// Copyright 2014 The Prometheus Authors // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package chunk import ( "encoding/binary" "fmt" "io" "math" "github.com/prometheus/common/model" ) // The 21-byte header of a delta-encoded chunk looks like: // // - time delta bytes: 1 bytes // - value delta bytes: 1 bytes // - is integer: 1 byte // - base time: 8 bytes // - base value: 8 bytes // - used buf bytes: 2 bytes const ( deltaHeaderBytes = 21 deltaHeaderTimeBytesOffset = 0 deltaHeaderValueBytesOffset = 1 deltaHeaderIsIntOffset = 2 deltaHeaderBaseTimeOffset = 3 deltaHeaderBaseValueOffset = 11 deltaHeaderBufLenOffset = 19 ) // A deltaEncodedChunk adaptively stores sample timestamps and values with a // delta encoding of various types (int, float) and bit widths. However, once 8 // bytes would be needed to encode a delta value, a fall-back to the absolute // numbers happens (so that timestamps are saved directly as int64 and values as // float64). It implements the chunk interface. type deltaEncodedChunk []byte // newDeltaEncodedChunk returns a newly allocated deltaEncodedChunk. func newDeltaEncodedChunk(tb, vb deltaBytes, isInt bool, length int) *deltaEncodedChunk { if tb < 1 { panic("need at least 1 time delta byte") } if length < deltaHeaderBytes+16 { panic(fmt.Errorf( "chunk length %d bytes is insufficient, need at least %d", length, deltaHeaderBytes+16, )) } c := make(deltaEncodedChunk, deltaHeaderIsIntOffset+1, length) c[deltaHeaderTimeBytesOffset] = byte(tb) c[deltaHeaderValueBytesOffset] = byte(vb) if vb < d8 && isInt { // Only use int for fewer than 8 value delta bytes. c[deltaHeaderIsIntOffset] = 1 } else { c[deltaHeaderIsIntOffset] = 0 } return &c } // add implements chunk. func (c deltaEncodedChunk) Add(s model.SamplePair) ([]Chunk, error) { // TODO(beorn7): Since we return &c, this method might cause an unnecessary allocation. if c.len() == 0 { c = c[:deltaHeaderBytes] binary.LittleEndian.PutUint64(c[deltaHeaderBaseTimeOffset:], uint64(s.Timestamp)) binary.LittleEndian.PutUint64(c[deltaHeaderBaseValueOffset:], math.Float64bits(float64(s.Value))) } remainingBytes := cap(c) - len(c) sampleSize := c.sampleSize() // Do we generally have space for another sample in this chunk? If not, // overflow into a new one. if remainingBytes < sampleSize { return addToOverflowChunk(&c, s) } baseValue := c.baseValue() dt := s.Timestamp - c.baseTime() if dt < 0 { return nil, fmt.Errorf("time delta is less than zero: %v", dt) } dv := s.Value - baseValue tb := c.timeBytes() vb := c.valueBytes() isInt := c.isInt() // If the new sample is incompatible with the current encoding, reencode the // existing chunk data into new chunk(s). ntb, nvb, nInt := tb, vb, isInt if isInt && !isInt64(dv) { // int->float. nvb = d4 nInt = false } else if !isInt && vb == d4 && baseValue+model.SampleValue(float32(dv)) != s.Value { // float32->float64. nvb = d8 } else { if tb < d8 { // Maybe more bytes for timestamp. ntb = max(tb, bytesNeededForUnsignedTimestampDelta(dt)) } if c.isInt() && vb < d8 { // Maybe more bytes for sample value. nvb = max(vb, bytesNeededForIntegerSampleValueDelta(dv)) } } if tb != ntb || vb != nvb || isInt != nInt { if len(c)*2 < cap(c) { return transcodeAndAdd(newDeltaEncodedChunk(ntb, nvb, nInt, cap(c)), &c, s) } // Chunk is already half full. Better create a new one and save the transcoding efforts. return addToOverflowChunk(&c, s) } offset := len(c) c = c[:offset+sampleSize] switch tb { case d1: c[offset] = byte(dt) case d2: binary.LittleEndian.PutUint16(c[offset:], uint16(dt)) case d4: binary.LittleEndian.PutUint32(c[offset:], uint32(dt)) case d8: // Store the absolute value (no delta) in case of d8. binary.LittleEndian.PutUint64(c[offset:], uint64(s.Timestamp)) default: return nil, fmt.Errorf("invalid number of bytes for time delta: %d", tb) } offset += int(tb) if c.isInt() { switch vb { case d0: // No-op. Constant value is stored as base value. case d1: c[offset] = byte(int8(dv)) case d2: binary.LittleEndian.PutUint16(c[offset:], uint16(int16(dv))) case d4: binary.LittleEndian.PutUint32(c[offset:], uint32(int32(dv))) // d8 must not happen. Those samples are encoded as float64. default: return nil, fmt.Errorf("invalid number of bytes for integer delta: %d", vb) } } else { switch vb { case d4: binary.LittleEndian.PutUint32(c[offset:], math.Float32bits(float32(dv))) case d8: // Store the absolute value (no delta) in case of d8. binary.LittleEndian.PutUint64(c[offset:], math.Float64bits(float64(s.Value))) default: return nil, fmt.Errorf("invalid number of bytes for floating point delta: %d", vb) } } return []Chunk{&c}, nil } // clone implements chunk. func (c deltaEncodedChunk) Clone() Chunk { clone := make(deltaEncodedChunk, len(c), cap(c)) copy(clone, c) return &clone } // FirstTime implements chunk. func (c deltaEncodedChunk) FirstTime() model.Time { return c.baseTime() } // NewIterator implements chunk. func (c *deltaEncodedChunk) NewIterator() Iterator { return newIndexAccessingChunkIterator(c.len(), &deltaEncodedIndexAccessor{ c: *c, baseT: c.baseTime(), baseV: c.baseValue(), tBytes: c.timeBytes(), vBytes: c.valueBytes(), isInt: c.isInt(), }) } // marshal implements chunk. func (c deltaEncodedChunk) Marshal(w io.Writer) error { if len(c) > math.MaxUint16 { panic("chunk buffer length would overflow a 16 bit uint.") } binary.LittleEndian.PutUint16(c[deltaHeaderBufLenOffset:], uint16(len(c))) n, err := w.Write(c[:cap(c)]) if err != nil { return err } if n != cap(c) { return fmt.Errorf("wanted to write %d bytes, wrote %d", cap(c), n) } return nil } // MarshalToBuf implements chunk. func (c deltaEncodedChunk) MarshalToBuf(buf []byte) error { if len(c) > math.MaxUint16 { panic("chunk buffer length would overflow a 16 bit uint") } binary.LittleEndian.PutUint16(c[deltaHeaderBufLenOffset:], uint16(len(c))) n := copy(buf, c) if n != len(c) { return fmt.Errorf("wanted to copy %d bytes to buffer, copied %d", len(c), n) } return nil } // unmarshal implements chunk. func (c *deltaEncodedChunk) Unmarshal(r io.Reader) error { *c = (*c)[:cap(*c)] if _, err := io.ReadFull(r, *c); err != nil { return err } l := binary.LittleEndian.Uint16((*c)[deltaHeaderBufLenOffset:]) if int(l) > cap(*c) { return fmt.Errorf("chunk length exceeded during unmarshaling: %d", l) } if int(l) < deltaHeaderBytes { return fmt.Errorf("chunk length less than header size: %d < %d", l, deltaHeaderBytes) } *c = (*c)[:l] return nil } // unmarshalFromBuf implements chunk. func (c *deltaEncodedChunk) UnmarshalFromBuf(buf []byte) error { *c = (*c)[:cap(*c)] copy(*c, buf) l := binary.LittleEndian.Uint16((*c)[deltaHeaderBufLenOffset:]) if int(l) > cap(*c) { return fmt.Errorf("chunk length exceeded during unmarshaling: %d", l) } if int(l) < deltaHeaderBytes { return fmt.Errorf("chunk length less than header size: %d < %d", l, deltaHeaderBytes) } *c = (*c)[:l] return nil } // encoding implements chunk. func (c deltaEncodedChunk) Encoding() Encoding { return Delta } func (c deltaEncodedChunk) timeBytes() deltaBytes { return deltaBytes(c[deltaHeaderTimeBytesOffset]) } func (c deltaEncodedChunk) valueBytes() deltaBytes { return deltaBytes(c[deltaHeaderValueBytesOffset]) } func (c deltaEncodedChunk) isInt() bool { return c[deltaHeaderIsIntOffset] == 1 } func (c deltaEncodedChunk) baseTime() model.Time { return model.Time(binary.LittleEndian.Uint64(c[deltaHeaderBaseTimeOffset:])) } func (c deltaEncodedChunk) baseValue() model.SampleValue { return model.SampleValue(math.Float64frombits(binary.LittleEndian.Uint64(c[deltaHeaderBaseValueOffset:]))) } func (c deltaEncodedChunk) sampleSize() int { return int(c.timeBytes() + c.valueBytes()) } func (c deltaEncodedChunk) len() int { if len(c) < deltaHeaderBytes { return 0 } return (len(c) - deltaHeaderBytes) / c.sampleSize() } // deltaEncodedIndexAccessor implements indexAccessor. type deltaEncodedIndexAccessor struct { c deltaEncodedChunk baseT model.Time baseV model.SampleValue tBytes, vBytes deltaBytes isInt bool lastErr error } func (acc *deltaEncodedIndexAccessor) err() error { return acc.lastErr } func (acc *deltaEncodedIndexAccessor) timestampAtIndex(idx int) model.Time { offset := deltaHeaderBytes + idx*int(acc.tBytes+acc.vBytes) switch acc.tBytes { case d1: return acc.baseT + model.Time(uint8(acc.c[offset])) case d2: return acc.baseT + model.Time(binary.LittleEndian.Uint16(acc.c[offset:])) case d4: return acc.baseT + model.Time(binary.LittleEndian.Uint32(acc.c[offset:])) case d8: // Take absolute value for d8. return model.Time(binary.LittleEndian.Uint64(acc.c[offset:])) default: acc.lastErr = fmt.Errorf("invalid number of bytes for time delta: %d", acc.tBytes) return model.Earliest } } func (acc *deltaEncodedIndexAccessor) sampleValueAtIndex(idx int) model.SampleValue { offset := deltaHeaderBytes + idx*int(acc.tBytes+acc.vBytes) + int(acc.tBytes) if acc.isInt { switch acc.vBytes { case d0: return acc.baseV case d1: return acc.baseV + model.SampleValue(int8(acc.c[offset])) case d2: return acc.baseV + model.SampleValue(int16(binary.LittleEndian.Uint16(acc.c[offset:]))) case d4: return acc.baseV + model.SampleValue(int32(binary.LittleEndian.Uint32(acc.c[offset:]))) // No d8 for ints. default: acc.lastErr = fmt.Errorf("invalid number of bytes for integer delta: %d", acc.vBytes) return 0 } } else { switch acc.vBytes { case d4: return acc.baseV + model.SampleValue(math.Float32frombits(binary.LittleEndian.Uint32(acc.c[offset:]))) case d8: // Take absolute value for d8. return model.SampleValue(math.Float64frombits(binary.LittleEndian.Uint64(acc.c[offset:]))) default: acc.lastErr = fmt.Errorf("invalid number of bytes for floating point delta: %d", acc.vBytes) return 0 } } }