// Copyright 2013 Prometheus Team // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package ast import ( "container/heap" "fmt" "math" "sort" "time" clientmodel "github.com/prometheus/client_golang/model" "github.com/prometheus/prometheus/storage/metric" ) // Function represents a function of the expression language and is // used by function nodes. type Function struct { name string argTypes []ExprType returnType ExprType callFn func(timestamp clientmodel.Timestamp, view *viewAdapter, args []Node) interface{} } // CheckArgTypes returns a non-nil error if the number or types of // passed in arg nodes do not match the function's expectations. func (function *Function) CheckArgTypes(args []Node) error { if len(function.argTypes) != len(args) { return fmt.Errorf( "wrong number of arguments to function %v(): %v expected, %v given", function.name, len(function.argTypes), len(args), ) } for idx, argType := range function.argTypes { invalidType := false var expectedType string if _, ok := args[idx].(ScalarNode); argType == SCALAR && !ok { invalidType = true expectedType = "scalar" } if _, ok := args[idx].(VectorNode); argType == VECTOR && !ok { invalidType = true expectedType = "vector" } if _, ok := args[idx].(MatrixNode); argType == MATRIX && !ok { invalidType = true expectedType = "matrix" } if _, ok := args[idx].(StringNode); argType == STRING && !ok { invalidType = true expectedType = "string" } if invalidType { return fmt.Errorf( "wrong type for argument %v in function %v(), expected %v", idx, function.name, expectedType, ) } } return nil } // === time() clientmodel.SampleValue === func timeImpl(timestamp clientmodel.Timestamp, view *viewAdapter, args []Node) interface{} { return clientmodel.SampleValue(timestamp.Unix()) } // === delta(matrix MatrixNode, isCounter ScalarNode) Vector === func deltaImpl(timestamp clientmodel.Timestamp, view *viewAdapter, args []Node) interface{} { matrixNode := args[0].(MatrixNode) isCounter := args[1].(ScalarNode).Eval(timestamp, view) > 0 resultVector := Vector{} // If we treat these metrics as counters, we need to fetch all values // in the interval to find breaks in the timeseries' monotonicity. // I.e. if a counter resets, we want to ignore that reset. var matrixValue Matrix if isCounter { matrixValue = matrixNode.Eval(timestamp, view) } else { matrixValue = matrixNode.EvalBoundaries(timestamp, view) } for _, samples := range matrixValue { // No sense in trying to compute a delta without at least two points. Drop // this vector element. if len(samples.Values) < 2 { continue } counterCorrection := clientmodel.SampleValue(0) lastValue := clientmodel.SampleValue(0) for _, sample := range samples.Values { currentValue := sample.Value if isCounter && currentValue < lastValue { counterCorrection += lastValue - currentValue } lastValue = currentValue } resultValue := lastValue - samples.Values[0].Value + counterCorrection targetInterval := args[0].(*MatrixSelector).interval sampledInterval := samples.Values[len(samples.Values)-1].Timestamp.Sub(samples.Values[0].Timestamp) if sampledInterval == 0 { // Only found one sample. Cannot compute a rate from this. continue } // Correct for differences in target vs. actual delta interval. // // Above, we didn't actually calculate the delta for the specified target // interval, but for an interval between the first and last found samples // under the target interval, which will usually have less time between // them. Depending on how many samples are found under a target interval, // the delta results are distorted and temporal aliasing occurs (ugly // bumps). This effect is corrected for below. intervalCorrection := clientmodel.SampleValue(targetInterval) / clientmodel.SampleValue(sampledInterval) resultValue *= intervalCorrection resultSample := &clientmodel.Sample{ Metric: samples.Metric, Value: resultValue, Timestamp: timestamp, } resultVector = append(resultVector, resultSample) } return resultVector } // === rate(node MatrixNode) Vector === func rateImpl(timestamp clientmodel.Timestamp, view *viewAdapter, args []Node) interface{} { args = append(args, &ScalarLiteral{value: 1}) vector := deltaImpl(timestamp, view, args).(Vector) // TODO: could be other type of MatrixNode in the future (right now, only // MatrixSelector exists). Find a better way of getting the duration of a // matrix, such as looking at the samples themselves. interval := args[0].(*MatrixSelector).interval for i := range vector { vector[i].Value /= clientmodel.SampleValue(interval / time.Second) } return vector } type vectorByValueHeap Vector func (s vectorByValueHeap) Len() int { return len(s) } func (s vectorByValueHeap) Less(i, j int) bool { return s[i].Value < s[j].Value } func (s vectorByValueHeap) Swap(i, j int) { s[i], s[j] = s[j], s[i] } func (s *vectorByValueHeap) Push(x interface{}) { *s = append(*s, x.(*clientmodel.Sample)) } func (s *vectorByValueHeap) Pop() interface{} { old := *s n := len(old) el := old[n-1] *s = old[0 : n-1] return el } type reverseHeap struct { heap.Interface } func (s reverseHeap) Less(i, j int) bool { return s.Interface.Less(j, i) } // === sort(node VectorNode) Vector === func sortImpl(timestamp clientmodel.Timestamp, view *viewAdapter, args []Node) interface{} { byValueSorter := vectorByValueHeap(args[0].(VectorNode).Eval(timestamp, view)) sort.Sort(byValueSorter) return Vector(byValueSorter) } // === sortDesc(node VectorNode) Vector === func sortDescImpl(timestamp clientmodel.Timestamp, view *viewAdapter, args []Node) interface{} { byValueSorter := vectorByValueHeap(args[0].(VectorNode).Eval(timestamp, view)) sort.Sort(sort.Reverse(byValueSorter)) return Vector(byValueSorter) } // === topk(k ScalarNode, node VectorNode) Vector === func topkImpl(timestamp clientmodel.Timestamp, view *viewAdapter, args []Node) interface{} { k := int(args[0].(ScalarNode).Eval(timestamp, view)) if k < 1 { return Vector{} } topk := make(vectorByValueHeap, 0, k) vector := args[1].(VectorNode).Eval(timestamp, view) for _, el := range vector { if len(topk) < k || topk[0].Value < el.Value { if len(topk) == k { heap.Pop(&topk) } heap.Push(&topk, el) } } sort.Sort(sort.Reverse(topk)) return Vector(topk) } // === bottomk(k ScalarNode, node VectorNode) Vector === func bottomkImpl(timestamp clientmodel.Timestamp, view *viewAdapter, args []Node) interface{} { k := int(args[0].(ScalarNode).Eval(timestamp, view)) if k < 1 { return Vector{} } bottomk := make(vectorByValueHeap, 0, k) bkHeap := reverseHeap{Interface: &bottomk} vector := args[1].(VectorNode).Eval(timestamp, view) for _, el := range vector { if len(bottomk) < k || bottomk[0].Value > el.Value { if len(bottomk) == k { heap.Pop(&bkHeap) } heap.Push(&bkHeap, el) } } sort.Sort(bottomk) return Vector(bottomk) } // === sampleVectorImpl() Vector === func sampleVectorImpl(timestamp clientmodel.Timestamp, view *viewAdapter, args []Node) interface{} { return Vector{ &clientmodel.Sample{ Metric: clientmodel.Metric{ clientmodel.MetricNameLabel: "http_requests", clientmodel.JobLabel: "api-server", "instance": "0", }, Value: 10, Timestamp: timestamp, }, &clientmodel.Sample{ Metric: clientmodel.Metric{ clientmodel.MetricNameLabel: "http_requests", clientmodel.JobLabel: "api-server", "instance": "1", }, Value: 20, Timestamp: timestamp, }, &clientmodel.Sample{ Metric: clientmodel.Metric{ clientmodel.MetricNameLabel: "http_requests", clientmodel.JobLabel: "api-server", "instance": "2", }, Value: 30, Timestamp: timestamp, }, &clientmodel.Sample{ Metric: clientmodel.Metric{ clientmodel.MetricNameLabel: "http_requests", clientmodel.JobLabel: "api-server", "instance": "3", "group": "canary", }, Value: 40, Timestamp: timestamp, }, &clientmodel.Sample{ Metric: clientmodel.Metric{ clientmodel.MetricNameLabel: "http_requests", clientmodel.JobLabel: "api-server", "instance": "2", "group": "canary", }, Value: 40, Timestamp: timestamp, }, &clientmodel.Sample{ Metric: clientmodel.Metric{ clientmodel.MetricNameLabel: "http_requests", clientmodel.JobLabel: "api-server", "instance": "3", "group": "mytest", }, Value: 40, Timestamp: timestamp, }, &clientmodel.Sample{ Metric: clientmodel.Metric{ clientmodel.MetricNameLabel: "http_requests", clientmodel.JobLabel: "api-server", "instance": "3", "group": "mytest", }, Value: 40, Timestamp: timestamp, }, } } // === scalar(node VectorNode) Scalar === func scalarImpl(timestamp clientmodel.Timestamp, view *viewAdapter, args []Node) interface{} { v := args[0].(VectorNode).Eval(timestamp, view) if len(v) != 1 { return clientmodel.SampleValue(math.NaN()) } return clientmodel.SampleValue(v[0].Value) } // === count_scalar(vector VectorNode) model.SampleValue === func countScalarImpl(timestamp clientmodel.Timestamp, view *viewAdapter, args []Node) interface{} { return clientmodel.SampleValue(len(args[0].(VectorNode).Eval(timestamp, view))) } func aggrOverTime(timestamp clientmodel.Timestamp, view *viewAdapter, args []Node, aggrFn func(metric.Values) clientmodel.SampleValue) interface{} { n := args[0].(MatrixNode) matrixVal := n.Eval(timestamp, view) resultVector := Vector{} for _, el := range matrixVal { if len(el.Values) == 0 { continue } resultVector = append(resultVector, &clientmodel.Sample{ Metric: el.Metric, Value: aggrFn(el.Values), Timestamp: timestamp, }) } return resultVector } // === avg_over_time(matrix MatrixNode) Vector === func avgOverTimeImpl(timestamp clientmodel.Timestamp, view *viewAdapter, args []Node) interface{} { return aggrOverTime(timestamp, view, args, func(values metric.Values) clientmodel.SampleValue { var sum clientmodel.SampleValue for _, v := range values { sum += v.Value } return sum / clientmodel.SampleValue(len(values)) }) } // === count_over_time(matrix MatrixNode) Vector === func countOverTimeImpl(timestamp clientmodel.Timestamp, view *viewAdapter, args []Node) interface{} { return aggrOverTime(timestamp, view, args, func(values metric.Values) clientmodel.SampleValue { return clientmodel.SampleValue(len(values)) }) } // === max_over_time(matrix MatrixNode) Vector === func maxOverTimeImpl(timestamp clientmodel.Timestamp, view *viewAdapter, args []Node) interface{} { return aggrOverTime(timestamp, view, args, func(values metric.Values) clientmodel.SampleValue { max := math.Inf(-1) for _, v := range values { max = math.Max(max, float64(v.Value)) } return clientmodel.SampleValue(max) }) } // === min_over_time(matrix MatrixNode) Vector === func minOverTimeImpl(timestamp clientmodel.Timestamp, view *viewAdapter, args []Node) interface{} { return aggrOverTime(timestamp, view, args, func(values metric.Values) clientmodel.SampleValue { min := math.Inf(1) for _, v := range values { min = math.Min(min, float64(v.Value)) } return clientmodel.SampleValue(min) }) } // === sum_over_time(matrix MatrixNode) Vector === func sumOverTimeImpl(timestamp clientmodel.Timestamp, view *viewAdapter, args []Node) interface{} { return aggrOverTime(timestamp, view, args, func(values metric.Values) clientmodel.SampleValue { var sum clientmodel.SampleValue for _, v := range values { sum += v.Value } return sum }) } // === abs(vector VectorNode) Vector === func absImpl(timestamp clientmodel.Timestamp, view *viewAdapter, args []Node) interface{} { n := args[0].(VectorNode) vector := n.Eval(timestamp, view) for _, el := range vector { el.Value = clientmodel.SampleValue(math.Abs(float64(el.Value))) } return vector } var functions = map[string]*Function{ "abs": { name: "abs", argTypes: []ExprType{VECTOR}, returnType: VECTOR, callFn: absImpl, }, "avg_over_time": { name: "avg_over_time", argTypes: []ExprType{MATRIX}, returnType: VECTOR, callFn: avgOverTimeImpl, }, "bottomk": { name: "bottomk", argTypes: []ExprType{SCALAR, VECTOR}, returnType: VECTOR, callFn: bottomkImpl, }, "count_over_time": { name: "count_over_time", argTypes: []ExprType{MATRIX}, returnType: VECTOR, callFn: countOverTimeImpl, }, "count_scalar": { name: "count_scalar", argTypes: []ExprType{VECTOR}, returnType: SCALAR, callFn: countScalarImpl, }, "delta": { name: "delta", argTypes: []ExprType{MATRIX, SCALAR}, returnType: VECTOR, callFn: deltaImpl, }, "max_over_time": { name: "max_over_time", argTypes: []ExprType{MATRIX}, returnType: VECTOR, callFn: maxOverTimeImpl, }, "min_over_time": { name: "min_over_time", argTypes: []ExprType{MATRIX}, returnType: VECTOR, callFn: minOverTimeImpl, }, "rate": { name: "rate", argTypes: []ExprType{MATRIX}, returnType: VECTOR, callFn: rateImpl, }, "sampleVector": { name: "sampleVector", argTypes: []ExprType{}, returnType: VECTOR, callFn: sampleVectorImpl, }, "scalar": { name: "scalar", argTypes: []ExprType{VECTOR}, returnType: SCALAR, callFn: scalarImpl, }, "sort": { name: "sort", argTypes: []ExprType{VECTOR}, returnType: VECTOR, callFn: sortImpl, }, "sort_desc": { name: "sort_desc", argTypes: []ExprType{VECTOR}, returnType: VECTOR, callFn: sortDescImpl, }, "sum_over_time": { name: "sum_over_time", argTypes: []ExprType{MATRIX}, returnType: VECTOR, callFn: sumOverTimeImpl, }, "time": { name: "time", argTypes: []ExprType{}, returnType: SCALAR, callFn: timeImpl, }, "topk": { name: "topk", argTypes: []ExprType{SCALAR, VECTOR}, returnType: VECTOR, callFn: topkImpl, }, } // GetFunction returns a predefined Function object for the given // name. func GetFunction(name string) (*Function, error) { function, ok := functions[name] if !ok { return nil, fmt.Errorf("couldn't find function %v()", name) } return function, nil }