// Copyright 2015 The Prometheus Authors // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package promql import ( "math" "regexp" "sort" "strconv" "time" "github.com/prometheus/common/model" "github.com/prometheus/prometheus/pkg/labels" ) // Function represents a function of the expression language and is // used by function nodes. type Function struct { Name string ArgTypes []ValueType OptionalArgs int ReturnType ValueType Call func(ev *evaluator, args Expressions) Value } // === time() float64 === func funcTime(ev *evaluator, args Expressions) Value { return Scalar{ V: float64(ev.Timestamp / 1000), T: ev.Timestamp, } } // extrapolatedRate is a utility function for rate/increase/delta. // It calculates the rate (allowing for counter resets if isCounter is true), // extrapolates if the first/last sample is close to the boundary, and returns // the result as either per-second (if isRate is true) or overall. func extrapolatedRate(ev *evaluator, arg Expr, isCounter bool, isRate bool) Value { ms := arg.(*MatrixSelector) rangeStart := ev.Timestamp - durationMilliseconds(ms.Range+ms.Offset) rangeEnd := ev.Timestamp - durationMilliseconds(ms.Offset) resultVector := Vector{} MatrixValue := ev.evalMatrix(ms) for _, samples := range MatrixValue { // No sense in trying to compute a rate without at least two points. Drop // this Vector element. if len(samples.Points) < 2 { continue } var ( counterCorrection float64 lastValue float64 ) for _, sample := range samples.Points { if isCounter && sample.V < lastValue { counterCorrection += lastValue } lastValue = sample.V } resultValue := lastValue - samples.Points[0].V + counterCorrection // Duration between first/last samples and boundary of range. durationToStart := float64(samples.Points[0].T - rangeStart) durationToEnd := float64(rangeEnd - samples.Points[len(samples.Points)-1].T) sampledInterval := float64(samples.Points[len(samples.Points)-1].T - samples.Points[0].T) averageDurationBetweenSamples := float64(sampledInterval) / float64(len(samples.Points)-1) if isCounter && resultValue > 0 && samples.Points[0].V >= 0 { // Counters cannot be negative. If we have any slope at // all (i.e. resultValue went up), we can extrapolate // the zero point of the counter. If the duration to the // zero point is shorter than the durationToStart, we // take the zero point as the start of the series, // thereby avoiding extrapolation to negative counter // values. durationToZero := float64(sampledInterval) * float64(samples.Points[0].V/resultValue) if durationToZero < durationToStart { durationToStart = durationToZero } } // If the first/last samples are close to the boundaries of the range, // extrapolate the result. This is as we expect that another sample // will exist given the spacing between samples we've seen thus far, // with an allowance for noise. extrapolationThreshold := averageDurationBetweenSamples * 1.1 extrapolateToInterval := sampledInterval if durationToStart < extrapolationThreshold { extrapolateToInterval += durationToStart } else { extrapolateToInterval += averageDurationBetweenSamples / 2 } if durationToEnd < extrapolationThreshold { extrapolateToInterval += durationToEnd } else { extrapolateToInterval += averageDurationBetweenSamples / 2 } resultValue = resultValue * extrapolateToInterval / sampledInterval if isRate { resultValue = resultValue / 1000 / ms.Range.Seconds() } resultVector = append(resultVector, Sample{ Metric: copyLabels(samples.Metric, false), Point: Point{V: resultValue, T: ev.Timestamp}, }) } return resultVector } // === delta(Matrix ValueTypeMatrix) Vector === func funcDelta(ev *evaluator, args Expressions) Value { return extrapolatedRate(ev, args[0], false, false) } // === rate(node ValueTypeMatrix) Vector === func funcRate(ev *evaluator, args Expressions) Value { return extrapolatedRate(ev, args[0], true, true) } // === increase(node ValueTypeMatrix) Vector === func funcIncrease(ev *evaluator, args Expressions) Value { return extrapolatedRate(ev, args[0], true, false) } // === irate(node ValueTypeMatrix) Vector === func funcIrate(ev *evaluator, args Expressions) Value { return instantValue(ev, args[0], true) } // === idelta(node model.ValMatric) Vector === func funcIdelta(ev *evaluator, args Expressions) Value { return instantValue(ev, args[0], false) } func instantValue(ev *evaluator, arg Expr, isRate bool) Value { resultVector := Vector{} for _, samples := range ev.evalMatrix(arg) { // No sense in trying to compute a rate without at least two points. Drop // this Vector element. if len(samples.Points) < 2 { continue } lastSample := samples.Points[len(samples.Points)-1] previousSample := samples.Points[len(samples.Points)-2] var resultValue float64 if isRate && lastSample.V < previousSample.V { // Counter reset. resultValue = lastSample.V } else { resultValue = lastSample.V - previousSample.V } sampledInterval := lastSample.T - previousSample.T if sampledInterval == 0 { // Avoid dividing by 0.float64 } if isRate { // Convert to per-second. resultValue /= float64(sampledInterval) / 1000 } resultVector = append(resultVector, Sample{ Metric: copyLabels(samples.Metric, false), Point: Point{V: resultValue, T: ev.Timestamp}, }) } return resultVector } // Calculate the trend value at the given index i in raw data d. // This is somewhat analogous to the slope of the trend at the given index. // The argument "s" is the set of computed smoothed values. // The argument "b" is the set of computed trend factors. // The argument "d" is the set of raw input values. func calcTrendValue(i int, sf, tf float64, s, b, d []float64) float64 { if i == 0 { return b[0] } x := tf * (s[i] - s[i-1]) y := (1 - tf) * b[i-1] // Cache the computed value. b[i] = x + y return b[i] } // Holt-Winters is similar to a weighted moving average, where historical data has exponentially less influence on the current data. // Holt-Winter also accounts for trends in data. The smoothing factor (0 < sf < 1) affects how historical data will affect the current // data. A lower smoothing factor increases the influence of historical data. The trend factor (0 < tf < 1) affects // how trends in historical data will affect the current data. A higher trend factor increases the influence. // of trends. Algorithm taken from https://en.wikipedia.org/wiki/Exponential_smoothing titled: "Double exponential smoothing". func funcHoltWinters(ev *evaluator, args Expressions) Value { mat := ev.evalMatrix(args[0]) // The smoothing factor argument. sf := ev.evalFloat(args[1]) // The trend factor argument. tf := ev.evalFloat(args[2]) // Sanity check the input. if sf <= 0 || sf >= 1 { ev.errorf("invalid smoothing factor. Expected: 0 < sf < 1 goT: %f", sf) } if tf <= 0 || tf >= 1 { ev.errorf("invalid trend factor. Expected: 0 < tf < 1 goT: %f", sf) } // Make an output Vector large enough to hold the entire result. resultVector := make(Vector, 0, len(mat)) // Create scratch values. var s, b, d []float64 var l int for _, samples := range mat { l = len(samples.Points) // Can't do the smoothing operation with less than two points. if l < 2 { continue } // Resize scratch values. if l != len(s) { s = make([]float64, l) b = make([]float64, l) d = make([]float64, l) } // Fill in the d values with the raw values from the input. for i, v := range samples.Points { d[i] = v.V } // Set initial values. s[0] = d[0] b[0] = d[1] - d[0] // Run the smoothing operation. var x, y float64 for i := 1; i < len(d); i++ { // Scale the raw value against the smoothing factor. x = sf * d[i] // Scale the last smoothed value with the trend at this point. y = (1 - sf) * (s[i-1] + calcTrendValue(i-1, sf, tf, s, b, d)) s[i] = x + y } resultVector = append(resultVector, Sample{ Metric: copyLabels(samples.Metric, false), Point: Point{V: s[len(s)-1], T: ev.Timestamp}, // The last value in the Vector is the smoothed result. }) } return resultVector } // === sort(node ValueTypeVector) Vector === func funcSort(ev *evaluator, args Expressions) Value { // NaN should sort to the bottom, so take descending sort with NaN first and // reverse it. byValueSorter := vectorByReverseValueHeap(ev.evalVector(args[0])) sort.Sort(sort.Reverse(byValueSorter)) return Vector(byValueSorter) } // === sortDesc(node ValueTypeVector) Vector === func funcSortDesc(ev *evaluator, args Expressions) Value { // NaN should sort to the bottom, so take ascending sort with NaN first and // reverse it. byValueSorter := vectorByValueHeap(ev.evalVector(args[0])) sort.Sort(sort.Reverse(byValueSorter)) return Vector(byValueSorter) } // === clamp_max(Vector ValueTypeVector, max Scalar) Vector === func funcClampMax(ev *evaluator, args Expressions) Value { vec := ev.evalVector(args[0]) max := ev.evalFloat(args[1]) for _, el := range vec { el.Metric = copyLabels(el.Metric, false) el.V = math.Min(max, float64(el.V)) } return vec } // === clamp_min(Vector ValueTypeVector, min Scalar) Vector === func funcClampMin(ev *evaluator, args Expressions) Value { vec := ev.evalVector(args[0]) min := ev.evalFloat(args[1]) for _, el := range vec { el.Metric = copyLabels(el.Metric, false) el.V = math.Max(min, float64(el.V)) } return vec } // === drop_common_labels(node ValueTypeVector) Vector === func funcDropCommonLabels(ev *evaluator, args Expressions) Value { vec := ev.evalVector(args[0]) if len(vec) < 1 { return Vector{} } common := map[string]string{} for _, l := range vec[0].Metric { // TODO(julius): Should we also drop common metric names? if l.Name == MetricNameLabel { continue } common[l.Name] = l.Value } for _, el := range vec[1:] { for k, v := range common { for _, l := range el.Metric { if l.Name == k && l.Value != v { // Deletion of map entries while iterating over them is safe. // From http://golang.org/ref/spec#For_statements: // "If map entries that have not yet been reached are deleted during // iteration, the corresponding iteration values will not be produced." delete(common, k) } } } } cnames := []string{} for n := range common { cnames = append(cnames, n) } for _, el := range vec { el.Metric = modifiedLabels(el.Metric, cnames, nil) } return vec } // === round(Vector ValueTypeVector, toNearest=1 Scalar) Vector === func funcRound(ev *evaluator, args Expressions) Value { // round returns a number rounded to toNearest. // Ties are solved by rounding up. toNearest := float64(1) if len(args) >= 2 { toNearest = ev.evalFloat(args[1]) } // Invert as it seems to cause fewer floating point accuracy issues. toNearestInverse := 1.0 / toNearest vec := ev.evalVector(args[0]) for _, el := range vec { el.Metric = copyLabels(el.Metric, false) el.V = math.Floor(float64(el.V)*toNearestInverse+0.5) / toNearestInverse } return vec } // === Scalar(node ValueTypeVector) Scalar === func funcScalar(ev *evaluator, args Expressions) Value { v := ev.evalVector(args[0]) if len(v) != 1 { return Scalar{ V: math.NaN(), T: ev.Timestamp, } } return Scalar{ V: v[0].V, T: ev.Timestamp, } } // === count_Scalar(Vector ValueTypeVector) float64 === func funcCountScalar(ev *evaluator, args Expressions) Value { return Scalar{ V: float64(len(ev.evalVector(args[0]))), T: ev.Timestamp, } } func aggrOverTime(ev *evaluator, args Expressions, aggrFn func([]Point) float64) Value { mat := ev.evalMatrix(args[0]) resultVector := Vector{} for _, el := range mat { if len(el.Points) == 0 { continue } resultVector = append(resultVector, Sample{ Metric: copyLabels(el.Metric, false), Point: Point{V: aggrFn(el.Points), T: ev.Timestamp}, }) } return resultVector } // === avg_over_time(Matrix ValueTypeMatrix) Vector === func funcAvgOverTime(ev *evaluator, args Expressions) Value { return aggrOverTime(ev, args, func(values []Point) float64 { var sum float64 for _, v := range values { sum += v.V } return sum / float64(len(values)) }) } // === count_over_time(Matrix ValueTypeMatrix) Vector === func funcCountOverTime(ev *evaluator, args Expressions) Value { return aggrOverTime(ev, args, func(values []Point) float64 { return float64(len(values)) }) } // === floor(Vector ValueTypeVector) Vector === func funcFloor(ev *evaluator, args Expressions) Value { Vector := ev.evalVector(args[0]) for _, el := range Vector { el.Metric = copyLabels(el.Metric, false) el.V = math.Floor(float64(el.V)) } return Vector } // === max_over_time(Matrix ValueTypeMatrix) Vector === func funcMaxOverTime(ev *evaluator, args Expressions) Value { return aggrOverTime(ev, args, func(values []Point) float64 { max := math.Inf(-1) for _, v := range values { max = math.Max(max, float64(v.V)) } return max }) } // === min_over_time(Matrix ValueTypeMatrix) Vector === func funcMinOverTime(ev *evaluator, args Expressions) Value { return aggrOverTime(ev, args, func(values []Point) float64 { min := math.Inf(1) for _, v := range values { min = math.Min(min, float64(v.V)) } return min }) } // === sum_over_time(Matrix ValueTypeMatrix) Vector === func funcSumOverTime(ev *evaluator, args Expressions) Value { return aggrOverTime(ev, args, func(values []Point) float64 { var sum float64 for _, v := range values { sum += v.V } return sum }) } // === quantile_over_time(Matrix ValueTypeMatrix) Vector === func funcQuantileOverTime(ev *evaluator, args Expressions) Value { q := ev.evalFloat(args[0]) mat := ev.evalMatrix(args[1]) resultVector := Vector{} for _, el := range mat { if len(el.Points) == 0 { continue } el.Metric = copyLabels(el.Metric, false) values := make(vectorByValueHeap, 0, len(el.Points)) for _, v := range el.Points { values = append(values, Sample{Point: Point{V: v.V}}) } resultVector = append(resultVector, Sample{ Metric: el.Metric, Point: Point{V: quantile(q, values), T: ev.Timestamp}, }) } return resultVector } // === stddev_over_time(Matrix ValueTypeMatrix) Vector === func funcStddevOverTime(ev *evaluator, args Expressions) Value { return aggrOverTime(ev, args, func(values []Point) float64 { var sum, squaredSum, count float64 for _, v := range values { sum += v.V squaredSum += v.V * v.V count++ } avg := sum / count return math.Sqrt(float64(squaredSum/count - avg*avg)) }) } // === stdvar_over_time(Matrix ValueTypeMatrix) Vector === func funcStdvarOverTime(ev *evaluator, args Expressions) Value { return aggrOverTime(ev, args, func(values []Point) float64 { var sum, squaredSum, count float64 for _, v := range values { sum += v.V squaredSum += v.V * v.V count++ } avg := sum / count return squaredSum/count - avg*avg }) } // === abs(Vector ValueTypeVector) Vector === func funcAbs(ev *evaluator, args Expressions) Value { Vector := ev.evalVector(args[0]) for _, el := range Vector { el.Metric = copyLabels(el.Metric, false) el.V = math.Abs(float64(el.V)) } return Vector } // === absent(Vector ValueTypeVector) Vector === func funcAbsent(ev *evaluator, args Expressions) Value { if len(ev.evalVector(args[0])) > 0 { return Vector{} } m := []labels.Label{} if vs, ok := args[0].(*VectorSelector); ok { for _, ma := range vs.LabelMatchers { if ma.Type == MatchEqual && ma.Name != MetricNameLabel { m = append(m, labels.Label{Name: ma.Name, Value: ma.Value}) } } } return Vector{ Sample{ Metric: labels.New(m...), Point: Point{V: 1, T: ev.Timestamp}, }, } } // === ceil(Vector ValueTypeVector) Vector === func funcCeil(ev *evaluator, args Expressions) Value { Vector := ev.evalVector(args[0]) for _, el := range Vector { el.Metric = copyLabels(el.Metric, false) el.V = math.Ceil(float64(el.V)) } return Vector } // === exp(Vector ValueTypeVector) Vector === func funcExp(ev *evaluator, args Expressions) Value { Vector := ev.evalVector(args[0]) for _, el := range Vector { el.Metric = copyLabels(el.Metric, false) el.V = math.Exp(float64(el.V)) } return Vector } // === sqrt(Vector VectorNode) Vector === func funcSqrt(ev *evaluator, args Expressions) Value { Vector := ev.evalVector(args[0]) for _, el := range Vector { el.Metric = copyLabels(el.Metric, false) el.V = math.Sqrt(float64(el.V)) } return Vector } // === ln(Vector ValueTypeVector) Vector === func funcLn(ev *evaluator, args Expressions) Value { Vector := ev.evalVector(args[0]) for _, el := range Vector { el.Metric = copyLabels(el.Metric, false) el.V = math.Log(float64(el.V)) } return Vector } // === log2(Vector ValueTypeVector) Vector === func funcLog2(ev *evaluator, args Expressions) Value { Vector := ev.evalVector(args[0]) for _, el := range Vector { el.Metric = copyLabels(el.Metric, false) el.V = math.Log2(float64(el.V)) } return Vector } // === log10(Vector ValueTypeVector) Vector === func funcLog10(ev *evaluator, args Expressions) Value { Vector := ev.evalVector(args[0]) for _, el := range Vector { el.Metric = copyLabels(el.Metric, false) el.V = math.Log10(float64(el.V)) } return Vector } // linearRegression performs a least-square linear regression analysis on the // provided SamplePairs. It returns the slope, and the intercept value at the // provided time. func linearRegression(samples []Point, interceptTime int64) (slope, intercept float64) { var ( n float64 sumX, sumY float64 sumXY, sumX2 float64 ) for _, sample := range samples { x := float64(sample.T-interceptTime) / 1e6 n += 1.0 sumY += sample.V sumX += x sumXY += x * sample.V sumX2 += x * x } covXY := sumXY - sumX*sumY/n varX := sumX2 - sumX*sumX/n slope = covXY / varX intercept = sumY/n - slope*sumX/n return slope, intercept } // === deriv(node ValueTypeMatrix) Vector === func funcDeriv(ev *evaluator, args Expressions) Value { mat := ev.evalMatrix(args[0]) resultVector := make(Vector, 0, len(mat)) for _, samples := range mat { // No sense in trying to compute a derivative without at least two points. // Drop this Vector element. if len(samples.Points) < 2 { continue } slope, _ := linearRegression(samples.Points, 0) resultSample := Sample{ Metric: copyLabels(samples.Metric, false), Point: Point{V: slope, T: ev.Timestamp}, } resultVector = append(resultVector, resultSample) } return resultVector } // === predict_linear(node ValueTypeMatrix, k ValueTypeScalar) Vector === func funcPredictLinear(ev *evaluator, args Expressions) Value { mat := ev.evalMatrix(args[0]) resultVector := make(Vector, 0, len(mat)) duration := ev.evalFloat(args[1]) for _, samples := range mat { // No sense in trying to predict anything without at least two points. // Drop this Vector element. if len(samples.Points) < 2 { continue } slope, intercept := linearRegression(samples.Points, ev.Timestamp) resultVector = append(resultVector, Sample{ Metric: copyLabels(samples.Metric, false), Point: Point{V: slope*duration + intercept, T: ev.Timestamp}, }) } return resultVector } // === histogram_quantile(k ValueTypeScalar, Vector ValueTypeVector) Vector === func funcHistogramQuantile(ev *evaluator, args Expressions) Value { q := ev.evalFloat(args[0]) inVec := ev.evalVector(args[1]) outVec := Vector{} signatureToMetricWithBuckets := map[uint64]*metricWithBuckets{} for _, el := range inVec { upperBound, err := strconv.ParseFloat( el.Metric.Get(model.BucketLabel), 64, ) if err != nil { // Oops, no bucket label or malformed label value. Skip. // TODO(beorn7): Issue a warning somehow. continue } hash := hashWithoutLabels(el.Metric, excludedLabels...) mb, ok := signatureToMetricWithBuckets[hash] if !ok { el.Metric = modifiedLabels(el.Metric, []string{ string(model.BucketLabel), MetricNameLabel, }, nil) mb = &metricWithBuckets{el.Metric, nil} signatureToMetricWithBuckets[hash] = mb } mb.buckets = append(mb.buckets, bucket{upperBound, el.V}) } for _, mb := range signatureToMetricWithBuckets { outVec = append(outVec, Sample{ Metric: mb.metric, Point: Point{V: bucketQuantile(q, mb.buckets), T: ev.Timestamp}, }) } return outVec } // === resets(Matrix ValueTypeMatrix) Vector === func funcResets(ev *evaluator, args Expressions) Value { in := ev.evalMatrix(args[0]) out := make(Vector, 0, len(in)) for _, samples := range in { resets := 0 prev := samples.Points[0].V for _, sample := range samples.Points[1:] { current := sample.V if current < prev { resets++ } prev = current } out = append(out, Sample{ Metric: copyLabels(samples.Metric, false), Point: Point{V: float64(resets), T: ev.Timestamp}, }) } return out } // === changes(Matrix ValueTypeMatrix) Vector === func funcChanges(ev *evaluator, args Expressions) Value { in := ev.evalMatrix(args[0]) out := make(Vector, 0, len(in)) for _, samples := range in { changes := 0 prev := samples.Points[0].V for _, sample := range samples.Points[1:] { current := sample.V if current != prev && !(math.IsNaN(float64(current)) && math.IsNaN(float64(prev))) { changes++ } prev = current } out = append(out, Sample{ Metric: copyLabels(samples.Metric, false), Point: Point{V: float64(changes), T: ev.Timestamp}, }) } return out } // === label_replace(Vector ValueTypeVector, dst_label, replacement, src_labelname, regex ValueTypeString) Vector === func funcLabelReplace(ev *evaluator, args Expressions) Value { var ( Vector = ev.evalVector(args[0]) dst = ev.evalString(args[1]).V repl = ev.evalString(args[2]).V src = ev.evalString(args[3]).V regexStr = ev.evalString(args[4]).V ) regex, err := regexp.Compile("^(?:" + regexStr + ")$") if err != nil { ev.errorf("invalid regular expression in label_replace(): %s", regexStr) } if !model.LabelNameRE.MatchString(string(dst)) { ev.errorf("invalid destination label name in label_replace(): %s", dst) } outSet := make(map[uint64]struct{}, len(Vector)) for _, el := range Vector { srcVal := el.Metric.Get(src) indexes := regex.FindStringSubmatchIndex(srcVal) // If there is no match, no replacement should take place. if indexes == nil { continue } res := regex.ExpandString([]byte{}, repl, srcVal, indexes) del := []string{dst} add := []labels.Label{} if len(res) > 0 { add = append(add, labels.Label{Name: dst, Value: string(res)}) } el.Metric = modifiedLabels(el.Metric, del, add) h := el.Metric.Hash() if _, ok := outSet[h]; ok { ev.errorf("duplicated label set in output of label_replace(): %s", el.Metric) } else { outSet[h] = struct{}{} } } return Vector } // === Vector(s Scalar) Vector === func funcVector(ev *evaluator, args Expressions) Value { return Vector{ Sample{ Metric: labels.Labels{}, Point: Point{V: ev.evalFloat(args[0]), T: ev.Timestamp}, }, } } // Common code for date related functions. func dateWrapper(ev *evaluator, args Expressions, f func(time.Time) float64) Value { var v Vector if len(args) == 0 { v = Vector{ Sample{ Metric: labels.Labels{}, Point: Point{V: float64(ev.Timestamp) / 1000}, }, } } else { v = ev.evalVector(args[0]) } for _, el := range v { el.Metric = copyLabels(el.Metric, false) t := time.Unix(int64(el.V), 0).UTC() el.V = f(t) } return v } // === days_in_month(v Vector) Scalar === func funcDaysInMonth(ev *evaluator, args Expressions) Value { return dateWrapper(ev, args, func(t time.Time) float64 { return float64(32 - time.Date(t.Year(), t.Month(), 32, 0, 0, 0, 0, time.UTC).Day()) }) } // === day_of_month(v Vector) Scalar === func funcDayOfMonth(ev *evaluator, args Expressions) Value { return dateWrapper(ev, args, func(t time.Time) float64 { return float64(t.Day()) }) } // === day_of_week(v Vector) Scalar === func funcDayOfWeek(ev *evaluator, args Expressions) Value { return dateWrapper(ev, args, func(t time.Time) float64 { return float64(t.Weekday()) }) } // === hour(v Vector) Scalar === func funcHour(ev *evaluator, args Expressions) Value { return dateWrapper(ev, args, func(t time.Time) float64 { return float64(t.Hour()) }) } // === minute(v Vector) Scalar === func funcMinute(ev *evaluator, args Expressions) Value { return dateWrapper(ev, args, func(t time.Time) float64 { return float64(t.Minute()) }) } // === month(v Vector) Scalar === func funcMonth(ev *evaluator, args Expressions) Value { return dateWrapper(ev, args, func(t time.Time) float64 { return float64(t.Month()) }) } // === year(v Vector) Scalar === func funcYear(ev *evaluator, args Expressions) Value { return dateWrapper(ev, args, func(t time.Time) float64 { return float64(t.Year()) }) } var functions = map[string]*Function{ "abs": { Name: "abs", ArgTypes: []ValueType{ValueTypeVector}, ReturnType: ValueTypeVector, Call: funcAbs, }, "absent": { Name: "absent", ArgTypes: []ValueType{ValueTypeVector}, ReturnType: ValueTypeVector, Call: funcAbsent, }, "avg_over_time": { Name: "avg_over_time", ArgTypes: []ValueType{ValueTypeMatrix}, ReturnType: ValueTypeVector, Call: funcAvgOverTime, }, "ceil": { Name: "ceil", ArgTypes: []ValueType{ValueTypeVector}, ReturnType: ValueTypeVector, Call: funcCeil, }, "changes": { Name: "changes", ArgTypes: []ValueType{ValueTypeMatrix}, ReturnType: ValueTypeVector, Call: funcChanges, }, "clamp_max": { Name: "clamp_max", ArgTypes: []ValueType{ValueTypeVector, ValueTypeScalar}, ReturnType: ValueTypeVector, Call: funcClampMax, }, "clamp_min": { Name: "clamp_min", ArgTypes: []ValueType{ValueTypeVector, ValueTypeScalar}, ReturnType: ValueTypeVector, Call: funcClampMin, }, "count_over_time": { Name: "count_over_time", ArgTypes: []ValueType{ValueTypeMatrix}, ReturnType: ValueTypeVector, Call: funcCountOverTime, }, "count_Scalar": { Name: "count_Scalar", ArgTypes: []ValueType{ValueTypeVector}, ReturnType: ValueTypeScalar, Call: funcCountScalar, }, "days_in_month": { Name: "days_in_month", ArgTypes: []ValueType{ValueTypeVector}, OptionalArgs: 1, ReturnType: ValueTypeVector, Call: funcDaysInMonth, }, "day_of_month": { Name: "day_of_month", ArgTypes: []ValueType{ValueTypeVector}, OptionalArgs: 1, ReturnType: ValueTypeVector, Call: funcDayOfMonth, }, "day_of_week": { Name: "day_of_week", ArgTypes: []ValueType{ValueTypeVector}, OptionalArgs: 1, ReturnType: ValueTypeVector, Call: funcDayOfWeek, }, "delta": { Name: "delta", ArgTypes: []ValueType{ValueTypeMatrix}, ReturnType: ValueTypeVector, Call: funcDelta, }, "deriv": { Name: "deriv", ArgTypes: []ValueType{ValueTypeMatrix}, ReturnType: ValueTypeVector, Call: funcDeriv, }, "drop_common_labels": { Name: "drop_common_labels", ArgTypes: []ValueType{ValueTypeVector}, ReturnType: ValueTypeVector, Call: funcDropCommonLabels, }, "exp": { Name: "exp", ArgTypes: []ValueType{ValueTypeVector}, ReturnType: ValueTypeVector, Call: funcExp, }, "floor": { Name: "floor", ArgTypes: []ValueType{ValueTypeVector}, ReturnType: ValueTypeVector, Call: funcFloor, }, "histogram_quantile": { Name: "histogram_quantile", ArgTypes: []ValueType{ValueTypeScalar, ValueTypeVector}, ReturnType: ValueTypeVector, Call: funcHistogramQuantile, }, "holt_winters": { Name: "holt_winters", ArgTypes: []ValueType{ValueTypeMatrix, ValueTypeScalar, ValueTypeScalar}, ReturnType: ValueTypeVector, Call: funcHoltWinters, }, "hour": { Name: "hour", ArgTypes: []ValueType{ValueTypeVector}, OptionalArgs: 1, ReturnType: ValueTypeVector, Call: funcHour, }, "idelta": { Name: "idelta", ArgTypes: []ValueType{ValueTypeMatrix}, ReturnType: ValueTypeVector, Call: funcIdelta, }, "increase": { Name: "increase", ArgTypes: []ValueType{ValueTypeMatrix}, ReturnType: ValueTypeVector, Call: funcIncrease, }, "irate": { Name: "irate", ArgTypes: []ValueType{ValueTypeMatrix}, ReturnType: ValueTypeVector, Call: funcIrate, }, "label_replace": { Name: "label_replace", ArgTypes: []ValueType{ValueTypeVector, ValueTypeString, ValueTypeString, ValueTypeString, ValueTypeString}, ReturnType: ValueTypeVector, Call: funcLabelReplace, }, "ln": { Name: "ln", ArgTypes: []ValueType{ValueTypeVector}, ReturnType: ValueTypeVector, Call: funcLn, }, "log10": { Name: "log10", ArgTypes: []ValueType{ValueTypeVector}, ReturnType: ValueTypeVector, Call: funcLog10, }, "log2": { Name: "log2", ArgTypes: []ValueType{ValueTypeVector}, ReturnType: ValueTypeVector, Call: funcLog2, }, "max_over_time": { Name: "max_over_time", ArgTypes: []ValueType{ValueTypeMatrix}, ReturnType: ValueTypeVector, Call: funcMaxOverTime, }, "min_over_time": { Name: "min_over_time", ArgTypes: []ValueType{ValueTypeMatrix}, ReturnType: ValueTypeVector, Call: funcMinOverTime, }, "minute": { Name: "minute", ArgTypes: []ValueType{ValueTypeVector}, OptionalArgs: 1, ReturnType: ValueTypeVector, Call: funcMinute, }, "month": { Name: "month", ArgTypes: []ValueType{ValueTypeVector}, OptionalArgs: 1, ReturnType: ValueTypeVector, Call: funcMonth, }, "predict_linear": { Name: "predict_linear", ArgTypes: []ValueType{ValueTypeMatrix, ValueTypeScalar}, ReturnType: ValueTypeVector, Call: funcPredictLinear, }, "quantile_over_time": { Name: "quantile_over_time", ArgTypes: []ValueType{ValueTypeScalar, ValueTypeMatrix}, ReturnType: ValueTypeVector, Call: funcQuantileOverTime, }, "rate": { Name: "rate", ArgTypes: []ValueType{ValueTypeMatrix}, ReturnType: ValueTypeVector, Call: funcRate, }, "resets": { Name: "resets", ArgTypes: []ValueType{ValueTypeMatrix}, ReturnType: ValueTypeVector, Call: funcResets, }, "round": { Name: "round", ArgTypes: []ValueType{ValueTypeVector, ValueTypeScalar}, OptionalArgs: 1, ReturnType: ValueTypeVector, Call: funcRound, }, "Scalar": { Name: "Scalar", ArgTypes: []ValueType{ValueTypeVector}, ReturnType: ValueTypeScalar, Call: funcScalar, }, "sort": { Name: "sort", ArgTypes: []ValueType{ValueTypeVector}, ReturnType: ValueTypeVector, Call: funcSort, }, "sort_desc": { Name: "sort_desc", ArgTypes: []ValueType{ValueTypeVector}, ReturnType: ValueTypeVector, Call: funcSortDesc, }, "sqrt": { Name: "sqrt", ArgTypes: []ValueType{ValueTypeVector}, ReturnType: ValueTypeVector, Call: funcSqrt, }, "stddev_over_time": { Name: "stddev_over_time", ArgTypes: []ValueType{ValueTypeMatrix}, ReturnType: ValueTypeVector, Call: funcStddevOverTime, }, "stdvar_over_time": { Name: "stdvar_over_time", ArgTypes: []ValueType{ValueTypeMatrix}, ReturnType: ValueTypeVector, Call: funcStdvarOverTime, }, "sum_over_time": { Name: "sum_over_time", ArgTypes: []ValueType{ValueTypeMatrix}, ReturnType: ValueTypeVector, Call: funcSumOverTime, }, "time": { Name: "time", ArgTypes: []ValueType{}, ReturnType: ValueTypeScalar, Call: funcTime, }, "Vector": { Name: "Vector", ArgTypes: []ValueType{ValueTypeScalar}, ReturnType: ValueTypeVector, Call: funcVector, }, "year": { Name: "year", ArgTypes: []ValueType{ValueTypeVector}, OptionalArgs: 1, ReturnType: ValueTypeVector, Call: funcYear, }, } // getFunction returns a predefined Function object for the given name. func getFunction(name string) (*Function, bool) { function, ok := functions[name] return function, ok } type vectorByValueHeap Vector func (s vectorByValueHeap) Len() int { return len(s) } func (s vectorByValueHeap) Less(i, j int) bool { if math.IsNaN(float64(s[i].V)) { return true } return s[i].V < s[j].V } func (s vectorByValueHeap) Swap(i, j int) { s[i], s[j] = s[j], s[i] } func (s *vectorByValueHeap) Push(x interface{}) { *s = append(*s, x.(Sample)) } func (s *vectorByValueHeap) Pop() interface{} { old := *s n := len(old) el := old[n-1] *s = old[0 : n-1] return el } type vectorByReverseValueHeap Vector func (s vectorByReverseValueHeap) Len() int { return len(s) } func (s vectorByReverseValueHeap) Less(i, j int) bool { if math.IsNaN(float64(s[i].V)) { return true } return s[i].V > s[j].V } func (s vectorByReverseValueHeap) Swap(i, j int) { s[i], s[j] = s[j], s[i] } func (s *vectorByReverseValueHeap) Push(x interface{}) { *s = append(*s, x.(Sample)) } func (s *vectorByReverseValueHeap) Pop() interface{} { old := *s n := len(old) el := old[n-1] *s = old[0 : n-1] return el }