// Copyright 2024 The Prometheus Authors // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // Provenance-includes-location: https://github.com/open-telemetry/opentelemetry-collector-contrib/blob/247a9f996e09a83cdc25addf70c05e42b8b30186/pkg/translator/prometheusremotewrite/histograms_test.go // Provenance-includes-license: Apache-2.0 // Provenance-includes-copyright: Copyright The OpenTelemetry Authors. package prometheusremotewrite import ( "context" "fmt" "testing" "time" "github.com/prometheus/common/model" "github.com/stretchr/testify/assert" "github.com/stretchr/testify/require" "go.opentelemetry.io/collector/pdata/pcommon" "go.opentelemetry.io/collector/pdata/pmetric" "github.com/prometheus/prometheus/prompb" prometheustranslator "github.com/prometheus/prometheus/storage/remote/otlptranslator/prometheus" ) type expectedBucketLayout struct { wantSpans []prompb.BucketSpan wantDeltas []int64 } func TestConvertBucketsLayout(t *testing.T) { tests := []struct { name string buckets func() pmetric.ExponentialHistogramDataPointBuckets wantLayout map[int32]expectedBucketLayout }{ { name: "zero offset", buckets: func() pmetric.ExponentialHistogramDataPointBuckets { b := pmetric.NewExponentialHistogramDataPointBuckets() b.SetOffset(0) b.BucketCounts().FromRaw([]uint64{4, 3, 2, 1}) return b }, wantLayout: map[int32]expectedBucketLayout{ 0: { wantSpans: []prompb.BucketSpan{ { Offset: 1, Length: 4, }, }, wantDeltas: []int64{4, -1, -1, -1}, }, 1: { wantSpans: []prompb.BucketSpan{ { Offset: 1, Length: 2, }, }, // 4+3, 2+1 = 7, 3 =delta= 7, -4 wantDeltas: []int64{7, -4}, }, 2: { wantSpans: []prompb.BucketSpan{ { Offset: 1, Length: 1, }, }, // 4+3+2+1 = 10 =delta= 10 wantDeltas: []int64{10}, }, }, }, { name: "offset 1", buckets: func() pmetric.ExponentialHistogramDataPointBuckets { b := pmetric.NewExponentialHistogramDataPointBuckets() b.SetOffset(1) b.BucketCounts().FromRaw([]uint64{4, 3, 2, 1}) return b }, wantLayout: map[int32]expectedBucketLayout{ 0: { wantSpans: []prompb.BucketSpan{ { Offset: 2, Length: 4, }, }, wantDeltas: []int64{4, -1, -1, -1}, }, 1: { wantSpans: []prompb.BucketSpan{ { Offset: 1, Length: 3, }, }, wantDeltas: []int64{4, 1, -4}, // 0+4, 3+2, 1+0 = 4, 5, 1 }, 2: { wantSpans: []prompb.BucketSpan{ { Offset: 1, Length: 2, }, }, wantDeltas: []int64{9, -8}, // 0+4+3+2, 1+0+0+0 = 9, 1 }, }, }, { name: "positive offset", buckets: func() pmetric.ExponentialHistogramDataPointBuckets { b := pmetric.NewExponentialHistogramDataPointBuckets() b.SetOffset(4) b.BucketCounts().FromRaw([]uint64{4, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}) return b }, wantLayout: map[int32]expectedBucketLayout{ 0: { wantSpans: []prompb.BucketSpan{ { Offset: 5, Length: 4, }, { Offset: 12, Length: 1, }, }, wantDeltas: []int64{4, -2, -2, 2, -1}, }, 1: { wantSpans: []prompb.BucketSpan{ { Offset: 3, Length: 2, }, { Offset: 6, Length: 1, }, }, // Downscale: // 4+2, 0+2, 0+0, 0+0, 0+0, 0+0, 0+0, 0+0, 1+0 = 6, 2, 0, 0, 0, 0, 0, 0, 1 wantDeltas: []int64{6, -4, -1}, }, 2: { wantSpans: []prompb.BucketSpan{ { Offset: 2, Length: 1, }, { Offset: 3, Length: 1, }, }, // Downscale: // 4+2+0+2, 0+0+0+0, 0+0+0+0, 0+0+0+0, 1+0+0+0 = 8, 0, 0, 0, 1 // Check from scaling from previous: 6+2, 0+0, 0+0, 0+0, 1+0 = 8, 0, 0, 0, 1 wantDeltas: []int64{8, -7}, }, }, }, { name: "scaledown merges spans", buckets: func() pmetric.ExponentialHistogramDataPointBuckets { b := pmetric.NewExponentialHistogramDataPointBuckets() b.SetOffset(4) b.BucketCounts().FromRaw([]uint64{4, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1}) return b }, wantLayout: map[int32]expectedBucketLayout{ 0: { wantSpans: []prompb.BucketSpan{ { Offset: 5, Length: 4, }, { Offset: 8, Length: 1, }, }, wantDeltas: []int64{4, -2, -2, 2, -1}, }, 1: { wantSpans: []prompb.BucketSpan{ { Offset: 3, Length: 2, }, { Offset: 4, Length: 1, }, }, // Downscale: // 4+2, 0+2, 0+0, 0+0, 0+0, 0+0, 1+0 = 6, 2, 0, 0, 0, 0, 1 wantDeltas: []int64{6, -4, -1}, }, 2: { wantSpans: []prompb.BucketSpan{ { Offset: 2, Length: 4, }, }, // Downscale: // 4+2+0+2, 0+0+0+0, 0+0+0+0, 1+0+0+0 = 8, 0, 0, 1 // Check from scaling from previous: 6+2, 0+0, 0+0, 1+0 = 8, 0, 0, 1 wantDeltas: []int64{8, -8, 0, 1}, }, }, }, { name: "negative offset", buckets: func() pmetric.ExponentialHistogramDataPointBuckets { b := pmetric.NewExponentialHistogramDataPointBuckets() b.SetOffset(-2) b.BucketCounts().FromRaw([]uint64{3, 1, 0, 0, 0, 1}) return b }, wantLayout: map[int32]expectedBucketLayout{ 0: { wantSpans: []prompb.BucketSpan{ { Offset: -1, Length: 2, }, { Offset: 3, Length: 1, }, }, wantDeltas: []int64{3, -2, 0}, }, 1: { wantSpans: []prompb.BucketSpan{ { Offset: 0, Length: 3, }, }, // Downscale: // 3+1, 0+0, 0+1 = 4, 0, 1 wantDeltas: []int64{4, -4, 1}, }, 2: { wantSpans: []prompb.BucketSpan{ { Offset: 0, Length: 2, }, }, // Downscale: // 0+0+3+1, 0+0+0+0 = 4, 1 wantDeltas: []int64{4, -3}, }, }, }, { name: "buckets with gaps of size 1", buckets: func() pmetric.ExponentialHistogramDataPointBuckets { b := pmetric.NewExponentialHistogramDataPointBuckets() b.SetOffset(-2) b.BucketCounts().FromRaw([]uint64{3, 1, 0, 1, 0, 1}) return b }, wantLayout: map[int32]expectedBucketLayout{ 0: { wantSpans: []prompb.BucketSpan{ { Offset: -1, Length: 6, }, }, wantDeltas: []int64{3, -2, -1, 1, -1, 1}, }, 1: { wantSpans: []prompb.BucketSpan{ { Offset: 0, Length: 3, }, }, // Downscale: // 3+1, 0+1, 0+1 = 4, 1, 1 wantDeltas: []int64{4, -3, 0}, }, 2: { wantSpans: []prompb.BucketSpan{ { Offset: 0, Length: 2, }, }, // Downscale: // 0+0+3+1, 0+1+0+1 = 4, 2 wantDeltas: []int64{4, -2}, }, }, }, { name: "buckets with gaps of size 2", buckets: func() pmetric.ExponentialHistogramDataPointBuckets { b := pmetric.NewExponentialHistogramDataPointBuckets() b.SetOffset(-2) b.BucketCounts().FromRaw([]uint64{3, 0, 0, 1, 0, 0, 1}) return b }, wantLayout: map[int32]expectedBucketLayout{ 0: { wantSpans: []prompb.BucketSpan{ { Offset: -1, Length: 7, }, }, wantDeltas: []int64{3, -3, 0, 1, -1, 0, 1}, }, 1: { wantSpans: []prompb.BucketSpan{ { Offset: 0, Length: 4, }, }, // Downscale: // 3+0, 0+1, 0+0, 0+1 = 3, 1, 0, 1 wantDeltas: []int64{3, -2, -1, 1}, }, 2: { wantSpans: []prompb.BucketSpan{ { Offset: 0, Length: 3, }, }, // Downscale: // 0+0+3+0, 0+1+0+0, 1+0+0+0 = 3, 1, 1 wantDeltas: []int64{3, -2, 0}, }, }, }, { name: "zero buckets", buckets: pmetric.NewExponentialHistogramDataPointBuckets, wantLayout: map[int32]expectedBucketLayout{ 0: { wantSpans: nil, wantDeltas: nil, }, 1: { wantSpans: nil, wantDeltas: nil, }, 2: { wantSpans: nil, wantDeltas: nil, }, }, }, } for _, tt := range tests { for scaleDown, wantLayout := range tt.wantLayout { t.Run(fmt.Sprintf("%s-scaleby-%d", tt.name, scaleDown), func(t *testing.T) { gotSpans, gotDeltas := convertBucketsLayout(tt.buckets(), scaleDown) assert.Equal(t, wantLayout.wantSpans, gotSpans) assert.Equal(t, wantLayout.wantDeltas, gotDeltas) }) } } } func BenchmarkConvertBucketLayout(b *testing.B) { scenarios := []struct { gap int }{ {gap: 0}, {gap: 1}, {gap: 2}, {gap: 3}, } for _, scenario := range scenarios { buckets := pmetric.NewExponentialHistogramDataPointBuckets() buckets.SetOffset(0) for i := 0; i < 1000; i++ { if i%(scenario.gap+1) == 0 { buckets.BucketCounts().Append(10) } else { buckets.BucketCounts().Append(0) } } b.Run(fmt.Sprintf("gap %d", scenario.gap), func(b *testing.B) { for i := 0; i < b.N; i++ { convertBucketsLayout(buckets, 0) } }) } } func TestExponentialToNativeHistogram(t *testing.T) { tests := []struct { name string exponentialHist func() pmetric.ExponentialHistogramDataPoint wantNativeHist func() prompb.Histogram wantErrMessage string }{ { name: "convert exp. to native histogram", exponentialHist: func() pmetric.ExponentialHistogramDataPoint { pt := pmetric.NewExponentialHistogramDataPoint() pt.SetStartTimestamp(pcommon.NewTimestampFromTime(time.UnixMilli(100))) pt.SetTimestamp(pcommon.NewTimestampFromTime(time.UnixMilli(500))) pt.SetCount(4) pt.SetSum(10.1) pt.SetScale(1) pt.SetZeroCount(1) pt.Positive().BucketCounts().FromRaw([]uint64{1, 1}) pt.Positive().SetOffset(1) pt.Negative().BucketCounts().FromRaw([]uint64{1, 1}) pt.Negative().SetOffset(1) return pt }, wantNativeHist: func() prompb.Histogram { return prompb.Histogram{ Count: &prompb.Histogram_CountInt{CountInt: 4}, Sum: 10.1, Schema: 1, ZeroThreshold: defaultZeroThreshold, ZeroCount: &prompb.Histogram_ZeroCountInt{ZeroCountInt: 1}, NegativeSpans: []prompb.BucketSpan{{Offset: 2, Length: 2}}, NegativeDeltas: []int64{1, 0}, PositiveSpans: []prompb.BucketSpan{{Offset: 2, Length: 2}}, PositiveDeltas: []int64{1, 0}, Timestamp: 500, } }, }, { name: "convert exp. to native histogram with no sum", exponentialHist: func() pmetric.ExponentialHistogramDataPoint { pt := pmetric.NewExponentialHistogramDataPoint() pt.SetStartTimestamp(pcommon.NewTimestampFromTime(time.UnixMilli(100))) pt.SetTimestamp(pcommon.NewTimestampFromTime(time.UnixMilli(500))) pt.SetCount(4) pt.SetScale(1) pt.SetZeroCount(1) pt.Positive().BucketCounts().FromRaw([]uint64{1, 1}) pt.Positive().SetOffset(1) pt.Negative().BucketCounts().FromRaw([]uint64{1, 1}) pt.Negative().SetOffset(1) return pt }, wantNativeHist: func() prompb.Histogram { return prompb.Histogram{ Count: &prompb.Histogram_CountInt{CountInt: 4}, Schema: 1, ZeroThreshold: defaultZeroThreshold, ZeroCount: &prompb.Histogram_ZeroCountInt{ZeroCountInt: 1}, NegativeSpans: []prompb.BucketSpan{{Offset: 2, Length: 2}}, NegativeDeltas: []int64{1, 0}, PositiveSpans: []prompb.BucketSpan{{Offset: 2, Length: 2}}, PositiveDeltas: []int64{1, 0}, Timestamp: 500, } }, }, { name: "invalid negative scale", exponentialHist: func() pmetric.ExponentialHistogramDataPoint { pt := pmetric.NewExponentialHistogramDataPoint() pt.SetScale(-10) return pt }, wantErrMessage: "cannot convert exponential to native histogram." + " Scale must be >= -4, was -10", }, { name: "no downscaling at scale 8", exponentialHist: func() pmetric.ExponentialHistogramDataPoint { pt := pmetric.NewExponentialHistogramDataPoint() pt.SetTimestamp(pcommon.NewTimestampFromTime(time.UnixMilli(500))) pt.SetCount(6) pt.SetSum(10.1) pt.SetScale(8) pt.SetZeroCount(1) pt.Positive().BucketCounts().FromRaw([]uint64{1, 1, 1}) pt.Positive().SetOffset(1) pt.Negative().BucketCounts().FromRaw([]uint64{1, 1, 1}) pt.Negative().SetOffset(2) return pt }, wantNativeHist: func() prompb.Histogram { return prompb.Histogram{ Count: &prompb.Histogram_CountInt{CountInt: 6}, Sum: 10.1, Schema: 8, ZeroThreshold: defaultZeroThreshold, ZeroCount: &prompb.Histogram_ZeroCountInt{ZeroCountInt: 1}, PositiveSpans: []prompb.BucketSpan{{Offset: 2, Length: 3}}, PositiveDeltas: []int64{1, 0, 0}, // 1, 1, 1 NegativeSpans: []prompb.BucketSpan{{Offset: 3, Length: 3}}, NegativeDeltas: []int64{1, 0, 0}, // 1, 1, 1 Timestamp: 500, } }, }, { name: "downsample if scale is more than 8", exponentialHist: func() pmetric.ExponentialHistogramDataPoint { pt := pmetric.NewExponentialHistogramDataPoint() pt.SetTimestamp(pcommon.NewTimestampFromTime(time.UnixMilli(500))) pt.SetCount(6) pt.SetSum(10.1) pt.SetScale(9) pt.SetZeroCount(1) pt.Positive().BucketCounts().FromRaw([]uint64{1, 1, 1}) pt.Positive().SetOffset(1) pt.Negative().BucketCounts().FromRaw([]uint64{1, 1, 1}) pt.Negative().SetOffset(2) return pt }, wantNativeHist: func() prompb.Histogram { return prompb.Histogram{ Count: &prompb.Histogram_CountInt{CountInt: 6}, Sum: 10.1, Schema: 8, ZeroThreshold: defaultZeroThreshold, ZeroCount: &prompb.Histogram_ZeroCountInt{ZeroCountInt: 1}, PositiveSpans: []prompb.BucketSpan{{Offset: 1, Length: 2}}, PositiveDeltas: []int64{1, 1}, // 0+1, 1+1 = 1, 2 NegativeSpans: []prompb.BucketSpan{{Offset: 2, Length: 2}}, NegativeDeltas: []int64{2, -1}, // 1+1, 1+0 = 2, 1 Timestamp: 500, } }, }, } for _, tt := range tests { t.Run(tt.name, func(t *testing.T) { validateExponentialHistogramCount(t, tt.exponentialHist()) // Sanity check. got, annots, err := exponentialToNativeHistogram(tt.exponentialHist()) if tt.wantErrMessage != "" { assert.ErrorContains(t, err, tt.wantErrMessage) return } require.NoError(t, err) require.Empty(t, annots) assert.Equal(t, tt.wantNativeHist(), got) validateNativeHistogramCount(t, got) }) } } func validateExponentialHistogramCount(t *testing.T, h pmetric.ExponentialHistogramDataPoint) { actualCount := uint64(0) for _, bucket := range h.Positive().BucketCounts().AsRaw() { actualCount += bucket } for _, bucket := range h.Negative().BucketCounts().AsRaw() { actualCount += bucket } require.Equal(t, h.Count(), actualCount, "exponential histogram count mismatch") } func validateNativeHistogramCount(t *testing.T, h prompb.Histogram) { require.NotNil(t, h.Count) require.IsType(t, &prompb.Histogram_CountInt{}, h.Count) want := h.Count.(*prompb.Histogram_CountInt).CountInt var ( actualCount uint64 prevBucket int64 ) for _, delta := range h.PositiveDeltas { prevBucket += delta actualCount += uint64(prevBucket) } prevBucket = 0 for _, delta := range h.NegativeDeltas { prevBucket += delta actualCount += uint64(prevBucket) } assert.Equal(t, want, actualCount, "native histogram count mismatch") } func TestPrometheusConverter_addExponentialHistogramDataPoints(t *testing.T) { tests := []struct { name string metric func() pmetric.Metric wantSeries func() map[uint64]*prompb.TimeSeries }{ { name: "histogram data points with same labels", metric: func() pmetric.Metric { metric := pmetric.NewMetric() metric.SetName("test_hist") metric.SetEmptyExponentialHistogram().SetAggregationTemporality(pmetric.AggregationTemporalityCumulative) pt := metric.ExponentialHistogram().DataPoints().AppendEmpty() pt.SetCount(7) pt.SetScale(1) pt.Positive().SetOffset(-1) pt.Positive().BucketCounts().FromRaw([]uint64{4, 2}) pt.Exemplars().AppendEmpty().SetDoubleValue(1) pt.Attributes().PutStr("attr", "test_attr") pt = metric.ExponentialHistogram().DataPoints().AppendEmpty() pt.SetCount(4) pt.SetScale(1) pt.Positive().SetOffset(-1) pt.Positive().BucketCounts().FromRaw([]uint64{4, 2, 1}) pt.Exemplars().AppendEmpty().SetDoubleValue(2) pt.Attributes().PutStr("attr", "test_attr") return metric }, wantSeries: func() map[uint64]*prompb.TimeSeries { labels := []prompb.Label{ {Name: model.MetricNameLabel, Value: "test_hist"}, {Name: "attr", Value: "test_attr"}, } return map[uint64]*prompb.TimeSeries{ timeSeriesSignature(labels): { Labels: labels, Histograms: []prompb.Histogram{ { Count: &prompb.Histogram_CountInt{CountInt: 7}, Schema: 1, ZeroThreshold: defaultZeroThreshold, ZeroCount: &prompb.Histogram_ZeroCountInt{ZeroCountInt: 0}, PositiveSpans: []prompb.BucketSpan{{Offset: 0, Length: 2}}, PositiveDeltas: []int64{4, -2}, }, { Count: &prompb.Histogram_CountInt{CountInt: 4}, Schema: 1, ZeroThreshold: defaultZeroThreshold, ZeroCount: &prompb.Histogram_ZeroCountInt{ZeroCountInt: 0}, PositiveSpans: []prompb.BucketSpan{{Offset: 0, Length: 3}}, PositiveDeltas: []int64{4, -2, -1}, }, }, Exemplars: []prompb.Exemplar{ {Value: 1}, {Value: 2}, }, }, } }, }, { name: "histogram data points with different labels", metric: func() pmetric.Metric { metric := pmetric.NewMetric() metric.SetName("test_hist") metric.SetEmptyExponentialHistogram().SetAggregationTemporality(pmetric.AggregationTemporalityCumulative) pt := metric.ExponentialHistogram().DataPoints().AppendEmpty() pt.SetCount(7) pt.SetScale(1) pt.Positive().SetOffset(-1) pt.Positive().BucketCounts().FromRaw([]uint64{4, 2}) pt.Exemplars().AppendEmpty().SetDoubleValue(1) pt.Attributes().PutStr("attr", "test_attr") pt = metric.ExponentialHistogram().DataPoints().AppendEmpty() pt.SetCount(4) pt.SetScale(1) pt.Negative().SetOffset(-1) pt.Negative().BucketCounts().FromRaw([]uint64{4, 2, 1}) pt.Exemplars().AppendEmpty().SetDoubleValue(2) pt.Attributes().PutStr("attr", "test_attr_two") return metric }, wantSeries: func() map[uint64]*prompb.TimeSeries { labels := []prompb.Label{ {Name: model.MetricNameLabel, Value: "test_hist"}, {Name: "attr", Value: "test_attr"}, } labelsAnother := []prompb.Label{ {Name: model.MetricNameLabel, Value: "test_hist"}, {Name: "attr", Value: "test_attr_two"}, } return map[uint64]*prompb.TimeSeries{ timeSeriesSignature(labels): { Labels: labels, Histograms: []prompb.Histogram{ { Count: &prompb.Histogram_CountInt{CountInt: 7}, Schema: 1, ZeroThreshold: defaultZeroThreshold, ZeroCount: &prompb.Histogram_ZeroCountInt{ZeroCountInt: 0}, PositiveSpans: []prompb.BucketSpan{{Offset: 0, Length: 2}}, PositiveDeltas: []int64{4, -2}, }, }, Exemplars: []prompb.Exemplar{ {Value: 1}, }, }, timeSeriesSignature(labelsAnother): { Labels: labelsAnother, Histograms: []prompb.Histogram{ { Count: &prompb.Histogram_CountInt{CountInt: 4}, Schema: 1, ZeroThreshold: defaultZeroThreshold, ZeroCount: &prompb.Histogram_ZeroCountInt{ZeroCountInt: 0}, NegativeSpans: []prompb.BucketSpan{{Offset: 0, Length: 3}}, NegativeDeltas: []int64{4, -2, -1}, }, }, Exemplars: []prompb.Exemplar{ {Value: 2}, }, }, } }, }, } for _, tt := range tests { t.Run(tt.name, func(t *testing.T) { metric := tt.metric() converter := NewPrometheusConverter() annots, err := converter.addExponentialHistogramDataPoints( context.Background(), metric.ExponentialHistogram().DataPoints(), pcommon.NewResource(), Settings{ ExportCreatedMetric: true, }, prometheustranslator.BuildCompliantName(metric, "", true), ) require.NoError(t, err) require.Empty(t, annots) assert.Equal(t, tt.wantSeries(), converter.unique) assert.Empty(t, converter.conflicts) }) } }