric{}.FastFingerprint() // Drop ~half of the chunks. s.maintainMemorySeries(fp, 10000) _, it := s.preloadChunksForRange(fp, model.Earliest, model.Latest, false) actual := it.RangeValues(metric.Interval{ OldestInclusive: 0, NewestInclusive: 100000, }) if len(actual) < 4000 { t.Fatalf("expected more than %d results after purging half of series, got %d", 4000, len(actual)) } if actual[0].Timestamp < 6000 || actual[0].Timestamp > 10000 { t.Errorf("1st timestamp out of expected range: %v", actual[0].Timestamp) } want := model.Time(19998) if actual[len(actual)-1].Timestamp != want { t.Errorf("2nd timestamp: want %v, got %v", want, actual[1].Timestamp) } // Drop everything. s.maintainMemorySeries(fp, 100000) _, it = s.preloadChunksForRange(fp, model.Earliest, model.Latest, false) actual = it.RangeValues(metric.Interval{ OldestInclusive: 0, NewestInclusive: 100000, }) if len(actual) != 0 { t.Fatal("expected zero results after purging the whole series") } // Recreate series. for _, sample := range samples { s.Append(sample) } s.WaitForIndexing() series, ok := s.fpToSeries.get(fp) if !ok { t.Fatal("could not find series") } // Persist head chunk so we can safely archive. series.headChunkClosed = true s.maintainMemorySeries(fp, model.Earliest) // Archive metrics. s.fpToSeries.del(fp) lastTime, err := series.head().lastTime() if err != nil { t.Fatal(err) } if err := s.persistence.archiveMetric( fp, series.metric, series.firstTime(), lastTime, ); err != nil { t.Fatal(err) } archived, _, _, err := s.persistence.hasArchivedMetric(fp) if err != nil { t.Fatal(err) } if !archived { t.Fatal("not archived") } // Drop ~half of the chunks of an archived series. s.maintainArchivedSeries(fp, 10000) archived, _, _, err = s.persistence.hasArchivedMetric(fp) if err != nil { t.Fatal(err) } if !archived { t.Fatal("archived series purged although only half of the chunks dropped") } // Drop everything. s.maintainArchivedSeries(fp, 100000) archived, _, _, err = s.persistence.hasArchivedMetric(fp) if err != nil { t.Fatal(err) } if archived { t.Fatal("archived series not dropped") } // Recreate series. for _, sample := range samples { s.Append(sample) } s.WaitForIndexing() series, ok = s.fpToSeries.get(fp) if !ok { t.Fatal("could not find series") } // Persist head chunk so we can safely archive. series.headChunkClosed = true s.maintainMemorySeries(fp, model.Earliest) // Archive metrics. s.fpToSeries.del(fp) lastTime, err = series.head().lastTime() if err != nil { t.Fatal(err) } if err := s.persistence.archiveMetric( fp, series.metric, series.firstTime(), lastTime, ); err != nil { t.Fatal(err) } archived, _, _, err = s.persistence.hasArchivedMetric(fp) if err != nil { t.Fatal(err) } if !archived { t.Fatal("not archived") } // Unarchive metrics. s.getOrCreateSeries(fp, model.Metric{}) series, ok = s.fpToSeries.get(fp) if !ok { t.Fatal("could not find series") } archived, _, _, err = s.persistence.hasArchivedMetric(fp) if err != nil { t.Fatal(err) } if archived { t.Fatal("archived") } // This will archive again, but must not drop it completely, despite the // memorySeries being empty. s.maintainMemorySeries(fp, 10000) archived, _, _, err = s.persistence.hasArchivedMetric(fp) if err != nil { t.Fatal(err) } if !archived { t.Fatal("series purged completely") } } func TestEvictAndPurgeSeriesChunkType0(t *testing.T) { testEvictAndPurgeSeries(t, 0) } func TestEvictAndPurgeSeriesChunkType1(t *testing.T) { testEvictAndPurgeSeries(t, 1) } func testEvictAndLoadChunkDescs(t *testing.T, encoding chunkEncoding) { samples := make(model.Samples, 10000) for i := range samples { samples[i] = &model.Sample{ Timestamp: model.Time(2 * i), Value: model.SampleValue(float64(i * i)), } } // Give last sample a timestamp of now so that the head chunk will not // be closed (which would then archive the time series later as // everything will get evicted). samples[len(samples)-1] = &model.Sample{ Timestamp: model.Now(), Value: model.SampleValue(3.14), } s, closer := NewTestStorage(t, encoding) defer closer.Close() // Adjust memory chunks to lower value to see evictions. s.maxMemoryChunks = 1 for _, sample := range samples { s.Append(sample) } s.WaitForIndexing() fp := model.Metric{}.FastFingerprint() series, ok := s.fpToSeries.get(fp) if !ok { t.Fatal("could not find series") } oldLen := len(series.chunkDescs) // Maintain series without any dropped chunks. s.maintainMemorySeries(fp, 0) // Give the evict goroutine an opportunity to run. time.Sleep(50 * time.Millisecond) // Maintain series again to trigger chunkDesc eviction s.maintainMemorySeries(fp, 0) if oldLen <= len(series.chunkDescs) { t.Errorf("Expected number of chunkDescs to decrease, old number %d, current number %d.", oldLen, len(series.chunkDescs)) } // Load everything back. p := s.NewPreloader() p.PreloadRange(fp, 0, 100000) if oldLen != len(series.chunkDescs) { t.Errorf("Expected number of chunkDescs to have reached old value again, old number %d, current number %d.", oldLen, len(series.chunkDescs)) } p.Close() // Now maintain series with drops to make sure nothing crazy happens. s.maintainMemorySeries(fp, 100000) if len(series.chunkDescs) != 1 { t.Errorf("Expected exactly one chunkDesc left, got %d.", len(series.chunkDescs)) } } func TestEvictAndLoadChunkDescsType0(t *testing.T) { testEvictAndLoadChunkDescs(t, 0) } func TestEvictAndLoadChunkDescsType1(t *testing.T) { testEvictAndLoadChunkDescs(t, 1) } func benchmarkAppend(b *testing.B, encoding chunkEncoding) { samples := make(model.Samples, b.N) for i := range samples { samples[i] = &model.Sample{ Metric: model.Metric{ model.MetricNameLabel: model.LabelValue(fmt.Sprintf("test_metric_%d", i%10)), "label1": model.LabelValue(fmt.Sprintf("test_metric_%d", i%10)), "label2": model.LabelValue(fmt.Sprintf("test_metric_%d", i%10)), }, Timestamp: model.Time(i), Value: model.SampleValue(i), } } b.ResetTimer() s, closer := NewTestStorage(b, encoding) defer closer.Close() for _, sample := range samples { s.Append(sample) } } func BenchmarkAppendType0(b *testing.B) { benchmarkAppend(b, 0) } func BenchmarkAppendType1(b *testing.B) { benchmarkAppend(b, 1) } // Append a large number of random samples and then check if we can get them out // of the storage alright. func testFuzz(t *testing.T, encoding chunkEncoding) { if testing.Short() { t.Skip("Skipping test in short mode.") } check := func(seed int64) bool { rand.Seed(seed) s, c := NewTestStorage(t, encoding) defer c.Close() samples := createRandomSamples("test_fuzz", 10000) for _, sample := range samples { s.Append(sample) } return verifyStorage(t, s, samples, 24*7*time.Hour) } if err := quick.Check(check, nil); err != nil { t.Fatal(err) } } func TestFuzzChunkType0(t *testing.T) { testFuzz(t, 0) } func TestFuzzChunkType1(t *testing.T) { testFuzz(t, 1) } // benchmarkFuzz is the benchmark version of testFuzz. The storage options are // set such that evictions, checkpoints, and purging will happen concurrently, // too. This benchmark will have a very long runtime (up to minutes). You can // use it as an actual benchmark. Run it like this: // // go test -cpu 1,2,4,8 -run=NONE -bench BenchmarkFuzzChunkType -benchmem // // You can also use it as a test for races. In that case, run it like this (will // make things even slower): // // go test -race -cpu 8 -short -bench BenchmarkFuzzChunkType func benchmarkFuzz(b *testing.B, encoding chunkEncoding) { DefaultChunkEncoding = encoding const samplesPerRun = 100000 rand.Seed(42) directory := testutil.NewTemporaryDirectory("test_storage", b) defer directory.Close() o := &MemorySeriesStorageOptions{ MemoryChunks: 100, MaxChunksToPersist: 1000000, PersistenceRetentionPeriod: time.Hour, PersistenceStoragePath: directory.Path(), CheckpointInterval: time.Second, SyncStrategy: Adaptive, MinShrinkRatio: 0.1, } s := NewMemorySeriesStorage(o) if err := s.Start(); err != nil { b.Fatalf("Error starting storage: %s", err) } s.Start() defer s.Stop() samples := createRandomSamples("benchmark_fuzz", samplesPerRun*b.N) b.ResetTimer() for i := 0; i < b.N; i++ { start := samplesPerRun * i end := samplesPerRun * (i + 1) middle := (start + end) / 2 for _, sample := range samples[start:middle] { s.Append(sample) } verifyStorage(b, s.(*memorySeriesStorage), samples[:middle], o.PersistenceRetentionPeriod) for _, sample := range samples[middle:end] { s.Append(sample) } verifyStorage(b, s.(*memorySeriesStorage), samples[:end], o.PersistenceRetentionPeriod) } } func BenchmarkFuzzChunkType0(b *testing.B) { benchmarkFuzz(b, 0) } func BenchmarkFuzzChunkType1(b *testing.B) { benchmarkFuzz(b, 1) } func createRandomSamples(metricName string, minLen int) model.Samples { type valueCreator func() model.SampleValue type deltaApplier func(model.SampleValue) model.SampleValue var ( maxMetrics = 5 maxStreakLength = 500 maxTimeDelta = 10000 maxTimeDeltaFactor = 10 timestamp = model.Now() - model.Time(maxTimeDelta*maxTimeDeltaFactor*minLen/4) // So that some timestamps are in the future. generators = []struct { createValue valueCreator applyDelta []deltaApplier }{ { // "Boolean". createValue: func() model.SampleValue { return model.SampleValue(rand.Intn(2)) }, applyDelta: []deltaApplier{ func(_ model.SampleValue) model.SampleValue { return model.SampleValue(rand.Intn(2)) }, }, }, { // Integer with int deltas of various byte length. createValue: func() model.SampleValue { return model.SampleValue(rand.Int63() - 1<<62) }, applyDelta: []deltaApplier{ func(v model.SampleValue) model.SampleValue { return model.SampleValue(rand.Intn(1<<8) - 1<<7 + int(v)) }, func(v model.SampleValue) model.SampleValue { return model.SampleValue(rand.Intn(1<<16) - 1<<15 + int(v)) }, func(v model.SampleValue) model.SampleValue { return model.SampleValue(rand.Int63n(1<<32) - 1<<31 + int64(v)) }, }, }, { // Float with float32 and float64 deltas. createValue: func() model.SampleValue { return model.SampleValue(rand.NormFloat64()) }, applyDelta: []deltaApplier{ func(v model.SampleValue) model.SampleValue { return v + model.SampleValue(float32(rand.NormFloat64())) }, func(v model.SampleValue) model.SampleValue { return v + model.SampleValue(rand.NormFloat64()) }, }, }, } ) // Prefill result with two samples with colliding metrics (to test fingerprint mapping). result := model.Samples{ &model.Sample{ Metric: model.Metric{ "instance": "ip-10-33-84-73.l05.ams5.s-cloud.net:24483", "status": "503", }, Value: 42, Timestamp: timestamp, }, &model.Sample{ Metric: model.Metric{ "instance": "ip-10-33-84-73.l05.ams5.s-cloud.net:24480", "status": "500", }, Value: 2010, Timestamp: timestamp + 1, }, } metrics := []model.Metric{} for n := rand.Intn(maxMetrics); n >= 0; n-- { metrics = append(metrics, model.Metric{ model.MetricNameLabel: model.LabelValue(metricName), model.LabelName(fmt.Sprintf("labelname_%d", n+1)): model.LabelValue(fmt.Sprintf("labelvalue_%d", rand.Int())), }) } for len(result) < minLen { // Pick a metric for this cycle. metric := metrics[rand.Intn(len(metrics))] timeDelta := rand.Intn(maxTimeDelta) + 1 generator := generators[rand.Intn(len(generators))] createValue := generator.createValue applyDelta := generator.applyDelta[rand.Intn(len(generator.applyDelta))] incTimestamp := func() { timestamp += model.Time(timeDelta * (rand.Intn(maxTimeDeltaFactor) + 1)) } switch rand.Intn(4) { case 0: // A single sample. result = append(result, &model.Sample{ Metric: metric, Value: createValue(), Timestamp: timestamp, }) incTimestamp() case 1: // A streak of random sample values. for n := rand.Intn(maxStreakLength); n >= 0; n-- { result = append(result, &model.Sample{ Metric: metric, Value: createValue(), Timestamp: timestamp, }) incTimestamp() } case 2: // A streak of sample values with incremental changes. value := createValue() for n := rand.Intn(maxStreakLength); n >= 0; n-- { result = append(result, &model.Sample{ Metric: metric, Value: value, Timestamp: timestamp, }) incTimestamp() value = applyDelta(value) } case 3: // A streak of constant sample values. value := createValue() for n := rand.Intn(maxStreakLength); n >= 0; n-- { result = append(result, &model.Sample{ Metric: metric, Value: value, Timestamp: timestamp, }) incTimestamp() } } } return result } func verifyStorage(t testing.TB, s *memorySeriesStorage, samples model.Samples, maxAge time.Duration) bool { s.WaitForIndexing() result := true for _, i := range rand.Perm(len(samples)) { sample := samples[i] if sample.Timestamp.Before(model.TimeFromUnixNano(time.Now().Add(-maxAge).UnixNano())) { continue // TODO: Once we have a guaranteed cutoff at the // retention period, we can verify here that no results // are returned. } fp, err := s.mapper.mapFP(sample.Metric.FastFingerprint(), sample.Metric) if err != nil { t.Fatal(err) } p := s.NewPreloader() it := p.PreloadRange(fp, sample.Timestamp, sample.Timestamp) found := it.ValueAtOrBeforeTime(sample.Timestamp) if found.Timestamp == model.Earliest { t.Errorf("Sample %#v: Expected sample not found.", sample) result = false p.Close() continue } if sample.Value != found.Value || sample.Timestamp != found.Timestamp { t.Errorf( "Value (or timestamp) mismatch, want %f (at time %v), got %f (at time %v).", sample.Value, sample.Timestamp, found.Value, found.Timestamp, ) result = false } p.Close() } return result } func TestAppendOutOfOrder(t *testing.T) { s, closer := NewTestStorage(t, 1) defer closer.Close() m := model.Metric{ model.MetricNameLabel: "out_of_order", } for i, t := range []int{0, 2, 2, 1} { s.Append(&model.Sample{ Metric: m, Timestamp: model.Time(t), Value: model.SampleValue(i), }) } fp, err := s.mapper.mapFP(m.FastFingerprint(), m) if err != nil { t.Fatal(err) } pl := s.NewPreloader() defer pl.Close() it := pl.PreloadRange(fp, 0, 2) want := []model.SamplePair{ { Timestamp: 0, Value: 0, }, { Timestamp: 2, Value: 1, }, } got := it.RangeValues(metric.Interval{OldestInclusive: 0, NewestInclusive: 2}) if !reflect.DeepEqual(want, got) { t.Fatalf("want %v, got %v", want, got) } }