// Copyright 2017 The Prometheus Authors // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package index import ( "container/heap" "encoding/binary" "runtime" "sort" "sync" "github.com/prometheus/prometheus/pkg/labels" ) var allPostingsKey = labels.Label{} // AllPostingsKey returns the label key that is used to store the postings list of all existing IDs. func AllPostingsKey() (name, value string) { return allPostingsKey.Name, allPostingsKey.Value } // MemPostings holds postings list for series ID per label pair. They may be written // to out of order. // ensureOrder() must be called once before any reads are done. This allows for quick // unordered batch fills on startup. type MemPostings struct { mtx sync.RWMutex m map[string]map[string][]uint64 ordered bool } // NewMemPostings returns a memPostings that's ready for reads and writes. func NewMemPostings() *MemPostings { return &MemPostings{ m: make(map[string]map[string][]uint64, 512), ordered: true, } } // NewUnorderedMemPostings returns a memPostings that is not safe to be read from // until ensureOrder was called once. func NewUnorderedMemPostings() *MemPostings { return &MemPostings{ m: make(map[string]map[string][]uint64, 512), ordered: false, } } // Symbols returns an iterator over all unique name and value strings, in order. func (p *MemPostings) Symbols() StringIter { p.mtx.RLock() // Add all the strings to a map to de-duplicate. symbols := make(map[string]struct{}, 512) for n, e := range p.m { symbols[n] = struct{}{} for v := range e { symbols[v] = struct{}{} } } p.mtx.RUnlock() res := make([]string, 0, len(symbols)) for k := range symbols { res = append(res, k) } sort.Strings(res) return NewStringListIter(res) } // SortedKeys returns a list of sorted label keys of the postings. func (p *MemPostings) SortedKeys() []labels.Label { p.mtx.RLock() keys := make([]labels.Label, 0, len(p.m)) for n, e := range p.m { for v := range e { keys = append(keys, labels.Label{Name: n, Value: v}) } } p.mtx.RUnlock() sort.Slice(keys, func(i, j int) bool { if keys[i].Name != keys[j].Name { return keys[i].Name < keys[j].Name } return keys[i].Value < keys[j].Value }) return keys } // LabelNames returns all the unique label names. func (p *MemPostings) LabelNames() []string { p.mtx.RLock() defer p.mtx.RUnlock() n := len(p.m) if n == 0 { return nil } names := make([]string, 0, n-1) for name := range p.m { if name != allPostingsKey.Name { names = append(names, name) } } return names } // LabelValues returns label values for the given name. func (p *MemPostings) LabelValues(name string) []string { p.mtx.RLock() defer p.mtx.RUnlock() values := make([]string, 0, len(p.m[name])) for v := range p.m[name] { values = append(values, v) } return values } // PostingsStats contains cardinality based statistics for postings. type PostingsStats struct { CardinalityMetricsStats []Stat CardinalityLabelStats []Stat LabelValueStats []Stat LabelValuePairsStats []Stat NumLabelPairs int } // Stats calculates the cardinality statistics from postings. func (p *MemPostings) Stats(label string) *PostingsStats { const maxNumOfRecords = 10 var size uint64 p.mtx.RLock() metrics := &maxHeap{} labels := &maxHeap{} labelValueLength := &maxHeap{} labelValuePairs := &maxHeap{} numLabelPairs := 0 metrics.init(maxNumOfRecords) labels.init(maxNumOfRecords) labelValueLength.init(maxNumOfRecords) labelValuePairs.init(maxNumOfRecords) for n, e := range p.m { if n == "" { continue } labels.push(Stat{Name: n, Count: uint64(len(e))}) numLabelPairs += len(e) size = 0 for name, values := range e { if n == label { metrics.push(Stat{Name: name, Count: uint64(len(values))}) } labelValuePairs.push(Stat{Name: n + "=" + name, Count: uint64(len(values))}) size += uint64(len(name)) } labelValueLength.push(Stat{Name: n, Count: size}) } p.mtx.RUnlock() return &PostingsStats{ CardinalityMetricsStats: metrics.get(), CardinalityLabelStats: labels.get(), LabelValueStats: labelValueLength.get(), LabelValuePairsStats: labelValuePairs.get(), NumLabelPairs: numLabelPairs, } } // Get returns a postings list for the given label pair. func (p *MemPostings) Get(name, value string) Postings { var lp []uint64 p.mtx.RLock() l := p.m[name] if l != nil { lp = l[value] } p.mtx.RUnlock() if lp == nil { return EmptyPostings() } return newListPostings(lp...) } // All returns a postings list over all documents ever added. func (p *MemPostings) All() Postings { return p.Get(AllPostingsKey()) } // EnsureOrder ensures that all postings lists are sorted. After it returns all further // calls to add and addFor will insert new IDs in a sorted manner. func (p *MemPostings) EnsureOrder() { p.mtx.Lock() defer p.mtx.Unlock() if p.ordered { return } n := runtime.GOMAXPROCS(0) workc := make(chan []uint64) var wg sync.WaitGroup wg.Add(n) for i := 0; i < n; i++ { go func() { for l := range workc { sort.Slice(l, func(a, b int) bool { return l[a] < l[b] }) } wg.Done() }() } for _, e := range p.m { for _, l := range e { workc <- l } } close(workc) wg.Wait() p.ordered = true } // Delete removes all ids in the given map from the postings lists. func (p *MemPostings) Delete(deleted map[uint64]struct{}) { var keys, vals []string // Collect all keys relevant for deletion once. New keys added afterwards // can by definition not be affected by any of the given deletes. p.mtx.RLock() for n := range p.m { keys = append(keys, n) } p.mtx.RUnlock() for _, n := range keys { p.mtx.RLock() vals = vals[:0] for v := range p.m[n] { vals = append(vals, v) } p.mtx.RUnlock() // For each posting we first analyse whether the postings list is affected by the deletes. // If yes, we actually reallocate a new postings list. for _, l := range vals { // Only lock for processing one postings list so we don't block reads for too long. p.mtx.Lock() found := false for _, id := range p.m[n][l] { if _, ok := deleted[id]; ok { found = true break } } if !found { p.mtx.Unlock() continue } repl := make([]uint64, 0, len(p.m[n][l])) for _, id := range p.m[n][l] { if _, ok := deleted[id]; !ok { repl = append(repl, id) } } if len(repl) > 0 { p.m[n][l] = repl } else { delete(p.m[n], l) } p.mtx.Unlock() } p.mtx.Lock() if len(p.m[n]) == 0 { delete(p.m, n) } p.mtx.Unlock() } } // Iter calls f for each postings list. It aborts if f returns an error and returns it. func (p *MemPostings) Iter(f func(labels.Label, Postings) error) error { p.mtx.RLock() defer p.mtx.RUnlock() for n, e := range p.m { for v, p := range e { if err := f(labels.Label{Name: n, Value: v}, newListPostings(p...)); err != nil { return err } } } return nil } // Add a label set to the postings index. func (p *MemPostings) Add(id uint64, lset labels.Labels) { p.mtx.Lock() for _, l := range lset { p.addFor(id, l) } p.addFor(id, allPostingsKey) p.mtx.Unlock() } func (p *MemPostings) addFor(id uint64, l labels.Label) { nm, ok := p.m[l.Name] if !ok { nm = map[string][]uint64{} p.m[l.Name] = nm } list := append(nm[l.Value], id) nm[l.Value] = list if !p.ordered { return } // There is no guarantee that no higher ID was inserted before as they may // be generated independently before adding them to postings. // We repair order violations on insert. The invariant is that the first n-1 // items in the list are already sorted. for i := len(list) - 1; i >= 1; i-- { if list[i] >= list[i-1] { break } list[i], list[i-1] = list[i-1], list[i] } } // ExpandPostings returns the postings expanded as a slice. func ExpandPostings(p Postings) (res []uint64, err error) { for p.Next() { res = append(res, p.At()) } return res, p.Err() } // Postings provides iterative access over a postings list. type Postings interface { // Next advances the iterator and returns true if another value was found. Next() bool // Seek advances the iterator to value v or greater and returns // true if a value was found. Seek(v uint64) bool // At returns the value at the current iterator position. At() uint64 // Err returns the last error of the iterator. Err() error } // errPostings is an empty iterator that always errors. type errPostings struct { err error } func (e errPostings) Next() bool { return false } func (e errPostings) Seek(uint64) bool { return false } func (e errPostings) At() uint64 { return 0 } func (e errPostings) Err() error { return e.err } var emptyPostings = errPostings{} // EmptyPostings returns a postings list that's always empty. // NOTE: Returning EmptyPostings sentinel when index.Postings struct has no postings is recommended. // It triggers optimized flow in other functions like Intersect, Without etc. func EmptyPostings() Postings { return emptyPostings } // ErrPostings returns new postings that immediately error. func ErrPostings(err error) Postings { return errPostings{err} } // Intersect returns a new postings list over the intersection of the // input postings. func Intersect(its ...Postings) Postings { if len(its) == 0 { return EmptyPostings() } if len(its) == 1 { return its[0] } for _, p := range its { if p == EmptyPostings() { return EmptyPostings() } } return newIntersectPostings(its...) } type intersectPostings struct { arr []Postings cur uint64 } func newIntersectPostings(its ...Postings) *intersectPostings { return &intersectPostings{arr: its} } func (it *intersectPostings) At() uint64 { return it.cur } func (it *intersectPostings) doNext() bool { Loop: for { for _, p := range it.arr { if !p.Seek(it.cur) { return false } if p.At() > it.cur { it.cur = p.At() continue Loop } } return true } } func (it *intersectPostings) Next() bool { for _, p := range it.arr { if !p.Next() { return false } if p.At() > it.cur { it.cur = p.At() } } return it.doNext() } func (it *intersectPostings) Seek(id uint64) bool { it.cur = id return it.doNext() } func (it *intersectPostings) Err() error { for _, p := range it.arr { if p.Err() != nil { return p.Err() } } return nil } // Merge returns a new iterator over the union of the input iterators. func Merge(its ...Postings) Postings { if len(its) == 0 { return EmptyPostings() } if len(its) == 1 { return its[0] } p, ok := newMergedPostings(its) if !ok { return EmptyPostings() } return p } type postingsHeap []Postings func (h postingsHeap) Len() int { return len(h) } func (h postingsHeap) Less(i, j int) bool { return h[i].At() < h[j].At() } func (h *postingsHeap) Swap(i, j int) { (*h)[i], (*h)[j] = (*h)[j], (*h)[i] } func (h *postingsHeap) Push(x interface{}) { *h = append(*h, x.(Postings)) } func (h *postingsHeap) Pop() interface{} { old := *h n := len(old) x := old[n-1] *h = old[0 : n-1] return x } type mergedPostings struct { h postingsHeap initialized bool cur uint64 err error } func newMergedPostings(p []Postings) (m *mergedPostings, nonEmpty bool) { ph := make(postingsHeap, 0, len(p)) for _, it := range p { // NOTE: mergedPostings struct requires the user to issue an initial Next. if it.Next() { ph = append(ph, it) } else { if it.Err() != nil { return &mergedPostings{err: it.Err()}, true } } } if len(ph) == 0 { return nil, false } return &mergedPostings{h: ph}, true } func (it *mergedPostings) Next() bool { if it.h.Len() == 0 || it.err != nil { return false } // The user must issue an initial Next. if !it.initialized { heap.Init(&it.h) it.cur = it.h[0].At() it.initialized = true return true } for { cur := it.h[0] if !cur.Next() { heap.Pop(&it.h) if cur.Err() != nil { it.err = cur.Err() return false } if it.h.Len() == 0 { return false } } else { // Value of top of heap has changed, re-heapify. heap.Fix(&it.h, 0) } if it.h[0].At() != it.cur { it.cur = it.h[0].At() return true } } } func (it *mergedPostings) Seek(id uint64) bool { if it.h.Len() == 0 || it.err != nil { return false } if !it.initialized { if !it.Next() { return false } } for it.cur < id { cur := it.h[0] if !cur.Seek(id) { heap.Pop(&it.h) if cur.Err() != nil { it.err = cur.Err() return false } if it.h.Len() == 0 { return false } } else { // Value of top of heap has changed, re-heapify. heap.Fix(&it.h, 0) } it.cur = it.h[0].At() } return true } func (it mergedPostings) At() uint64 { return it.cur } func (it mergedPostings) Err() error { return it.err } // Without returns a new postings list that contains all elements from the full list that // are not in the drop list. func Without(full, drop Postings) Postings { if full == EmptyPostings() { return EmptyPostings() } if drop == EmptyPostings() { return full } return newRemovedPostings(full, drop) } type removedPostings struct { full, remove Postings cur uint64 initialized bool fok, rok bool } func newRemovedPostings(full, remove Postings) *removedPostings { return &removedPostings{ full: full, remove: remove, } } func (rp *removedPostings) At() uint64 { return rp.cur } func (rp *removedPostings) Next() bool { if !rp.initialized { rp.fok = rp.full.Next() rp.rok = rp.remove.Next() rp.initialized = true } for { if !rp.fok { return false } if !rp.rok { rp.cur = rp.full.At() rp.fok = rp.full.Next() return true } fcur, rcur := rp.full.At(), rp.remove.At() if fcur < rcur { rp.cur = fcur rp.fok = rp.full.Next() return true } else if rcur < fcur { // Forward the remove postings to the right position. rp.rok = rp.remove.Seek(fcur) } else { // Skip the current posting. rp.fok = rp.full.Next() } } } func (rp *removedPostings) Seek(id uint64) bool { if rp.cur >= id { return true } rp.fok = rp.full.Seek(id) rp.rok = rp.remove.Seek(id) rp.initialized = true return rp.Next() } func (rp *removedPostings) Err() error { if rp.full.Err() != nil { return rp.full.Err() } return rp.remove.Err() } // ListPostings implements the Postings interface over a plain list. type ListPostings struct { list []uint64 cur uint64 } func NewListPostings(list []uint64) Postings { return newListPostings(list...) } func newListPostings(list ...uint64) *ListPostings { return &ListPostings{list: list} } func (it *ListPostings) At() uint64 { return it.cur } func (it *ListPostings) Next() bool { if len(it.list) > 0 { it.cur = it.list[0] it.list = it.list[1:] return true } it.cur = 0 return false } func (it *ListPostings) Seek(x uint64) bool { // If the current value satisfies, then return. if it.cur >= x { return true } if len(it.list) == 0 { return false } // Do binary search between current position and end. i := sort.Search(len(it.list), func(i int) bool { return it.list[i] >= x }) if i < len(it.list) { it.cur = it.list[i] it.list = it.list[i+1:] return true } it.list = nil return false } func (it *ListPostings) Err() error { return nil } // bigEndianPostings implements the Postings interface over a byte stream of // big endian numbers. type bigEndianPostings struct { list []byte cur uint32 } func newBigEndianPostings(list []byte) *bigEndianPostings { return &bigEndianPostings{list: list} } func (it *bigEndianPostings) At() uint64 { return uint64(it.cur) } func (it *bigEndianPostings) Next() bool { if len(it.list) >= 4 { it.cur = binary.BigEndian.Uint32(it.list) it.list = it.list[4:] return true } return false } func (it *bigEndianPostings) Seek(x uint64) bool { if uint64(it.cur) >= x { return true } num := len(it.list) / 4 // Do binary search between current position and end. i := sort.Search(num, func(i int) bool { return binary.BigEndian.Uint32(it.list[i*4:]) >= uint32(x) }) if i < num { j := i * 4 it.cur = binary.BigEndian.Uint32(it.list[j:]) it.list = it.list[j+4:] return true } it.list = nil return false } func (it *bigEndianPostings) Err() error { return nil }